
© 2017. Deepak Kumar & Manu Sood. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, 
distribution, and reproduction inany medium, provided the original work is properly cited. 

  
 

 
    

 
 

   

 

The Components that can Build Flexible & Efficient Software 
Defined Network       

By Deepak Kumar & Manu Sood                                                                                         
  

Abstract- SDN (Software Defined Network) is a new networking approach towards current networking 
industry. S.D.N has attarcted the researchers attention, because there is wide scope of innovation 
and research. The main concept behind the SDN networks is the separation of controller from data 
plane. This natural feature makes SDN adaptive of being flexible and scalable. We are mentioning 
some of the important components those are needed to make current SDN networks even better and 
efficient that can be managed easily and updated whenever needed, without any interruption of 
services. Also we have discussed how we can manage the data plane, control plane and how we can 
identify where fault has occurred.  

Keywords: SDN, hypervisor, virtualization, openflow, programmable data plane.    

GJCST-E Classification:  C.2.1,  C.2.2 

 

TheComponentsthatcanBuildFlexibleEfficientSoftwareDefinedNetwork                                                                       
 
 
 
 
 
 

Strictly as per the compliance and regulations of:
 

 

      
Global Journal of Computer Science and Technology: E
Network, Web & Security 

Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Volume 17 Issue 1 Version 1.0 Year 2017

Himachal Pradesh University



The Components that can Build Flexible & 
Efficient Software Defined Network

Deepak Kumar α & Manu Sood σ 

    
  

  
  

 

  

 

 
  

 
I.

 

INTRODUCTION

 
n a Software-Defined Networks

 

(SDN) the controller 
resides in the control plane that controls the hetero-

 

geneous forwarding devices. The main concept 
behind the SDN is the Data Plane and Control Plane 
separation, virtualization and programmatic control. 
Controller can change the functionality of the forwarding 
devices through command by changing the rules and 
policies. The main purpose of the SDN is to satisfy the 
changing needs of

 

enterprises and users. In

 

SDN

 

net

 

work administrator can change the flow of packets thro-

 

ugh centralized controller without configuring the forwar-

 

ding devices (switches, routers) manually. Whenever 
packet came across switch (in data plane) the rules and 
policies installed in the firmware guide the switch where 
to forward the packet. The communication between the 
controller and data plane takes place through south 
bound interface usually known as Open

 

Flow. The 
architecture of SDN is as shown in Figure1. There are 
three layers; the 1st

 

layer is called as application layer 
(management plane). The 2nd

 

layer is called as control 
layer (control plane) where controller resides. The contr-
oller can be any of the NOX [1], POX [2], FLOODLIGHT 
[3], BEACON

 

[4] etc. The 3rd layer

 

is known as the 
infrastructure layer (data plane). 

 

Open

 

low

 

[5]

 

is a protocol that actually enables 
the separation of control plane from data plane. To be 
more specific it is not the controller that controls the 
data plane, it the application that uses the controller to 
manage the switches in data plane.

 

SDN is much 
flexible compared to the traditional networks the only 

risk is that it can be failed any time. The recent techni-
ques are not that much sufficient to tell about how 
network would behave when controller will fail. There 
must be a network management service that can 
manage various network management applications to 
run independently, while monitoring and maintaining  
the performance as well as network safety. Various 
aspects of the network are captured by network state 
like which link is active and how switches are forwarding 
traffic. Different views can be seen through network 
state. Observed state that maintains the updated view of 
the actual state of the network, applications can read 
this state and changes in propose state are based on 
their own goals.  

Also there is a need of system that can 
consistently update the network and dynamically sche- 
dules these updates based on the runtime difference in 
the update speed of various switches in Software Defi- 
ned Networks (S.D.N). With the advent of S.D.N that 
provides the excellent opportunity to developers for 
developing basic abstractions for the management of 
network updates. Instability in networks are generally 
due to changes in the configuration that leads to unavai- 
lability of the network, performance problems and secu- 
rity issues. Sometimes intermediate configuration also 
behaves incorrectly during the update process even if 
the initial and final configurations are correct. S.D.N 
programs must be updated consistently as we update 
software, whether the reason is to migrate to new 
controller, bugs repairing and address performance 
issues.  

Operators of S.D.N performs network updates 
by stopping the old controller and starting the new 
controller, this process cleanup the preinstalled entries 
of flow table that can creates problems including loss of 
packet, or increase in latency etc. There must be a 
mechanism that ensures to maintained the well defined 
behaviour of the network even if the change of 
configuration took place. The interaction between the 
today's datacenter and application running on them 
takes place in a complex way, making network 
operators to run various traffic management services to 
maintain the working of network. Also solution regarding 
traffic management are often limited because of the 
divide between the network and hosts. The network 
devices only deals with knowledge regarding layer of 
networks where as the hosts have the view how 
applications interacts with the network.  

I
 

Author α σ: Department of Computer Science Himachal Pradesh 
University, Summer Hill, Shimla India.
e-mails: deepak.cs339@gmail.com, soodm_67@yahoo.com

© 2017   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

15

Y
e
a
r

20
17

  
 (

)
E

Keywords: SDN, hypervisor, virtualization, openflow, 
programmable data plane.

Abstract- SDN (Software Defined Network) is a new networking 
approach towards current networking industry. S.D.N has atta-
rcted the researchers attention, because there is wide scope 
of innovation and research. The main concept behind the SDN 
networks is the separation of controller from data plane. This 
natural feature makes SDN adaptive of being flexible and 
scalable. We are mentioning some of the important compo-
nents those are needed to make current SDN networks even 
better and efficient that can be managed easily and updated 
whenever needed, without any interruption of services. Also we 
have discussed how we can manage the data plane, control 
plane and how we can identify where fault has occurred.



So there must be a system that may have 
unified view of the both host and network so that 
maintenance of both takes place in easy way. Another 
important thing we need to be considered is packet 
tracing. If there is any problem regarding handling of 
packet, we should trace back the packet to find out the 
root cause. This helps in debugging the networks, 
testing of network performances etc. Earlier mechanism 
were required of modification of switches that  

 
Figure 1: SDN Architecture 

results in more overhead. S.D.N makes this happen to 
calculate the transformations that leads us to packet 
observations. In order to measure the flow of traffic 
across network paths is difficult for many management 
services including traffic engineering (TE) [6], diagno-

 sing network congestion. There must be a query based 
language for the traffic monitoring. Also there is a need 
of protocol independent programming language. In next 
sections we are discussing few components that can 
make SDN much robust and efficient, like data plane 
performance monitoring, network

 
performance diagno-

 sis, 
 
hypervisor for efficient network, protocol indepen-

 dent language for switches, packet trace back, To find 
the shortest path for the forwarding of packets between 
switches.

 
II.

 
DATA PERFORMANCE MONITORING

 
Data plane is generally local to each of the hard

 ware devices like switches, routers, or the card on the 
router, and arrival packet speed determines how to 
operate them. Data plane is made up of various hard

 ware devices of network that provides connectivity. 
These hardware devices are routers, Ethernet switches 
and firewalls. The configuration to hardware devices are 
provided by control plane through control interface 
(Open

 
Flow) and the configuration across these devices 

can be updated whenever needed. In order to optimize
 the network configuration request is made by hardware 

devices to the controller (control plane). As many 
applications

 
moving to the cloud

 
day by day, so cloud 

operators need to diagnose performance problems 
consistently.

 Till now Offline processing of logs is very slow 
and

 

inefficient. We need a system to analyze

 

TCP perfo-

rmance in terms of real time across the end-host wor-

 
king over hypervisor or connected to NIC

 

[7], switch etc. 
It should determines whether the connection is affected 
at

 

the sender's end or due to the congestion across 
network or problem is at

 

the receivers end because of 
limited

 

buffer

 

capacity. With the increase of edge devi-

 
ces that

 

offers adjustable

 

processing

 

of packet at high 
speed on

 

hardware

 

devices in data plane,

 

that makes

 
possible to monitor TCP performance. 

 
P4

 

[8]

 

which is a protocol independent langu-

 
age that help us in management of the traffic. In order to 
minimize the state requirements of the data-plane, there 
is a need of detection of all connections,

 

after that all 
connections are diagnosed in order to find fault across 
them. In Figure 2 as shown there is a need of inbuilt 
diagnose or trouble-shooter in the controller so that it 
can consistently look for problems across the network 
elements and manage them as soon as possible  in ord-

 
er provide the robust and flexible network. Red arrows 
showing programs written in protocol independent lang-

 
uage i.e. P4 can be implemented in data plane through 
controller by programmatic control. Whereas blue arro-

 
ws showing the TCP traffic

 

across the hardware devices 
like switches can be monitored ( TCP traffic information 
can be sent to control plane through data plane). Here 
switch1 and switch2 are the edge devices Here switch1 
and switch2 are the edge devices which can be 
monitored through controller to captures the TCP traffic. 

 

 

Figure 2:

 

TCP Statistics gathering from edge devices of 
data plane by control plane

 
Diagnosis and troubleshooting will also helps to 

identify where the actual problem occurs: is it across 
sender or it is at receivers end or it is due to the network 
congestion. In order to make this happen, there is a 
need of protocol independent language like P4 through 
which we can write programs and be implemented 
through controller. can make performance of the 
network even

 

more better, if we use the network 
elements (switches, router etc. ) that supports the 
protocol independent languages.

 
 
 
 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

16

Y
e
a
r

20
17

  
 (

)
E

III. NETWORK PERFORMANCE DIAGNOSIS

Control plane or the controller provides the 
global view of the network, enabling the network 
administrator to update the rule, policies or protocol 
across the hardware devices lying in data plane at any 
time whenever need to be updated. S.D.N platform 

The Components that can Build Flexible & Efficient Software Defined Network

© 20 7   Global Journa ls Inc.  (US)1



  

 

provides controller the capability to intelligently control 
the network elements; like we can change the topology 
across network device if any intruder try to interrupt the 
flow of packet, in that case controller can intelligently 
sense that someone across the hardware device trying 
to steal information

 

or interrupting the service e.g. in 
figure 3 as shown, when intruder ( yellow triangle) tries 
to access across switch3

 

then switch3 report to 
controller through data plane. Controller than change 
the topology of underlying switches, as initially flow of 
packet takes place from switch1 to switch5 through path 
switch1-switch3-switch4-switch5 ( blue dotted line) but 
due to intruder interruption across switch3, controller 
update the new topology across the switches, so now 
flow of packet between switch1 and switch5 is takes 
place through path switch1-switch2-switch4-switch5 
(green dotted lines). This functionality of handling 
hardware resources through programmatic control 
makes S.D.N suitable choice for current networking 
environment. 

 

In order to make S.D.N more efficient there is 
need of handling many things like, what if controller fails, 
in that case the whole network will suffer.

 

 

Figure 3:

 

Intruder handling through control plane

 

The solution of this problem is that, there should 
be more than one controller in the control plane. So that 
if one fails other controller will control the flow of packet 
through programmatic control across switches. By 
doing so network will behave normally as there was no 
problem. Having more than one controllers also have 
other advantages, like while upgrading the controller, 
during that time if any fault occur in data plane then 
other controller will handles all the faults or provide 
services to the network elements, only limitation of 
having more than controller

 

the cost. For an efficient 
network the switch should be intelligent, so that they 
may be able to configure the shortest path to reach the 
destination.

 

IV.

 

HYPERVISOR FOR EFFICIENT NETWORK

 

A hypervisor commonly also known as virtually 
machine monitor (VMM) is a software program that is 

 

part  of virtualization technology. Hypervisor

 

[9]

 

mainly is

  

lates controllers ( network operating system) or vari-

 

ous 
business applications from the underlying hardware 
devices in data plane. As we have discussed in section 
3. 

 

A centralized

 

controller in S.D.N react to net-

 

work condition those are changed by upgrading the 
rules and policies across the hardware devices in the 
data plane. Every software need upgrades to fix errors, 
to add new features. Similarly for upgrading the contro-

 

ller, it need to be stopped, while during this transition, 
network will fail.  So the idea of multiple controllers 
came. This idea helped to manage the network even 
when the one of controller fails, because other contro-

 

llers are capable enough to handle any interrupt or fault 
along any hardware resources.

 

One another important point came, if controller1 
installed the rule and policies across hardware devices 
and got failed, in that case will other controller like 
controller2 and controller3 will support the polices or 
rules installed by controller1.

 

For this thing to happen all 
of controllers (as in our example: controller1,controller

 

2 
and controller3) must linked or coordinate with each 
other. 

 

 

  

The thing that help the controller to coordinate 
with each other is called hypervisor. As hypervisor is a 
natural platform to support multiple operating system 
providing hardware devices the illusion of having only 
the one controller and is providing services to the

 

© 2017   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

17

Y
e
a
r

20
17

  
 (

)
E

individual hardware device (whether it is router, switch or 
access-point).

V. PROTOCOL INDEPENDENT HIGH LEVEL 

LANGUAGE

The heading One of the high level language 
suitable for the programmed packet handler which is
protocol independent is P4 [10], One of the high level 
language suitable for the programmed packet handler 
which is protocol independent is P4, P4 stands for 

Figure 4: Role of hypervisor

Programming Protocol-Independent Packet Processors. 
P4 works in collaboration with the Open Flow protocol.

The Components that can Build Flexible & Efficient Software Defined Network



 
 

 
 

 
   

  

  

Open

 

Flow is the protocol which is responsible for the 
decoupling of control plane from data plane, enabling 
us to write the program in P4 and implement it in data 
plane through programmatic control by centralized 
intelligent controller. The advantage of having the 
protocol independent language is that hardware devices 
are not specific to the particular network protocols. Also 
this provides programmers with capability to describe 
the packet processing functionality that is independent 
of the type of underlying hardware devices.

 

VI.

 

PACKET TRACE BACK

 

The main goal of the paper trace back is to 
determine how the packet has reached to its current 
location and also the path through which it

 

has reached. 
Packet trace back [11]has the many of the advantages 
like; to determine the security of the network, perfor-

 

mance monitoring and debugging of the network. DDOS 
attack might be first detected, and then we can trace it 
back and shut off the link through which it is entering. 
One more example is; if network administrator identifies 
that some flow have poor performance, through packet 
trace back can depict which nodes needs to be exami-

 

ned for congestion. Also the path followed by packet 
helps in debugging for errors. Figure 5 shows that inflow 
of packet takes place across switch D and all packet are 
outflow through switch A e.g. Suppose a packet-P who-

 

se first bit of the source IP address is 1, leaving switch A 
through port 1 and the aim is to trace back its path 
through the network system. Packet arriving on switch D 
at port id 3 is forward to switch B 

 

 

Figure 5:

 

Packet Tracing

 

only if the first bit of the source IP is 1,otherwise 
forwarded to the switch C. As this switches B and C also 
forwards the packet to switch A, e.g. if switch C receives 
a packet with IP whose first bit is 1, then that packet 
would be dropped.

 

Therefore by doing so we can 
determine that packet-P have not followed the path

 

through switch C but have traversed the path through 
switch D-switch B-

 

switch A.

 

VII.

 

CONCLUSION AND FUTURE SCOPE

 

Till now we have discussed various factors that 
can help us to build flexible and robust network. So all of 

these are the approaches that we have

 

to be conside-

 

red. By considering these we can overcome and handle 
various faults.

 

The switches must be intelligent enough 
to decide where to forward the packet in the case when 
controller is not responding. The main purpose of doing 
is that the traffic must remains in the data plane. The use 
of multiple controller is prime factor for making S.D.N 
networks much more flexible. The only portion where the 
S.D.N networks lacks is the security. There are various 
other approaches needs which can make current 
network even much secure.

 

Also if we use of the Big Data concept, that can 
help S.D.N to be more scalable. As this is a new trend in 
Networking technology so the chances of research are 
much more, because S.D.N in itself

 

is very broad 
concept.

 

References Références Referencias

 

1.

 

N.Gude, T.Koponen, J.Pettit, B. Pfaff, M.Casado, N. 
Mckeown, S. Shenker,

 

NOX: Towards an Operating 
System for Networks.

 

SIGCOMM Comput. Comm-

 

un.

 

Rev.,

 

38:

 

105-110, July 2008.

 

2.

 

POX [online] Article available at link: http://www.nox

 

repo.org/pox/about-pox/

 

3.

 

Floodlight [online] Article available at link http://

 

floodlight.openflowhub.org

 

4.

 

D. Erickson, The Beacon Open

 

Flow controller Proc.

  

In HotSDN 2013.

 

5.

 

N. McKeown, T. Anderson, H. Balakrishnan, G. 
Parulkar, L. Peterson,J. Rexford, S. Shenker, and

 

J. 
Turner. Open

 

flow: enabling innovation

 

in campus

 

networks. SIGCOMM Comput. Commun. Rev.,

 

38

 

(2)

 

69–74, 2008.

                                                                                                                                             

6.

 

Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, C. 
Yang. Traffic

 

engineering in software defined net

 

working: measurement and

 

management.

 

7.

 

T. Tofigh and N. Viljoen. Dynamic analytics for pro-

 

grammable NIC's utilizing P4-

 

identification and cus-

 

tom tagging of elastic telecoms

 

traffic.http://

 

p4.

 

org/wp-content/uploads/2016/06/P4-Poster-

 

Net

 

ro  
nome-

 

ATT.pdf

 

8.

 

M. Shahbaz, S.Choi, B. Pfaff, C. Kim, N. Feamster, 
N. McKeown, J.

 

Rexford.  PISCES: A Program-

 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

18

Y
e
a
r

20
17

  
 (

)
E

mable, Protocol-Independent Software Switch.            
http://pisces.cs.princeton.edu

9. X. Jin, J. Gossels, J. Rexford, D. Walker. CoVisor: A 
Compositional Hypervisor for software Defined 
Networks, Princeton University.

10. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. 
McKeown, J.  Rexford, C. Schlesinger,  D. talayco, 
A. vahdat, G. Varghese, D. Walker. P4: Progra-
mming Protocol-Independent Packet Processors.

11. H. Zhang, J. Reich, J. Rexford.  Paper Traceback for 
Software Defined Networks, Princeton University

The Components that can Build Flexible & Efficient Software Defined Network

© 20 7   Global Journa ls Inc.  (US)1


	The Components that can Build Flexible & Efficient Software Defined Network
	Author
	Keywords
	I.Introduction
	II.Data performance monitoring
	III. Network Performance Diagnosis
	IV.Hypervisor for efficient network
	V. Protocol independent high level language
	VI. Packet trace back
	VII. Conclusion and future scope
	References Références Referencias

