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Abstract-
 
A statistical tool which can be used in various applications ranging from medical science to 

agricultural science is support vector machines. The proposed methodology used is support vector 
machine and it isused to classify a raster map. The dataset used herein is of Gujarat state agriculture 
map. The proposed approach is used to classify raster map into groups based on crop coverage of 
various crops. One group represents rice crop coverageand the othermillets crop coverage and yet 
another that of cotton crop coverage.Various statistical parameters are used to measure the efficacy 
of the proposed methodology employed.
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Abstract- A statistical tool which can be used in various 
applications ranging from medical science to agricultural 
science is support vector machines. The proposed 
methodology used is support vector machine and it isused to 
classify a raster map. The dataset used herein is of Gujarat 
state agriculture map. The proposed approach is used to 
classify raster map into groups based on crop coverage of 
various crops. One group represents rice crop coverageand 
the othermillets crop coverage and yet another that of cotton 
crop coverage.Various statistical parameters are used to 
measure the efficacy of the proposed methodology employed. 
Keywords: Mining, SVM, supervised classification. 

I. Introduction 

rop mapping is widely used in agriculture 
andremote sensing science. Crop mapping 
using classification methodologies serves 

various applications in agricultural sciencelike gauging 
water and soil demand etc.. For such applications 
information on the spatial distribution of classification 
error is of particular interest [1].Recent progresses in 
Information Technology systems, lead to dynamic 
communication among people of every profession. 
Information technology systems have changed the way 
people meet and communicate. There is an increasing 
tendency of professionals and experts in the agriculture 
sector to communication best practices in the field of 
agriculture via the medium of internet. Farmers who use 
the medium of internet get benefited from the various 
forums used therein to communicate advanced crop 
yield technologies. Crop mapping can also facilitate the 
farmers in planning their crop management in advance 
and they do not see internet and modern technologies 
has a hurdle [2]. 

 
 

   

Data is everywhere, abundant, continuous, 
increasing and heterogeneous. Extracting meaningful 
information from that data is useful but very difficult: rich 
data but poor information is a common phenomenon in 
the world.  Data mining (DM) refer to extracting or 
mining useful knowledge from large amounts of data. 
One of the various phases of data mining is 
classification.

 

Classification is the process in which available 
data items are categorized into two or more categories 
depending on the various criterions. Methodologies in 
which the class label is known apriori is called 

supervised classification and those in which class labels 
are not known apriori are called unsupervised 
classificationor clustering [3]. Supervised classification 
can be further categorized as parametric and non-
parametric categories. Based on whether or not the 
approach is based on probability distribution or density 
functions [4].  

A well-known statistical method that can be 
used to solve optimization problems is Support Vector 
machines (SVM). The proposed methodology used here 
is SVM. The data items can be represented as feature 
vectors in a hyper plane and a line passing through the 
hyper plane can be used to categorize the data items 
into two different categories. The line can be considered 
a naïve form of SVM [6] [7]. The An advantage of SVM 
as a classification method is that in has feature 
extraction method in-built in its architecture. SVM is 
better compared to other existing classification 
methodologies like Naïve bayes, Artificial neural 
network, decision tree based classification etc. 
depending on previous research[8][9]. 

SVM which is inherently linear in nature. 
However by using kernel function it can be extended to 
non-linear space as well. In either of the approaches 
SVM takes a lot of time to classify the data items. SVM 
approach is used to solve a multi-class classification 
problem in this research work Its finds a suitable line 
which is far off from all equidistant points in the hyper 
plane [10-16].  

SVM has numerous applicationsas inland 
analysis[10], species mapping[11], medicine[9], error 
identification[12], text and speech analysis[5,13], signal 
analysis[14etc... SVM is used in this research to classify 
raster TIFF datasets. Subsequent section explains about 
Literature Survey on SVM. Later Proposed methodology 
is explained followed by result analysis. The final section 
deals with conclusion followed by references. 

II. Literature Survey 

a) Introduction to SVM 

SVM isa promising methodology which is used 
in various applications. It solves both two class and 
multi-class problems[15][16]. Problems in which input 
data items need to categorized into two categories are 
called two class problems and the ones in which data 
items need to be categorized into multiple classes are 
called multi-class problems[17]. The multi-class 
classification problem can be solved using divide and 
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conquer approach. In this approach the problem can be 
divided into many two-class problems and in the future 
the results can be merged to arrive at the final solution 
to the problem. 

b) SVM has two major features 
Margin maximization: The classification 

boundary functions of SVMs maximize the margins, 
which leads to maximizing generalization performance 
[18]. 

SVM can be categorized as linear and non-
linear SVM as in Fig 1.  In linear SVM the hyper plane 
categorized under two different class labels by a line 
passing through the hyperplane[18][19][20].  
 
 
 
 
 
 
 
 Fig .1

 

:

 

Linear SVM

 The line representing the SVM can be denoted 
by (1)[21]:

 mθi+  c> =  + 1

                              mθi+  c< =  -1   
(1)

 Data items can be represented by (2)[22]:

    f(x)= sign(mc+ b)                (2)

 Where sign() represents sign function, m 
denotes slope and θ  happens to be the angle. Sign 
function is denoted by:

 
            sign(c)=�

1    if
 

c > 0
0    if

 
c = 0

−1
 

if
 

c < 0
�
      

 
  (3)

 
Numerous lines might be able to split the 

planeas different categories but the one that maximizes 
the distance between itself and the data items in the two 
categories is known as the support vector as denoted in 
Figure 2.

 
 
 
 
 Fig. 2

 

: 

 

Distance amid data items in a feature space

 The above distance cam be denoted as:
 M= �

θ+−θ -�.m
|m|

 

= 2
|m|                        (4)

 

 
h(m)=1

2
mtm

     

(5)

 

subject to yi(mθi+ b) >=1,∀i

    

The solution can be denoted with the help of a 
Lagrange multiplier αias:

 
 

m=∑𝛼𝛼i𝑦𝑦iθi

 
 

b=yk

 

-

 

mtxk

 

for any xk

 

such that Lagrange multiplier αk#0

  

(6)

 

Classifier representation[16]:

 

f(θ)=∑αiyiθi x + b

    

(7)

 

Systematic nonlinear classification via kernel 
tricks: SVMs effectively handle non-linear classifications 
using kernel tricks. 

 

To improve the efficiency of the solution the 
input data item space can be mapped to a higher 
dimensional feature space denoted by [18]: 

 

K(θi,θj)=f(θi)t.f(θj)

 
  

 

(8)

 

The above representation is also known as a 
kernel function and can be denoted as [23]:

 
 

Linear Kernel function =θi
tθj 

 
 

Polynomial kernel function = (1 + θi
tθj)p

 
 

Gaussian kernel = exp(-|θi−θj|2

2σ2 )

 
 

Sigmoid kernel = tanh(ω0θiθj+ω1)

 

(9)

 
 

c)

 

Multi-class

 

SVM 

 

Multi class SVM can be categorized as one-
versus-all, one-versus-one, and k-class SVM’s[18].

 
  

In this approach SVM classifiers are constructed 
which separate one class from remaining patterns[18].

 
  

In this approach k different SVM classifiers are 
constructed for every pair of classes [18].

 
  

In this approachK binary

 

classifiersare built 
concurrently [18].

 

iii.

 

Proposed Methodology

 

a)

 

Datasets used

 

A TIFF data set is used in this research and SVM 
is used to classify the said data set[24].The TIFF data set 
is a Gujarat map which has crop coverage data across 
the state for rice, cotton and millet.

 

b)

 

Proposed Approach

 

The TIFF dataset is initially pre-processed. [25]. 
Later Region Of Interest

 

(ROI) is created from the image. 
In the next stage training set samples are selected from 
the ROI. Each of these training set samples correspond 
to a particular crop coverage in Gujarat map data set 
used. Three crop coverage's are used for performing the 
said classification. They are rice, cotton and millet crop 
coverage's.  After the training data sample are collected 
the SVM classification methodology is used as 
explained[26]:
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Crop Coverage data Classification using Support Vector Machine

i. One-versus-all support vector machines

ii. One-versus-one support vector machines

iii. k-Class support vector machines



 
 

 

Begin

 

Step 1:

 

Extract features from the data sets

 

Step 2:

 

Select feature vectors and form the input data 
set

 

Step 2:

 

Start dividing the input data set into two sets

 

of data corresponding to two different categories 

 

Step 3:

 

If a data item is not assigned any of theregions 

 

mentioned then add it to set of support vectors V 

 

Step 4: end loop 

 

End

 

Finally the built model is validated against the 
test data set. Herein the test data set under 
consideration is the crop coverage area that is not 
covered as part of the selected training data set sample.

 

One of the key steps involved in the classification 
process is feature extraction as mentioned below:

 

Energy (E): It facilitates in computing 
homogeneousness in the data set and is denoted by:

 

E =

 

∑ ∑ (p(i, j))2n−1
j=1

m−1
i=1

   

(9)

 

Contrast(C): Contrast helps identify local data 
set variation and is denoted as:

 
 

C = ∑ ∑ (i − j)2p(i, j)n−1
j=1

m−1
i=1

   

(10)

 
 

Inverse difference moment (IDM): Local texture 
alterations can be located using:

 

IDM = ∑ ∑ 1
1+(j−2)2

 

p(i, j)n−1
j=1

m−1
i=1

  

   (11)

 

Entropy (S): The data set complexity can be 
computed by:

 
 

S = ∑ ∑ p(i, j)log⁡(p(i, j))n−1
j=1

m−1
i=1

  

(12)

 

Where μkand mxn are the mean and size of the 
blockBk

 

Spatial Frequency (SF): Frequency changes in 
the data set can be computed using:

 
 

SF

 

= (RF

 

)

 

2 + (CF

 

)2

  



 
 

Where 

 

RF = � 1
m×n

∑ ∑ [I(i, j) − I(i, j − 1)]2n
j=2

m
i=1

   

and

 

CF = �
1

m × n
��[I(i, j) − I(i − 1, j)]2

n

j=2

m

i=1

 

Variance (V): Level of focus in a data set can be 
computed using:

 

V = 1
m×n

∑ ∑ (In
j=1 (i, j) − μ)2m

i=1

   

(16)

 

Where μ

 

is

 

the mean value of the block image 
and m × n

 

is the image size

 

Energy of Gradient (EOG): 
Measure of focus can also be computed using:

 

EOG = ∑ ∑ (fi
2n−1

j=1 + fj
2)m−1

i=1

  

(17)

 

Where, fi

 

= f (i+1, j) -

 

f (i, j)

 

fj= f (i, j+1) -

 

f (i, j)

 

IV.

 

Result Analysis

 

a)

 

Environment Setting

 

Agricultural map of Gujarat was used as a 
dataset to perform the said classification. A region of 
interest

 

(ROI) was extracted from the map that acted as 
a training data and it was validated against the complete 
data segment pertaining to a particular crop in the map.

 

Environment in which the research was undertaken is 
shown in Table 1[27].

 

Table.1

 

:

 

Environment Setting

 

Item

 

Capacity

 

CPU

 

Intel CPU  @2 GHz processor

 

Memory/OS

 

4GB /WIN 7

 

Applications

 

Monteverdi

 

b)

 

Result Analysis

 

The ratio of correctly classified and uncorrectly

 

classified data items can be represented using 
confusion matrix view as mentioned in Table 2. It helps 
measure the efficacy of the performed classification. 
Classification results is given in  Figure 4. 

 

Table.

 

2

 

:

 

Confusion Matrix

 

 

       Classification result

 

No Event

 

Event

 

No Event

 

True Negative(TN)

 

False Positive(FP)

 

Event

 

FalseNegative(FN)

 

True Positive(TP)
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(a)



 

 

 

(b)

 
 

 

(c)

 

Fig. 3

 

:

 

(a) ROI from the TIFF data set. (b) Classified 
image with various crop coverage in the state of Gujarat 

displayed in various colors(Rice-Brown, Millets-Violet, 
Cotton-Brown). (c) Edge Feature extracted image of the 

crop data set

 

Accuracy and kappa statistics are used to 
measure the efficacy of the classification methodology 
used.Thes parameters are denoted by equations (18) 
and (19)[28][29][30]:

 
 

Accuracy = TP +TN
(TP +FN +FP +TN )

× 100

  

(18)

 

 
  

Confusion matrix in

 

research is mentioned in Table 3.

 

Table. 3

 

:

 

Confusion Matrix

 

Prediction

 

Reference

  

Rice

 

Millets

 

Cotton

 

Rice

 

14

 

0

 

0

 

Millets

 

0

 

16

 

0

 

Cotton

 

0

 

0

 

11

 

Accuracy and kappa statistics obtained while 
classifying TIFF data set are mentioned in Table 4.

 

Table. 4 :  

 

Performance measures for TIFF dataset

 

   

 

 
  

V.

 

Conclusion

 

SVM classification methodology is used to 
classify the Gujarat map TIFF data set.Accuracy

 

and 
kappa statistics parameters are used to measure the 
efficacy of the said method and the values obtained for 
the said evaluation parameters prove beyond doubt that 
the method used classifies the data set with better 
accuracy.
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Kappa statistics=Sensitivity + Specificity - 1 (19)

Data set type Accuracy Kappa Statistics

Raster TIFF 
datasets

100 100
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