
© 2016. Ina Papadhopulli & Elinda Meçe. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 16 Issue 2 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Fitness Function for Search-based Testing of Java Classes, which is based on
the States Reached by the Object under Test

 By Ina Papadhopulli & Elinda Meçe
 Polytechnic University of Tirana, Albania

Abstract - Genetic Algorithms are among the most efficient search-based techniques to automatically
generate unit test cases today. The search is guided by a fitness function which evaluates how close an
individual is to satisfy a given coverage goal. There exists several coverage criteria but the default criterion
today is branch coverage. Nevertheless achieving high or full branch coverage does not imply that the
generated test suite has good quality. In object oriented programs the state of the object affects its behavior.
Thereupon, test cases that put the object under test, in new states are of interest in the testing context. In this
article we propose a new fitness function which takes into consideration three factors for evaluation: the
approach level, the branch distance and the new states reached by a test case. The coverage targets are still
the branches, but during the search, the state of the object under test evolves with the scope to produce
individuals that discover interesting features of the class and as a consequence can discover errors. We
implemented this fitness function in the eToc tool. In our experiments the usage of the proposed fitness
function towards the original fitness function results in a relative increase of 15.6% in the achieved average
mutation score with the cost of a relative increase of 12.6% in the average test suite size.

Keywords: structural testing, test case generation, search based software testing, fitness function, object
state, coverage criteria, mutation score.

GJCST-C Classification : D.1.1, D.1

AFitnessFunctionfor SearchbasedTesting ofJava Classes,whichisbased ontheStatesReachedbytheObjectunder Test

 Strictly as per the compliance and regulations of:

A Fitness Function for Search-based Testing of
Java Classes, which is based on the States

Reached by the Object under Test

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

5

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Ina Papadhopulli & Elinda Meçe

Author α: Department of Computer Engineering Polytechnic University
of Tirana Tirana, Albania e-mail: ipapadhopulli@fti.edu.al
Author σ: Department of Computer Engineering Polytechnic University
of Tirana Tirana, Albania. e-mail: ekajo@fti.edu.al

Abstract - Genetic Algorithms are among the most efficient
search-based techniques to automatically generate unit test
cases today. The search is guided by a fitness function which
evaluates how close an individual is to satisfy a given
coverage goal. There exists several coverage criteria but the
default criterion today is branch coverage. Nevertheless
achieving high or full branch coverage does not imply that the
generated test suite has good quality. In object oriented
programs the state of the object affects its behavior.
Thereupon, test cases that put the object under test, in new
states are of interest in the testing context. In this article we
propose a new fitness function which takes into consideration
three factors for evaluation: the approach level, the branch
distance and the new states reached by a test case. The
coverage targets are still the branches, but during the search,
the state of the object under test evolves with the scope to
produce individuals that discover interesting features of the
class and as a consequence can discover errors. We
implemented this fitness function in the eToc tool. In our
experiments the usage of the proposed fitness function
towards the original fitness function results in a relative
increase of 15.6% in the achieved average mutation score with
the cost of a relative increase of 12.6% in the average test
suite size.
Keywords: structural testing, test case generation,
search based software testing, fitness function, object
state, coverage criteria, mutation score.

I. INTRODUCTION

ue to the fact that the influence of software in all
areas has grown rapidly in the past 40 years, the
software has become very complex and also its

reliability is fundamental. All the software development
phases have been adapted to produce these complex
software systems, but especially the testing phase is of
critical importance and testing thoroughly today’s
software systems is still a challenge. According to a
study [1] conducted by the National Institute of
Standard & Technology, approximately 80% of the
development cost is spent on identifying and correcting
defects. It is a well-known fact that it is a lot more
expensive to correct defects that are detected during
later system operation. Considering past experiences,
inadequate and ineffective testing can result in social

D

problems and human/financial losses. In order to

improve the testing infrastructure, several efforts have
been made to automate this process.

In the unit testing level, there are three
approaches towards automation: random testing, static
analysis (Symbolic Execution [3]) and metaheuristic
search. A considerable number of tools have been
developed based on these approaches; eg. RANDOOP
[4], EvoSuite [5], AgitarOne [6]. Nevertheless, the
effectiveness of these tools is still not completely
proved, because the results obtained from the
experiments depend on the subjects under test. Usually,
a coverage criteria is used to evaluate these tools, but
achieving a high degree of code coverage does not
imply that a test is actually effective at detecting faults
[7]. According to [8], today there is no tool to find more
than 40.6% of faults.

This article is focused on structural testing at
the unit level of Java programs using Search-Based
Software Testing (SBST) [9]. According to [10], SBST
has been used to automate the testing process in
several areas including the coverage of specific
program structures, as part of a structural, or white-box
testing strategy. Every unit (class) of the software must
be tested before proceeding to the other stages of the
development cycle. SBST is a branch of Search Based
Software Engineering (SBSE). SBSE is an engineering
approach in which optimal or near optimal solutions are
sought in a search space of candidate solutions. The
search is guided by a fitness function that distinguishes
between better and worse solutions. SBSE is an
optimization approach and it is suitable for software
testing since test case generation is often seen as an
optimization or search problem. Since SBST techniques
are heuristic by nature, they must be empirically
investigated in terms of how costly and effective they are
at reaching their test objectives and whether they scale
up to realistic development artifacts. However,
approaches to empirically study SBST techniques have
shown wide variation in the literature. There exist several
search-based optimization methods used for test
automation; e.g. genetic algorithms, hill climbing, ant
colony optimization and simulated annealing, etc, but
Genetic algorithms (GAs) are among the most
frequently applied in test data generation.

GAs have several components which need to
be defined in order for the GA to be implemented.

α σ

According to [10], the component that affects mostly the
results obtained from the search is the fitness function.
The fitness function is a mathematical representation of
the coverage goal the search should achieve. There are
different coverage goals each of them aims at covering
certain parts of the unit under test. These different
coverage criteria verify the quality of a test suite. The
gold criterion is strong mutation, but today this criterion
it is mainly used by the research community for
evaluation of proposed techniques. The most used
criterion is branch coverage [11]. However achieving
high branch coverage (even 100%), for some classes is
not sufficient.

In object oriented programs the state of the
object is a factor that affects the execution of a method.
This is why the state of the object of the Class Under
Test (CUT), should evolve during the search in order to
discover hidden features of the class [12]. A test case
that puts the object in one or several new states is of
interest in the testing context. The scope of this paper is
to propose and evaluate a new fitness function, which
rewards the test cases according to branch coverage
and also according to the new states the object has
taken during the execution of the test.

The rest of this paper is organized as follows: In
the second section we explain in what unit testing of
java programs consists and in the third section we
present an overview of GAs. The fourth section is
focused on branch coverage and the fifth section
presents the proposed fitness function. The
implementation of the proposed fitness function is
described in section six. The seventh section gives
details of the experimental setup and in the eighth
section the results achieved are presented and
discussed. We conclude finally with the conclusions we
have come preparing and accomplishing this study.

II. UNIT TESTING FOR OBJECT ORIENTED

SOFTWARE

Software testing at the unit level (Java classes)
consists of three steps:

1) The design of test cases
2) The execution of these test cases
3) The determination of whether the output produced

is correct or not.
The second step is performed fully

automatically using frameworks like JUnit [2].
Automatically generating the test oracle is still a
challenge and there exists few research publications
regarding this topic [13], therefore the third step is
almost completely performed manually by the testers.
Regarding the first step, there exist a lot of research
effort for the generation of test cases automatically. Due
to the complexity and the diversity of the programs
under test this is still an open research topic. Moreover

test cases in object oriented unit testing are not just a
sequence of input values like in procedural languages.
According to [14], a unit test of a Java class must
accomplish the following four tasks:

1. Create an object of the class under test using
one of the available constructors.

2. Invoke a sequence of zero or more methods on
the created object.

3. Execute the method which is currently under
test.

4. Examine the final state of the object to produce
the pass/fail result

Some parameters in method calls are objects
themselves, thus requiring further object constructions
and as a consequence task 1 and 2 must be repeated
for each parameter of object type.

The statements for Java unit test cases are:

1.

Primitive statements: declaration of variables e.g. int
a = 15;

2.

Constructor statements: construction objects of any
given class e.g. String s = new String(“Test”);

3.

Method statements: calling the methods of any
given class e.g. char b = s.charAt(2);

4.

Field statements: accessing the fields of any given
class e.g. int c = ob.size;

5.

Assignments statements: assign values to the fields
of any given class e.g. ob.size = 17;

Since objects have a state, the results are
affected by the state of the object under test and of the
object parameters.

Genetic Algorithms (GAs) are inspired by
natural evolution. They were first introduced by Holland
in 1975. Today GAs are used for optimization in testing
real life applications. The most important components in
GA are:

•

representation of individuals: genotype (the
encoded representation of variables) to phenotype
(the set of variables themselves) mapping

•

fitness function: a function that evaluates how close
an individual is to satisfy a given coverage goal

•

population: the set of all the individuals
(chromosomes) at a given time during the search

•

parent selection mechanism: selecting the best
individuals to recombine in order to produce a
better generation

•

crossover and mutation: the two types of
recombination used to produce new individuals

•

replacement mechanism: a mechanism which
replace the individuals with the lowest fitness
function in order to produce a better population.

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

6

Y
e
a
r

20
16

 (

)
C

III. GENETIC ALGORITHMS

a) How does the GA work?
The space of potential solutions is searched in

order to find the best possible solution. This process is
started with a set of individuals (genotypes) which are
generated randomly from the whole population space
(phenotype space). New solutions are created by using
the crossover and mutation operators. The replacement
mechanism selects the individuals which will be
removed so that the population size does not exceed a
prescribed limit. The basis of selection is the fitness
function which assigns a quality measure to each
individual. According to the fitness function, the parent
selection mechanism evaluates the best candidates to
be parents in order to produce better individuals in the
next generation. It is the fitness function which affects
the search towards satisfying a given coverage criteria.
Usually the fitness function provides guidance which
leads to the satisfaction of the coverage criterion. For
each individual the fitness is computed according to the
mathematical formula which represents how close is a
candidate to satisfy a coverage goal, e.g. covering a
given branch in the unit under test. GAs are stochastic
search methods that could in principle run for ever. The
termination criterion is usually a search budget
parameter which is defined at the beginning of the
search and represents the maximum amount of time
available for that particular search.

IV. COVERAGE CRITERIA

a) Types of Coverage Criteria
Automatic unit testing is guided by a structural

coverage criterion. There exist many coverage criteria in
literature, each of them aims at covering different
components of a CUT. Nevertheless, not all the criteria
have the same strength and can be fulfilled practically.
Furthermore some criteria are subsumed by other
criteria. Below is a list of coverage criteria for structural
testing of Java programs.
1. Line Coverage
2. Branch Coverage
3. Modified Condition Decision Coverage [21]
4. Mutation
5. Weak Mutation
6. Method coverage
7. Top-level Method Coverage
8. No-Exception Top Level Method Coverage
9. Direct Branch Coverage
10. Output Coverage
11. Exception Coverage
12. Path Coverage
13. Condition Coverage
14. Multiple Condition Coverage
15. Condition/Decision Coverage

Mutation criterion is considered the gold
criterion in research literature [15]. This criterion is
difficult to apply and computationally expensive and it is

practically only used for predicting suite quality by
researchers. Another option to achieve high quality test
cases with search based technique is to use a
combination of multiple criteria. [16] performed an
experiment to evaluate the effects of using multiple
criteria and concluded that:

− Given enough time the combination of all criteria
achieves higher mutation score than each criterion
separately (except Weak Mutation).

− Using all the criteria increases the test suite size by
more than 50% that the average test suite size of
each constituent criterion used separately.

− The next best criterion (after Weak Mutation) to
achieve high mutation scores is branch coverage.

The usage of multiple criteria increases the
overall coverage and mutation score with the cost of a
considerable increase in test suite length, so the usage
of the combination in practice will be not feasible,
because managing large test suites is difficult. A
balance between mutation score and average test suite
size is achieved with branch coverage criterion.

b) Branch Coverage
The most used criterion is branch coverage, but

even though it is an established default criterion in the
literature, it may produce weak test sets (mutation score
less than 30% [17]). For example consider the Stack
implementation in Figure 1.

 public class Stack {
 private int size = 0;
 private int st [] = new int [4];
 void push (int x){
 if (size < st.length)
 st[size++] = x;
 }
 int pop (){
 return st[size--];
 }
 }

 The class Stack is very simple (8 LOC, 2
attributes, 2 methods). Suppose the test suite generated
is the test suite given in Figure 2.
1. @Test

2. public void test0() {

3. Stack s0 =new Stack();

4. s0.push(1);
5. s0.push(0);

6. int int0 = s.pop();

7. assertEquals(0, int0);
8. s.push(0);

9. s.push(0);

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

7

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Figure1 : Example Stack implementation

10. s.push((-1916));

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

 11.

s.push((-1916));

 12.

}
 Figure 2

:

Test suite for class Stack

We used EclEmma [35] tool as a plugin in

Eclipse to measure branch coverage. The branch
coverage obtained by executing this test suite was
100%. There are 4 coverage goals in class Stack (2
methods and 2 branches from the predicate in line 5).

 Analyzing class Stack we notice the following

errors:
 −

If method pop is called first and then is called
method push, an uncaught exception is thrown
(field size before calling push is -1).

 −

If method pop is called two times consequently an
uncaught exception is thrown (field size before
calling pop is -1).

 −

If

method push is called four times consequently

and then is called method pop an uncaught
exception is thrown (field size before calling pop is
4).

 −

It is obvious that branch coverage is not

sufficient for class Stack!
 Is there any possibility to improve the

fitness

function for branch coverage in order to obtain a test
suite with higher quality?

Both of the methods are covered by the test

generated, but it is evident that the state of the object
(the value of field size) before calling them affects the
results of the tests. The same method called on different
states of the object behaves differently. This is why, a
possibility to improve the suite’s ability to detect errors,
is to evolve the state of the object during the search in
order to put the object in new states that probably can
discover interesting behaviors of the CUT. Since the
search is guided by the fitness function, then this
function should also consider the states reached by a
test before evaluating it.

V. THE PROPOSED FITNESS FUNCTION
Fitness functions are a fundamental part of any

search algorithm. They provide the means to evaluate
individuals, thus allowing a search to move towards
better individuals in the hope of finding a solution [18].
The approach considered here is to minimize the fitness
function during the search. The fitness function
proposed in this paper rewards the individuals based on
how close they are at covering a target (branch) and the

states they put the object under test. This function is a
mathematical equation depending on the:

• Approach level
• Branch Distance
• New states achieved
a) Approach Level

For each target, the approach level show how
many of the branch's control dependent nodes were not
executed by a particular input [20]. The fewer control
dependent nodes executed, the “further away” an input
is from executing the branch in control flow terms. The
approach level is the most used factor in the fitness
function for structural criteria, but the fitness landscape
contain plateaus because the search is unaware of how
close a test case was to traversing the desired edge of a
critical branching node.
b) Branch Distance

The branch distance is computed using the
condition of the decision statement at which the flow of
control diverted away from the current “target” branch.
For every operator the branch distance is calculated
using the formulas introduced by Tracey [19].

The approach level is more important that the
branch distance and as a consequence the branch
distance should be normalized at the fitness function
formula. This distance will be normalized at a value
between 0.0 and 1.0. Value 0.0 means “true”; the
desired branch has been reached. Values close to 1.0
means that the condition is far from being fulfilled.
Intermediate values guide slightly the search towards
the accomplishment of the condition (in order to remove
plateaus in the fitness landscape). The formula for
branch distance in our proposed fitness function is the
formula introduced by Arcuri [21].

𝐵𝐵𝐵𝐵(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵 + 𝛽𝛽

BD is the branch distance before normalization
and 𝛽𝛽 is 1.

c) New States Achieved (NSA)
With the term state in this paper we refer to:

Definition 1. State: The set of the values of all the fields
in the CUT before calling a method + the method
called.
For example, for the class Stack the two states:
− field size = 0 and filed st = !null, before calling

method push
− field size = 0 and filed st = !null, before calling

method pop
are considered two different states and both of them are
interesting in the testing context.

The total number of states in the CUT is
computed as a product of all the possible combinations

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

8

Y
e
a
r

20
16

 (

)
C

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

Even though class Stack is very simple, and the
branch coverage obtained is 100%, the mutation score
is relatively low (29%). We added an assertion in the test
(line 7) and used the JUnit framework to run it in Eclipse.
The test passed. The tester may assume the class is
correct with 100% branch coverage and a passing test.
Is branch coverage sufficient for this class?

9. s.push(0);
10. s.push((-1916));

of the class fields (declared non final) after abstraction
(explained in the next section), with the number of public
methods.

The approach level is more important that the
number of new states achieved and as a consequence
this factor should be normalized at the fitness function
formula. The normalization formula is:

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛 – 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛

The greater the number of the new states
achieved by a test case the smaller this factor in the
overall fitness.

 𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎ℎ_𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 + 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵+1

+ 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛 –𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛

d) Abstract States
If we use the real values of the fields, the

number of states will be infinite. Moreover, not all the
states are of equal relevance during testing. For
example, from the testing prospective, calling method
pop() of the class Stack with field size = 1, is the same
as calling method pop with filed size = 2. On the other
hand calling method pop() with filed size = 0 in not the
same, since this state reveals an interesting behavior of
the object under test. Therefore, we use abstractions
over the values of the fields rather than the concrete
values themselves. We use a state abstraction function
provided by Dallmeier at al. [34]. The abstraction is
performed based on the three rules below:

• If the type of the field is concrete (int, double,
long etc), the value will be translated in three
abstract values: xi

 < 0, xi
 = 0 and xi

 > 0.

• If the type of the field is an object, the value will be
translated in two abstract values: xi

 = null dhe xi

null

• If the type of the field is Boolean, there is no need to
do translation, since there are only two values.

For example the combinations of the field
values of class Stack, after abstraction are those listed
in Table 1.

Table 1 :

Combination of Field Values for Class Stack

size

st

state1

= 0

null

state2

> 0

null

state3

< 0

null

VI.

IMPLEMENTATION OF THE

PROPOSED

FITNESS FUNCTION

The proposed fitness function was implemented
in the eToc [22] tool. eToc is a simple search based tool

for unit testing of Java programs. Is uses GA and branch
coverage criterion. This tool has been mentioned in
many research works and has been used as the basis
for the design of other tools. eToc is appropriate for the
scope used in this work. In the high level architecture of
this tool [22], the Branch Instrumentor module and the
Test Case Generator module need to be differently
implemented for the search to be guided by the
proposed fitness function. The new implementation of
these modules is described below.

 a)

The Intrumentor

The function of the instrumentor module is to

transform the source code of the CUT in order to
provide information about the executed branches, the
branch distance and the states achieved during
execution. The new statements added during
instrumentation must not change the behavior of the
CUT. In order to obtain information for the states
reached by the object under test, for each of the
attributes (except those declared final) of the CUT, a get

method will be added. A static analysis can be used to
provide information about the mutators and inspectors
methods of a class [23][24], but in this case a static
whole-program analysis is required, which is very
expensive for this context used. Since it is not the
purpose here to obtain a behavioral model of the CUT,
the get methods are appropriate to be used as
inspectors for obtaining the state of the object because
these methods:

−

Return the value of an attribute

−

Do not take parameters

−

Do not have any side effects in the execution of
the program.

Based on the state definition given in section

5.C, the get methods should be called before the
execution of each method of the CUT, so during
instrumentation the statements calling the get methods
are added before the existing statements of each
method. The concrete values are translated in abstract
values as described in section 5.D. Then the states
reached by a test case are saved in a LinkedList and
consequently during fitness evaluation the new states
achieved by a test case can obtained.

 public

class

Stack {

private

int

size

= 0;

private

int

st

[] = new

int

[4];

void

push (int

x){

returnState();

if

(size

< st.length)

st[size++] = x;

}

int

pop (){

returnState();

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

9

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

}

;

return st[size --];
}
public int getsize1(){

return size;

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

The fitness function proposed considers the
three factors described above and is computed with the
formula:

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

10

Y
e
a
r

20
16

 (

)
C

}
public Object getst1(){

return st;
}
public void returnState (){
reachedStates.add(String.valueOf(getsize1()+"

"+getst1());
}
static java.util.List reachedStates;
public static void newReachedStates()
{

 reachedStates = new java.util.LinkedList();
}

}

Figure3 : Class Stack after instrumentation for the new
ststes achieved

b) The Test Case Generator
The instrumented version of the CUT is

executed repeatedly with the scope to cover a specified
target (branch of the CUT). The state lists resulting after
each execution are compared with the state lists of the

test cases that make up the population. The new states
reached by an individual are used to compute part of its
fitness.

This module is also responsible for the
minimization of the generated test suite. Normally during
minimization the tests that do not cover any target that is
not covered by any other test are omitted from the test
suite. Taking into consideration that a test case that
reaches one or more new states is important in the
testing context, before removing a test case because it
does not cover any new target, it will be reconsidered
regarding the states it puts the object under test in. The
test cases which contain unreached states in their state
lists, will be part of the final test suite. The proposed
minimization has the advantage that it probably
increases the number of tests in the generated test suite
and as a consequence it also increases the length of the
test suite. On the other side the usage of the proposed
fitness function is expected to increase the capability of
the test suite to detect errors. An experimental
evaluation of the new fitness function is presented in the

Table II : Characteristics Of The Classes Selected Fo The Experiments: Name Of The Project, Loc, Number Of
Public Methods, Number Of Branches, Number Of Mutants, Number Of Non-Final Fields, Cyclomatic Complexity,

Project

Project Class LOC Branch
es

Mutants Non-
final

Fields

Public
Methods

Cyclomatic
Complexity

URL
e projektit

Staku 12 4 22 2 2 1.5
Comm

ons
CLI

Option 155 131 140 9 42 1.52 https://co
mmons.ap
ache.org

TypeHandler 124 28 28 0 9 2.66
AlreadySelectedExcepti 26 4 1 2 2 1

OptionGroup 86 21 19 2 8 1.875
Math4

J
Rational 61 36 161 2 19 1.526 https://sou

rceforge.n
et/projects

/math4j

ExponentialFunction 40 11 31 1 9 1
ArrayUtil 320 167 1769 0 36 3.48

PolyFunction 245 100 827 2 12 3.63
Complex 102 24 682 2 20 1.091

jdk StringTokenizer 313 78 434 7 6 3.12
Geneti

c
Algorit
h i

GAAlgorithm 65 14 6 6 8 2 https://sou
rceforge.n
et/projects

/ j

Genome 14 9 21 3 4 1.4
Population 62 13 44 4 11 1.08

Object
Explor

ExplorerFrame 158 26 74 8 9 1.44 https://sou
rceforge.n

/
ObjectViewManager 114 41 41 8 17 1.571

Newz
Grabb

er

DirectoryDialog 177 47 155 16 13 2.235 https://sou
rceforge.n
et/projects
/newsgrab

ber

NewsFactory 121 45 88 4 7 4
SongInfo 55 12 59 3 4 2
BatchJob 28 11 29 8 10 1.27

StringSorter 63 12 47 1 4 2.2
OptionsPanel 363 75 214 15 4 9.8

Jipa Label 18 11 42 3 4 1.8 https://sou
rceforge.n

/
Variable 40 23 87 3 4 2.1

Total 2762 943 5021 111 264

next section.

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

11

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

In this work we aim to answer the following
research questions:
• RQ1: How does the usage of the proposed

fitness function affect the branch coverage?

• RQ2: How does the usage of the proposed
fitness function affect the mutation score of the
suite?

• RQ3: How does the usage of the proposed
fitness function affect the number of suite’s test
cases and their size?

a) System Characteristics
For the experiments we used a desktop

computer running Linux 32 bit Operating System, 1 GB
of main memory and a Intel Core 2 Duo CPU E7400
2.8GHz x 2 Processor.

b) Subject Selection
Selecting the classes under test is very

important since this selection affects the results of the
experiments. We chose 7 open source projects and
selected randomly 23 classes from them. Also, the class
Stack discussed throughout this paper was used as a
subject for the experiments. To obtain comprehensive
results, the evaluation must be done to real and
not simple subjects. Also these subjects should not
have any common characteristics which affect the
obtained results. The characteristics of the 24 classes
are listed in Table 2. The information about LOC (without
comments and empty lines) and cyclomatic complexity
is obtained using Metrics 1.3.6 [25], as a plugin in
Eclipse. As can be noted from Table 2, the classes have
very different characteristics and complexity.

Five of the projects were downloaded from
SourceForge [26] which is today the greatest open
source repository (more than 300,000 projects and two
million of users). One project was downloaded from the
Apache Software Foundation [27] which exists from

1999 and has more than 350 projects (including Apache
HTTP Server). Class StringTokenizer was taken from the
java.util package which is part of jdk 1.8.0. This package
has been used by several studies for evaluation of
automatic test case generation techniques.

a) Parameters of GA
Defining the parameters of GAs to obtain the

optimal results is difficult and a lot of research effort is
dedicated to this topic [28][29]. Therefore we let the
parameters of the GA to their default values [22]. The
values of three of the most relevant parameters are
listed in Table 3. Regarding the search budget, it was
determined depending on the experiment and will be
shown next for each experiment.

Table lll : Parameters of Ga

 Parameter Value

Population Size 10
Search Budget 600s
Maximal number of generations/target 10

b) Experiment
For each of the classes we run eToc with the

following configurations:

1.

Original Fitness (OF) function with search
budget of 2 min

2.

Proposed Fitness (PF) function with search
budget of 2 min

3.

Original

Fitness (OF) function with search
budget of 10 min

4.

Proposed Fitness (PF) function with search
budget of 2 min

To overcome the randomness of the genetic
algorithms each experiment was repeated 5 times.

The results of the experiments (average of all
runs) are presented in Table 4.

Table IV : Branch Coverage, Mutation Score, Number Of Tests, Length Of Test Suite For Each Configuration,
Average Of All Runs For Each Cut

Class BC
with

OF (2
min)

BC
with

PF (2
min)

BC
with
OF
(10

BC
with
PF
(10

MS
with
OF
(2

MS
with
PF
(2

MS
with
OF
(10

MS
with
PF
(2

No.
test
with
OF

Test
length
with
OF

No.
test
with
PF

Test
length
with
PF

Staku 100 100 100 100 29 72 29 72 2 8 4 15
Option 69 69 69 69 41 49 41 49 62 147 71 166

TypeHandler 75 75 75 75 46 46 46 46 12 24 12 24
AlreadySelectedException 100 100 100 100 100 100 100 100 3 5 3 5

OptionGroup 100 100 100 100 84 89 84 89 8 27 7 35
Rational 94 94 94 94 75 79 75 79 12 24 12 31

ExponentialFunction 100 100 100 100 60 55 60 60 8 16 7 15

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

VII. EXPERIMENTAL EVALUATION

ExponentialFunction 100 100 100 100 60 55 60 60 8 16 7 15
ArrayUtil 100 99 100 100 9 9 9 9 64 141 64 141

PolyFunction - - 85 87 - - 31 38 27 89 30 98
Complex 100 100 100 100 34 37 34 37 13 27 12 31

StringTokenizer 65 65 69 69 15 21 19 23 8 18 16 33
GAAlgorithm 93 93 93 93 33 33 33 50 10 21 8 19

Genome 44 44 55 55 0 4 0 4 3 6 4 10
Population 92 92 100 100 32 32 32 32 11 29 11 29

ExplorerFrame 8 15 8 15 0 3 0 3 2 2 2 3
ObjectViewManager 54 54 54 54 17 24 17 24 2 3 2 3

DirectoryDialog 6 6 6 6 0 0 0 0 5 11 5 11
NewsFactory - - - - - - - - - - - -

SongInfo 50 50 50 50 22 27 24 27 5 12 8 19
BatchJob 100 100 100 100 62 69 62 69 10 20 9 22

StringSorter 100 100 100 100 17 17 17 17 6 17 6 17
OptionPanel - - 37 37 - - 3 9 7 21 8 19

Label 100 100 100 100 55 55 55 55 4 16 4 16
Variable 100 100 100 100 55 56 56 59 6 9 9 19

Average 60.5 69 74.8 75.2 37.9 42.7 35.9 41.5 - - - -

Total - - - - - - - - 290 693 314 781

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

12

Y
e
a
r

20
16

 (

)
C RQ1: How does the usage of the proposed fitness

function affect the branch coverage?
The branch coverage was measured with

EclEmma. For both functions the average branch
coverage is greater when the search budget is 10 min.
This result was expected since the individuals improve
during the search and more time results in better
solutions.

In order to do the best comparison of the
approaches we focus on the case with search budget of
10 min in this section, since for the scope of the
experiment, it is not appropriate to compare results
affected by the limited search time.

The difference between the average branch
coverage is inconsiderable (0.4%) when a search
budget of 10 min is used. This difference may be due to
the randomness of the results achieved by the search.
Since the approach presented in this work does not
change the targets to cover, the almost equal coverage
was expected. For the class ExplorerFrame, there is an
increase of 7% in the coverage achieved by the
proposed approach. Even though the targets are
identical, the proposed function rewards the individuals
that reach more new states and therefore the test cases
after minimization may be different and more complex.
So, this increase probably is the effect of indirect
coverage.

Only in the case of class ArrayUtil there was a
decrease of 1% in the coverage achieved, with budget 2

min, but more likely it is due to the randomness of the
search. For the class NewsFactory the search failed to
produce results for both approaches. We changed the
parameters of the GA, but even for a population of 20, or
30 individuals, no results were generated. It is not the
scope of this work to investigate the reasons why this
happened.

• RQ2: How does the usage of the proposed
fitness function affect the mutation score of the
suite?

Since mutation score is the measure used in
the strongest criterion (Mutation Coverage), here we
have used it to measure the quality of the generated test
suite. Computing the mutation score for a test suite
requires determining, for every mutant, whether the test
suite succeeds or fails when run on the mutant. In the
worst case each test must be run on each mutant. For
each of the classes the mutants were generated using
as a plugin in Eclipse the tool MuClipse v1.3 [30]. Mu
Clipse generates mutants using the traditional operators
and the operators in the class level [31]. The number of
generated mutants for each class is given in Table 2.
Even classes with a small number of LOC can have
many mutants (e.g. class Stack has 22 mutants).
Assertions were inserted manually to the tests

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

VIII. RESULTS AND DISCUSSION

RQ1: In our experiments, there is no difference in the average
branch coverage achieved between the usage of the original
fitness function and the proposed fitness function.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

13

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

generated, so that these cases can be used by
MuClipse. Then, the generated tests were executed with
JUnit against all the mutants and the presence of
failures shows that the tests were able to kill the
mutants.

 The results of the mutation scores of each
class for all the configurations are given in Table 4.

The mutation scores achieved by both of the
fitness functions are far from the optimal value (100%).
Almost this range of mutation scores is also obtained
from other studies [32]. The main reasons of these low
scores are:

− the targets to cover are the branches and not
the mutants

− the presence of equivalent mutants (behave the
same as the original program) which cannot be
killed.

Nevertheless, despite the relatively low mutation
scores, our interest is focused on the difference
between the scores achieved by the original function
against the proposed function.

For 6 classes (6/23 = 26%) there is an
improvement in the mutation score achieved when using
a search budget of 10 min against a search budget of 2
min.

For the same reasons mentioned in the
discussion of RQ1, to answer RQ2 we are focusing
mainly at the results achieved with a search budget of
10 min. The average mutation score reached by the
original function is 35.9%, whereas the mutation score
reached by the proposed function is 41.5%, thus a
difference of 5.6%. The improvement is 5.6/35.9 =
15.6%. For 15 classes out of 23 (15/23 = 65%), there is
an improvement in the mutation score achieved by the
proposed function; for the remaining 8 classes (8/23 =
35%), the scores achieved are identical. There is no
class where using the proposed function results in a
lower mutation score. Even though we are aware that
the results depend on the CUT (despite the fact that
CUT chosen have different characteristics), the results
obtained are very promising.

• RQ3: How does the usage of the proposed
fitness function affect the number of suite’s test
cases and their size?

Automatically generated JUnit tests need to be
manually checked in order to detect faults because
automatic oracle generation is not possible today. This
is the reason why not only the achieved coverage of the

generated test suite is important, but the size of the test
suite is of the same importance [33].

 Here we refer to the size of a test suite as the
number of statements after the minimization phase
(without assertions).

 Only the results achieved with a search budget
of 10 min, are shown in Table 4, because in answering
RQ3 we are interested in the number of tests generated
and their size in the “worst case”. The minimization
phase does not depend on the search budget, so the
results with search budget of 10 min, subsume the
scenario with a search budget of 2 min. The LOC of the
generated suite was obtained with the tool Metrics 1.3.6.
 There is an increase of 314 – 290 = 24 tests in the
total number of test generated, or a relative increase of
24/290 = 8.2%. This increase is acceptable, although
the number of tests in the test suite is not relevant in
respect to the size of the test suite, because having
many short size tests is not a problem for the tester who
is detecting faults.

Regarding the size of the test suite, we can
see from the results in Table 4, that using the
proposed fitness function results in an average test
suite size of 33.9 (781/23) statements. The relative
increase is (33.9 – 30.1) / 30.1 = 12.6%. For 8 of
the classes (34%), there is no change in the
average test suite size. Regarding classes
ExponentialFunction and GAAlgorithm (8.7% of the
classes), there is a decrease in the average test
suite size, although there is no decrease either in
branch coverage or mutation score. These results
are explained with the appearance of indirect
coverage [36].

ArrayUtil is the class with the greatest test
suite size because of the large number of branches
(167). The average increase in test suite size with
the usage of the proposed function is the
consequence of two reasons:

− During the minimization phase the test cases
that do not cover any target, but put the object
under test in new states, are added in the
minimized test suite (as explained in Section 6)

− Two different fitness functions probably will generate
different test suites with different number of
statements (not necessarily a larger number).

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

RQ2: In our experiments, the usage of the proposed fitness
function results in a relative increase of 15.6% in the average

mutation score achieved against the original fitness function.

RQ3: In our experiments, the usage of the proposed fitness
function results in a relative increase of 8.2% in the average
number of test cases and 12.6% in the average test suite size
achieved against the original fitness function.

IX. CONCLUSIONS

 This paper concerns the fitness function used
to guide the search during automatic unit test
generation of Java classes. The branch coverage
criterion is easy to implement but can produce weak test
sets. Test cases that put the object under test in new
states discover hidden behaviors and consequently are
relevant in the testing context. Targeting all the states
during the search is impossible due to the fact that
some of them are infeasible. In this article we presented
a new fitness function that takes into consideration the
states reached during the execution of a test case. The
implementation of this fitness function is very simple
since the targets to cover remain the branches, but the
state evolve during the search and the minimization
phase the tests that reach one or more new states are
not removed even though these tests does not reach
any uncovered branches. The usage of the proposed
fitness function does not decrease the branch coverage
and results in a relative increase of 15.6% in the
achieved average mutation score with the cost of a
relative increase of 12.6% in the average test suite size.
The results are promising but since the subjects under
test are very different further evaluation of the proposed
approach needs to be performed.

1. NIST (National Institute of Standards and
Technology): The Economic Impacts of Inadequate
Infrastructure for Software Testing, Report 7007.011,

2. Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way.
Technical Report 01-12, Department of Computer
Science, Iowa State University, Nov. 2001.

3. C. Cadar, K. Sen, “Symbolic Execution for Software
Testing: Three Decades Later”. Communications of
ACM, pages 82-90, 2013

4. C. Pacheco, S. Lahiri, M. Ernst, “Feedback-directed
Random Test Generation”. In Proceedings of
International Conference in Software Engineering
(ICSE) 2007

5. G. Fraser, A. Arcuri, “EvoSuite at the SBST 2015
Tool Competition”. In Proceedings of International
Conference in Software Engineering (ICSE) 2015

6. T. Tsuji, A. Akinyele, “Evaluation of AgitarOne”.
Analysis of Software Artifacts Final Project Report
April 24, 2007

7. G. Fraser, P. McMinn, A. Arcuri, M. Staats, “Does
Automated Unit Test Generation Really Help
Software Testers? A Controlled Empirical Study”.
ACM Transactions on Software Engineering and
Methodology, 2015

8. S. Shamshiri, R. Just, J. Rojas, G. Fraser, P.
McMinn, A. Arcuri, “Do Automatically Generated
Unit Tests Find Real Faults? An Empirical Study of
Effectiveness and Challenges” In Proceedings of

the 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2015

9. F. Gross, G. Fraser, A. Zeller, “Search-based
system testing: high coverage, no false alarms”. In
Proceedings of International Symposium on
Software Testing and Analysis (ISSTA), 2012.

10. P. McMinn, “Search-based Software Test Data
Generation: A Survey”, Software Testing, Verification
and Reliability, pp. 105-156, June 2004.

11. K. Lakhotia, P. McMinnb, M. Harman, “An empirical
investigation into branch coverage for C programs
using CUTE and AUSTIN”. Journal of Systems and
Software, 2010

12. M. Mirazz, “Evolutionary Testing of Stateful Systems:
a Holistic Approach”. PhD thesis, University of
Torino, 2010

13. G. Fraser, A. Zeller, “Mutation-Driven Generation of
Unit Tests and Oracles,” IEEE Transactions on

Software Engineering, 2012.

14. P. Tonella, “Search-Based Test Case Generation”,
TAROT Testing School Presenetation, 2013

15. G. Fraser, A. Arcuri, “Achieving Scalable Mutation-
based Generation of Whole Test Suites”. Empirical

Software Engineering 2014.

16. Papadhopulli, E. Meçe “Coverage Criteria for
Search Based Automatic Unit Testing of Java
Programs”, International Journal of Computer
Science and Software Engineering (IJCSSE),
Volume 4, Issue 10, October 2015

17.

J. Miguel Rojas, J. Campos1, M. Vivanti, G. Fraser,
A. Arcuri, “Combining Multiple Coverage Criteria in
Search-Based Unit Test Generation” in

Proceedings

of

the

26th

IEEE/ACM

International

Conference

on

Automated

Software

Engineering

(ASE), pp. 436-
439,

2011

18.

K.

Lakhotia, M. Harman, H. Gross, “AUSTIN: A Tool

for Search Based Software Testing for the C
Language and Its Evaluation on Deployed
Automotive Systems”. International Symposium on
SBSE, 2010

19.

N. Tracey. “A Search-Based Automated Test-Data
Generation Framework For Safety-Critical Software”.
PhD thesis, University of York, 2000

20.

J. Wegener, A. Baresel, H. Sthamer. “Evolutionary
Test Environment for Automatic Structural Testing”.
Information and Software Technology Special Issue
on Software Engineering using Metaheuristic
Innovative Algorithms, 43(14):841{854, December
2001.

21.

Arcuri, “It Does Matter How You Normalise the Branch Distance
in Search Based Software Testing”.

Third International

Conference on Software Testing, Verification and
Validation, 2010”

22.

P. Tonella, “Evolutionary Testing of Classes”. In
Proceedings of International Symposium on
Software Testing and Analysis

(ISSTA) 2004

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

14

Y
e
a
r

20
16

 (

)
C

References Références Referencias

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5477032�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5477032�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5477032�

23. Rountev, “Precise identification of side-effect-free
methods in java”. 20th IEEE International
Conference on Software Maintenance (ICSM ’04),
pages 82–91, 2004.

24. Salcianu, M. Rinard, “Purity and side effect analysis
for java programs”. In Proceedings of the 6th
International Conference on Verification, Model
Checking and Abstract Interpretation, pages 199–
215, January 2005.

25. http://metrics.sourceforge.net/
26. http:/.sourceforge.net/
27. http://www.apache.org/
28. Aleti, L. Grunske, “Test Data Generation with a

Kalman Filter-Based Adaptive Genetic Algorithm”.
Journal of Systems and Software, 2014.

29. E. Eiben, S. K. Smit, “Parameter tuning for
configuring and analyzing evolutionary algorithms”.
Journal: Swarm and Evolutionary Cmputation,
pages 19-31, 2011.

30. http://muclipse.sourceforge.net/

31.

Y. Ma, J. Ouffut, “Description of Class Mutation
Mutation Operators for Java”, August 2014

32.

D. Le, M. Alipour, R. Gopinath, and A. Groce,
“MuCheck: An Extensible Tool for Mutation
Testing of Haskell Programs”. In Proc. of the
International Symposium on Software Testing and
Analysis, 2014.

33.

G. Fraser, A. Arcuri, “Handling test length bloat”.

In
Proceedings of ICST, 2013.

34.

V. Dallmeier, C. Lindig, A. Vasilowski, “Mining
Object Behaviour with ADABU”. In Proceedings of
the International Workshop on Dynamic Systems
Analysis, 2006

35.

http://www.eclemma.org/

36.

Papadhopulli, N. Frasheri, “Today’s Challenges of

Symbolic Execution and Search-Based for
Automated Structural Testing”, In Proceedings of
ICTIC, 2015.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

15

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

This page is intentionally left blank

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
II

V
er
sio

n
I

16

Y
e
a
r

20
16

 (

)
C

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

	A Fitness Function for Search-based Testing of Java Classes, which is based onthe States Reached by the Object under Test
	Author
	Keywords
	I. INTRODUCTION
	II. UNIT TESTING FOR OBJECT ORIENTEDSOFTWARE
	III. GENETIC ALGORITHMS
	a) How does the GA work?

	IV. COVERAGE CRITERIA
	a) Types of Coverage Criteria

	V. THE PROPOSED FITNESS FUNCTION
	a) Approach Level
	b) Branch Distance
	c) New States Achieved (NSA)
	d) Abstract States

	VI. IMPLEMENTATION OF THEPROPOSEDFITNESS FUNCTION
	a) The Intrumentor
	b) The Test Case Generator

	VII. EXPERIMENTAL EVALUATION
	a) System Characteristics
	b) Subject Selection
	a) Parameters of GA
	b) Experiment

	VIII. RESULTS AND DISCUSSION
	IX. CONCLUSIONS
	References Références Referencias

