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Abstract - Genetic Algorithms are among the most efficient 
search-based techniques to automatically generate unit test 
cases today. The search is guided by a fitness function which 
evaluates how close an individual is to satisfy a given 
coverage goal. There exists several coverage criteria but the 
default criterion today is branch coverage. Nevertheless 
achieving high or full branch coverage does not imply that the 
generated test suite has good quality. In object oriented 
programs the state of the object affects its behavior. 
Thereupon, test cases that put the object under test, in new 
states are of interest in the testing context. In this article we 
propose a new fitness function which takes into consideration 
three factors for evaluation: the approach level, the branch 
distance and the new states reached by a test case. The 
coverage targets are still the branches, but during the search, 
the state of the object under test evolves with the scope to 
produce individuals that discover interesting features of the 
class and as a consequence can discover errors. We 
implemented this fitness function in the eToc tool. In our 
experiments the usage of the proposed fitness function 
towards the original fitness function results in a relative 
increase of 15.6% in the achieved average mutation score with 
the cost of a relative increase of 12.6% in the average test 
suite size.
Keywords: structural testing, test case generation, 
search based software testing, fitness function, object 
state, coverage criteria, mutation score.

I. INTRODUCTION

ue to the fact that the influence of software in all 
areas has grown rapidly in the past 40 years, the 
software has become very complex and also its 

reliability is fundamental. All the software development 
phases have been adapted to produce these complex 
software systems, but especially the testing phase is of 
critical importance and testing thoroughly today’s 
software systems is still a challenge. According to a 
study [1] conducted by the National Institute of 
Standard & Technology, approximately 80% of the 
development cost is spent on identifying and correcting 
defects. It is a well-known fact that it is a lot more 
expensive to correct defects that are detected during 
later system operation. Considering past experiences, 
inadequate and ineffective testing can result in social 

D

problems and human/financial losses. In order to 

improve the testing infrastructure, several efforts have 
been made to automate this process.

In the unit testing level, there are three 
approaches towards automation: random testing, static 
analysis (Symbolic Execution [3]) and metaheuristic 
search. A considerable number of tools have been 
developed based on these approaches; eg. RANDOOP 
[4], EvoSuite [5], AgitarOne [6]. Nevertheless, the 
effectiveness of these tools is still not completely 
proved, because the results obtained from the 
experiments depend on the subjects under test. Usually, 
a coverage criteria is used to evaluate these tools, but 
achieving a high degree of code coverage does not 
imply that a test is actually effective at detecting faults 
[7]. According to [8], today there is no tool to find more 
than 40.6% of faults.

This article is focused on structural testing at 
the unit level of Java programs using Search-Based 
Software Testing (SBST) [9]. According to [10], SBST 
has been used to automate the testing process in 
several areas including the coverage of specific 
program structures, as part of a structural, or white-box 
testing strategy. Every unit (class) of the software must 
be tested before proceeding to the other stages of the 
development cycle. SBST is a branch of Search Based 
Software Engineering (SBSE). SBSE is an engineering 
approach in which optimal or near optimal solutions are 
sought in a search space of candidate solutions. The 
search is guided by a fitness function that distinguishes 
between better and worse solutions. SBSE is an 
optimization approach and it is suitable for software 
testing since test case generation is often seen as an 
optimization or search problem. Since SBST techniques 
are heuristic by nature, they must be empirically 
investigated in terms of how costly and effective they are 
at reaching their test objectives and whether they scale 
up to realistic development artifacts. However, 
approaches to empirically study SBST techniques have 
shown wide variation in the literature. There exist several 
search-based optimization methods used for test 
automation; e.g. genetic algorithms, hill climbing, ant 
colony optimization and simulated annealing, etc, but 
Genetic algorithms (GAs) are among the most 
frequently applied in test data generation.

GAs have several components which need to 
be defined in order for the GA to be implemented.

α σ



According to [10], the component that affects mostly the 
results obtained from the search is the fitness function. 
The fitness function is a mathematical representation of 
the coverage goal the search should achieve. There are 
different coverage goals each of them aims at covering 
certain parts of the unit under test. These different 
coverage criteria verify the quality of a test suite. The 
gold criterion is strong mutation, but today this criterion 
it is mainly used by the research community for 
evaluation of proposed techniques. The most used 
criterion is branch coverage [11]. However achieving 
high branch coverage (even 100%), for some classes is 
not sufficient. 

In object oriented programs the state of the 
object is a factor that affects the execution of a method. 
This is why the state of the object of the Class Under 
Test (CUT), should evolve during the search in order to 
discover hidden features of the class [12]. A test case 
that puts the object in one or several new states is of 
interest in the testing context. The scope of this paper is 
to propose and evaluate a new fitness function, which 
rewards the test cases according to branch coverage 
and also according to the new states the object has 
taken during the execution of the test. 

The rest of this paper is organized as follows: In 
the second section we explain in what unit testing of 
java programs consists and in the third section we 
present an overview of GAs. The fourth section is 
focused on branch coverage and the fifth section 
presents the proposed fitness function. The 
implementation of the proposed fitness function is 
described in section six. The seventh section gives 
details of the experimental setup and in the eighth 
section the results achieved are presented and 
discussed. We conclude finally with the conclusions we 
have come preparing and accomplishing this study.  

II. UNIT TESTING FOR OBJECT ORIENTED 

SOFTWARE 

Software testing at the unit level (Java classes) 
consists of three steps: 

1) The design of test cases 
2) The execution of these test cases 
3) The determination of whether the output produced 

is correct or not. 
The second step is performed fully 

automatically using frameworks like JUnit [2]. 
Automatically generating the test oracle is still a 
challenge and there exists few research publications 
regarding this topic [13], therefore the third step is 
almost completely performed manually by the testers. 
Regarding the first step, there exist a lot of research 
effort for the generation of test cases automatically. Due 
to the complexity and the diversity of the programs 
under test this is still an open research topic. Moreover 

test cases in object oriented unit testing are not just a 
sequence of input values like in procedural languages. 
According to [14], a unit test of a Java class must 
accomplish the following four tasks: 

1. Create an object of the class under test using 
one of the available constructors. 

2. Invoke a sequence of zero or more methods on 
the created object. 

3. Execute the method which is currently under 
test. 

4. Examine the final state of the object to produce 
the pass/fail result 

Some parameters in method calls are objects 
themselves, thus requiring further object constructions 
and as a consequence task 1 and 2 must be repeated 
for each parameter of object type.  

The statements for Java unit test cases are: 

1.
 

Primitive statements: declaration of variables e.g. int 
a = 15;

 

2.
 

Constructor statements: construction objects of any 
given class e.g. String s = new String(“Test”);

 

3.
 

Method statements: calling the methods of any 
given class e.g. char b = s.charAt(2);

 

4.
 

Field statements: accessing the fields of any given 
class e.g. int c = ob.size;

 

5.
 

Assignments statements: assign values to the fields 
of any given class e.g. ob.size = 17;

 

Since objects have a state, the results are 
affected by the state of the object under test and of the 
object parameters.

 

  

Genetic Algorithms (GAs) are inspired by 
natural evolution. They were first introduced by Holland 
in 1975. Today GAs are used for optimization in testing 
real life applications. The most important components in 
GA are: 

 

•
 

representation of individuals: genotype (the 
encoded representation of variables) to phenotype 
(the set of variables themselves) mapping

 

•
 

fitness function: a function that evaluates how close 
an individual is to satisfy a given coverage goal

 

•
 

population: the set of all the individuals 
(chromosomes) at a given time during the search

 

•
 

parent selection mechanism: selecting the best 
individuals to recombine in order to produce a 
better generation

 

•
 

crossover and mutation: the two types of 
recombination used to produce new individuals

 

•
 

replacement mechanism: a mechanism which 
replace the individuals with the lowest fitness 
function in order to produce a better population.
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III. GENETIC ALGORITHMS



a) How does the GA work? 
The space of potential solutions is searched in 

order to find the best possible solution. This process is 
started with a set of individuals (genotypes) which are 
generated randomly from the whole population space 
(phenotype space). New solutions are created by using 
the crossover and mutation operators. The replacement 
mechanism selects the individuals which will be 
removed so that the population size does not exceed a 
prescribed limit. The basis of selection is the fitness 
function which assigns a quality measure to each 
individual. According to the fitness function, the parent 
selection mechanism evaluates the best candidates to 
be parents in order to produce better individuals in the 
next generation. It is the fitness function which affects 
the search towards satisfying a given coverage criteria. 
Usually the fitness function provides guidance which 
leads to the satisfaction of the coverage criterion. For 
each individual the fitness is computed according to the 
mathematical formula which represents how close is a 
candidate to satisfy a coverage goal, e.g. covering a 
given branch in the unit under test. GAs are stochastic 
search methods that could in principle run for ever. The 
termination criterion is usually a search budget 
parameter which is defined at the beginning of the 
search and represents the maximum amount of time 
available for that particular search. 

IV. COVERAGE CRITERIA 

a) Types of Coverage Criteria 
Automatic unit testing is guided by a structural 

coverage criterion. There exist many coverage criteria in 
literature, each of them aims at covering different 
components of a CUT. Nevertheless, not all the criteria 
have the same strength and can be fulfilled practically. 
Furthermore some criteria are subsumed by other 
criteria. Below is a list of coverage criteria for structural 
testing of Java programs. 
1. Line Coverage 
2. Branch Coverage 
3. Modified Condition Decision Coverage [21]  
4. Mutation  
5. Weak Mutation 
6. Method coverage  
7. Top-level Method Coverage 
8. No-Exception Top Level Method Coverage 
9. Direct Branch Coverage 
10. Output Coverage 
11. Exception Coverage 
12. Path Coverage  
13. Condition Coverage 
14. Multiple Condition Coverage 
15. Condition/Decision Coverage 

Mutation criterion is considered the gold 
criterion in research literature [15]. This criterion is 
difficult to apply and computationally expensive and it is 

practically only used for predicting suite quality by 
researchers. Another option to achieve high quality test 
cases with search based technique is to use a 
combination of multiple criteria. [16] performed an 
experiment to evaluate the effects of using multiple 
criteria and concluded that: 

− Given enough time the combination of all criteria 
achieves higher mutation score than each criterion 
separately (except Weak Mutation). 

− Using all the criteria increases the test suite size by 
more than 50% that the average test suite size of 
each constituent criterion used separately. 

− The next best criterion (after Weak Mutation) to 
achieve high mutation scores is branch coverage. 

The usage of multiple criteria increases the 
overall coverage and mutation score with the cost of a 
considerable increase in test suite length, so the usage 
of the combination in practice will be not feasible, 
because managing large test suites is difficult. A 
balance between mutation score and average test suite 
size is achieved with branch coverage criterion. 

b) Branch Coverage 
The most used criterion is branch coverage, but 

even though it is an established default criterion in the 
literature, it may produce weak test sets (mutation score 
less than 30% [17]). For example consider the Stack 
implementation in Figure 1. 

   public class Stack { 
  private int size = 0; 
  private int st [] = new int [4]; 
  void push (int x){ 
   if (size < st.length) 
    st[size++] = x; 
  } 
  int pop (){ 
   return st[size--]; 
   } 
   } 

    

      The class Stack is very simple (8 LOC, 2 
attributes, 2 methods). Suppose the test suite generated 
is the test suite given in Figure 2. 
1. @Test 

2. public void test0()  { 

3. Stack s0 =new Stack(); 

4. s0.push(1); 
5. s0.push(0); 

6. int int0 = s.pop(); 

7. assertEquals(0, int0); 
8. s.push(0); 

9. s.push(0); 
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Figure1 : Example Stack implementation

10. s.push((-1916));

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the 
Object under Test



  11.
 
s.push((-1916));

 12.
 
}
 Figure 2

  
:
 
Test suite for class Stack

 

 
We used EclEmma [35] tool as a plugin in 

Eclipse to measure branch coverage. The branch 
coverage obtained by executing this test suite was 
100%. There are 4 coverage goals in class Stack (2 
methods and 2 branches from the predicate in line 5).

 

 
 Analyzing class Stack we notice the following 

errors:
 −

 
If method pop is called first and then is called 
method push, an uncaught exception is thrown 
(field size before calling push is -1).

 −
 

If method pop is called two times consequently an 
uncaught exception is thrown (field size before 
calling pop is -1).

 −
 

If
 
method push is called four times consequently 

and then is called method pop an uncaught 
exception is thrown (field size before calling pop is 
4).

 −
 

It is obvious that branch coverage is not
 

sufficient for class Stack!
 Is there any possibility to improve the

 
fitness 

function for branch coverage in order to obtain a test 
suite with higher quality?

 
Both of the methods are covered by the test 

generated, but it is evident that the state of the object 
(the value of field size) before calling them affects the 
results of the tests. The same method called on different 
states of the object behaves differently. This is why, a 
possibility to improve the suite’s ability to detect errors, 
is to evolve the state of the object during the search in 
order to put the object in new states that probably can 
discover interesting behaviors of the CUT. Since the 
search is guided by the fitness function, then this 
function should also consider the states reached by a 
test before evaluating it. 

V. THE PROPOSED FITNESS FUNCTION 
Fitness functions are a fundamental part of any 

search algorithm. They provide the means to evaluate 
individuals, thus allowing a search to move towards 
better individuals in the hope of finding a solution [18]. 
The approach considered here is to minimize the fitness 
function during the search. The fitness function 
proposed in this paper rewards the individuals based on 
how close they are at covering a target (branch) and the 

states they put the object under test. This function is a 
mathematical equation depending on the: 

 
• Approach level 
• Branch Distance 
• New states achieved 
a) Approach Level 

For each target, the approach level show how 
many of the branch's control dependent nodes were not 
executed by a particular input [20]. The fewer control 
dependent nodes executed, the “further away” an input 
is from executing the branch in control flow terms. The 
approach level is the most used factor in the fitness 
function for structural criteria, but the fitness landscape 
contain plateaus because the search is unaware of how 
close a test case was to traversing the desired edge of a 
critical branching node. 
b) Branch Distance 

The branch distance is computed using the 
condition of the decision statement at which the flow of 
control diverted away from the current “target” branch. 
For every operator the branch distance is calculated 
using the formulas introduced by Tracey [19]. 

The approach level is more important that the 
branch distance and as a consequence the branch 
distance should be normalized at the fitness function 
formula. This distance will be normalized at a value 
between 0.0 and 1.0. Value 0.0 means “true”; the 
desired branch has been reached. Values close to 1.0 
means that the condition is far from being fulfilled. 
Intermediate values guide slightly the search towards 
the accomplishment of the condition (in order to remove 
plateaus in the fitness landscape). The formula for 
branch distance in our proposed fitness function is the 
formula introduced by Arcuri [21]. 

𝐵𝐵𝐵𝐵(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵 +  𝛽𝛽
 

BD is the branch distance before normalization 
and 𝛽𝛽 is 1. 

c) New States Achieved (NSA) 
With the term state in this paper we refer to: 
 
Definition 1.  State: The set of the values of all the fields 
in the CUT before calling a method + the method 
called. 
For example, for the class Stack the two states: 
− field size = 0 and filed st = !null, before calling 

method push 
− field size = 0 and filed st = !null, before calling 

method pop 
are considered two different states and both of them are 
interesting in the testing context.  

The total number of states in the CUT is 
computed as a product of all the possible combinations 

© 2016   Global Journals Inc.  (US)1
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Object under Test

Even though class Stack is very simple, and the 
branch coverage obtained is 100%, the mutation score 
is relatively low (29%). We added an assertion in the test 
(line 7) and used the JUnit framework to run it in Eclipse. 
The test passed. The tester may assume the class is 
correct with 100% branch coverage and a passing test. 
Is branch coverage sufficient for this class?

9. s.push(0);
10. s.push((-1916));



of the class fields (declared non final) after abstraction 
(explained in the next section), with the number of public 
methods. 

The approach level is more important that the 
number of new states achieved and as a consequence 
this factor should be normalized at the fitness function 
formula. The normalization formula is: 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛 – 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛
 

The greater the number of the new states 
achieved by a test case the smaller this factor in the 
overall fitness. 

 

 𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎ℎ_𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 + 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵+1

+ 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛  –𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 _𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛

 

d) Abstract States 
If we use the real values of the fields, the 

number of states will be infinite. Moreover, not all the 
states are of equal relevance during testing. For 
example, from the testing prospective, calling method 
pop() of the class Stack with field size = 1, is the same 
as calling method pop with filed size = 2. On the other 
hand calling method pop() with filed size = 0 in not the 
same, since this state reveals an interesting behavior of 
the object under test. Therefore, we use abstractions 
over the values of the fields rather than the concrete 
values themselves. We use a state abstraction function 
provided by Dallmeier at al. [34]. The abstraction is 
performed based on the three rules below: 

• If the type of the field is concrete (int, double, 
long etc), the value will be translated in three 
abstract values: xi

 < 0, xi
 = 0 and xi

 > 0. 

• If the type of the field is an object, the value will be 
translated in two abstract values: xi

 = null dhe xi 
 

null 

• If the type of the field is Boolean, there is no need to 
do translation, since there are only two values. 

For example the combinations of the field 
values of class Stack, after abstraction are those listed 
in Table 1.

  

Table 1 : 
 

Combination of Field Values for Class Stack
 

 
size

 
st

 

state1
 

= 0
 

null
 

state2
 

> 0
 

null
 

state3
 

< 0
 

null
 

VI.
 

IMPLEMENTATION OF THE

 

PROPOSED 

FITNESS FUNCTION

 

The proposed fitness function was implemented 
in the eToc [22] tool. eToc is a simple search based tool 

for unit testing of Java programs. Is uses GA and branch 
coverage criterion. This tool has been mentioned in 
many research works and has been used as the basis 
for the design of other tools. eToc is appropriate for the 
scope used in this work. In the high level architecture of 
this tool [22], the Branch Instrumentor module and the 
Test Case Generator module need to be differently 
implemented for the search to be guided by the 
proposed fitness function. The new implementation of 
these modules is described below.

 a)

 

The Intrumentor

 
The function of the instrumentor module is to 

transform the source code of the CUT in order to 
provide information about the executed branches, the 
branch distance and the states achieved during 
execution. The new statements added during 
instrumentation must not change the behavior of the 
CUT. In order to obtain information for the states 
reached by the object under test, for each of the 
attributes (except those declared final) of the CUT, a get

 
method will be added. A static analysis can be used to 
provide information about the mutators and inspectors 
methods of a class [23][24], but in this case a static 
whole-program analysis is required, which is very 
expensive for this context used. Since it is not the 
purpose here to obtain a behavioral model of the CUT, 
the get methods are appropriate to be used as 
inspectors for obtaining the state of the object because 
these methods:

 
−

 

Return the value of an attribute

 
−

 

Do not take parameters

 
−

 

Do not have any side effects in the execution of 
the program. 

 
Based on the state definition given in section 

5.C, the get methods should be called before the 
execution of each method of the CUT, so during 
instrumentation the statements calling the get methods 
are added before the existing statements of each 
method. The concrete values are translated in abstract 
values as described in section 5.D. Then the states 
reached by a test case are saved in a LinkedList and 
consequently during fitness evaluation the new states 
achieved by a test case can obtained.

    public

 

class

 

Stack {

 
 

private

 

int

 

size

 

= 0;

 
 

private

 

int

 

st

 

[] = new

 

int

 

[4];

 
 

void

 

push (int

 

x){

 
  

returnState();

 
  

if

 

(size

 

< st.length)

 
   

st[size++] = x;

 
 

}

 
 

int

 

pop (){

 
  

returnState();
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}

;

return st[size --];
}
public int getsize1(){

return size;

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the 
Object under Test

The fitness function proposed considers the 
three factors described above and is computed with the 
formula:



     
  
    
    
  
   
    
  
    
 

 
  
   
     
  

   
  
 

   
 

  

 

 

 
 

   
  

 
  

 

           
 

 
 
 

       
 

 
 
 

       

 
      

       
 

 
 
 
 

       
 

 
 
 
 

       
       

       
       

 
        

 
 
 

       
 

 
 

       
       

 
 

       

 
 
 
 
 
 
 
 

       
 

 
 
 
 
 

       

 
 

       
       
       
       
       

 
 

       
 

 
       

© 2016   Global Journals Inc.  (US)1

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
I 
Is
su

e 
II 

V
er
sio

n 
I 

  
  
 

  

10

Y
e
a
r

20
16

  
 (

)
C

}
public Object getst1(){

return st;
}
public void returnState (){
reachedStates.add(String.valueOf(getsize1()+" 

"+getst1());
}
static java.util.List reachedStates;
public static void newReachedStates()
{

         reachedStates = new java.util.LinkedList();
}

}

Figure3 : Class Stack after instrumentation for the new 
ststes achieved

b) The Test Case Generator
The instrumented version of the CUT is 

executed repeatedly with the scope to cover a specified 
target (branch of the CUT). The state lists resulting after 
each execution are compared with the state lists of the 

test cases that make up the population. The new states 
reached by an individual are used to compute part of its 
fitness.

This module is also responsible for the 
minimization of the generated test suite. Normally during 
minimization the tests that do not cover any target that is 
not covered by any other test are omitted from the test 
suite. Taking into consideration that a test case that 
reaches one or more new states is important in the 
testing context, before removing a test case because it 
does not cover any new target, it will be reconsidered 
regarding the states it puts the object under test in. The 
test cases which contain unreached states in their state 
lists, will be part of the final test suite. The proposed 
minimization has the advantage that it probably 
increases the number of tests in the generated test suite 
and as a consequence it also increases the length of the 
test suite. On the other side the usage of the proposed 
fitness function is expected to increase the capability of 
the test suite to detect errors. An experimental 
evaluation of the new fitness function is presented in the 

Table II  : Characteristics Of The Classes Selected Fo The Experiments: Name Of The Project, Loc, Number Of 
Public Methods, Number Of Branches, Number Of Mutants, Number Of Non-Final Fields, Cyclomatic Complexity, 

Project

Project Class LOC Branch
es

Mutants Non-
final 

Fields

Public 
Methods

Cyclomatic 
Complexity

URL 
e projektit

Staku 12 4 22 2 2 1.5
Comm

ons 
CLI

Option 155 131 140 9 42 1.52 https://co
mmons.ap
ache.org

TypeHandler 124 28 28 0 9 2.66
AlreadySelectedExcepti 26 4 1 2 2 1

OptionGroup 86 21 19 2 8 1.875
Math4

J
Rational 61 36 161 2 19 1.526 https://sou

rceforge.n
et/projects

/math4j

ExponentialFunction 40 11 31 1 9 1
ArrayUtil 320 167 1769 0 36 3.48

PolyFunction 245 100 827 2 12 3.63
Complex 102 24 682 2 20 1.091

jdk StringTokenizer 313 78 434 7 6 3.12
Geneti

c 
Algorit
h  i  

GAAlgorithm 65 14 6 6 8 2 https://sou
rceforge.n
et/projects

/ j

Genome 14 9 21 3 4 1.4
Population 62 13 44 4 11 1.08

Object
Explor

ExplorerFrame 158 26 74 8 9 1.44 https://sou
rceforge.n

/
ObjectViewManager 114 41 41 8 17 1.571

Newz
Grabb

er

DirectoryDialog 177 47 155 16 13 2.235 https://sou
rceforge.n
et/projects
/newsgrab

ber

NewsFactory 121 45 88 4 7 4
SongInfo 55 12 59 3 4 2
BatchJob 28 11 29 8 10 1.27

StringSorter 63 12 47 1 4 2.2
OptionsPanel 363 75 214 15 4 9.8

Jipa Label 18 11 42 3 4 1.8 https://sou
rceforge.n

/
Variable 40 23 87 3 4 2.1

Total 2762 943 5021 111 264

next section.
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In this work we aim to answer the following 
research questions: 
• RQ1: How does the usage of the proposed 

fitness function affect the branch coverage? 

• RQ2: How does the usage of the proposed 
fitness function affect the mutation score of the 
suite? 

• RQ3: How does the usage of the proposed 
fitness function affect the number of suite’s test 
cases and their size? 

a) System Characteristics 
For the experiments we used a desktop 

computer running Linux 32 bit Operating System, 1 GB 
of main memory and a Intel Core 2 Duo CPU E7400 
2.8GHz x 2 Processor. 

b) Subject Selection  
Selecting the classes under test is very 

important since this selection affects the results of the 
experiments. We chose 7 open source projects and 
selected randomly 23 classes from them. Also, the class 
Stack discussed throughout this paper was used as a 
subject for the experiments. To obtain comprehensive 
results, the evaluation must be done to real and          
not simple subjects. Also these subjects should not 
have any common characteristics which affect the 
obtained results. The characteristics of the 24 classes 
are listed in Table 2. The information about LOC (without 
comments and empty lines) and cyclomatic complexity 
is obtained using Metrics 1.3.6 [25], as a plugin in 
Eclipse. As can be noted from Table 2, the classes have 
very different characteristics and complexity. 

Five of the projects were downloaded from 
SourceForge [26] which is today the greatest open 
source repository (more than 300,000 projects and two 
million of users). One project was downloaded from the 
Apache Software Foundation [27] which exists from 

1999 and has more than 350 projects (including Apache 
HTTP Server). Class StringTokenizer was taken from the 
java.util package which is part of jdk 1.8.0. This package 
has been used by several studies for evaluation of 
automatic test case generation techniques.  

a) Parameters of GA  
Defining the parameters of GAs to obtain the 

optimal results is difficult and a lot of research effort is 
dedicated to this topic [28][29]. Therefore we let the 
parameters of the GA to their default values [22]. The 
values of three of the most relevant parameters are 
listed in Table 3. Regarding the search budget, it was 
determined depending on the experiment and will be 
shown next for each experiment.  

Table lll : Parameters of Ga 

 Parameter Value 

Population Size  10 
Search Budget  600s 
Maximal number of generations/target  10 

b) Experiment 
For each of the classes we run eToc with the 

following configurations: 

1.
 

Original Fitness (OF) function with search 
budget of 2 min

 

2.
 

Proposed Fitness (PF) function with search 
budget of 2 min

 

3.
 

Original
 

Fitness (OF) function with search 
budget of 10 min

 

4.
 

Proposed Fitness (PF) function with search 
budget of 2 min

 

To overcome the randomness of the genetic 
algorithms each experiment was repeated 5 times. 

 

The results of the experiments (average of all 
runs) are presented in Table 4.

 
 

Table IV  : Branch Coverage, Mutation Score, Number Of Tests, Length Of Test Suite For Each Configuration, 
Average Of All Runs For Each Cut 

Class BC 
with 

OF (2 
min)  

BC 
with 

PF (2 
min)  

BC 
with 
OF 
(10 

 

BC 
with 
PF 
(10 

 

MS 
with 
OF 
(2 

 

MS 
with 
PF 
(2 

 

MS 
with 
OF 
(10 

 

MS 
with 
PF 
(2 

 

No. 
test 
with 
OF  

Test 
length 
with 
OF  

No. 
test 
with 
PF  

Test 
length 
with 
PF  

Staku 100  100  100  100  29  72  29  72  2  8  4  15  
Option 69  69  69  69  41  49  41  49  62  147  71  166  

TypeHandler 75  75  75  75  46  46  46  46  12  24  12  24  
AlreadySelectedException 100  100  100  100  100  100  100  100  3  5  3  5  

OptionGroup 100  100  100  100  84  89  84  89  8  27  7  35  
Rational 94  94  94  94  75  79  75  79  12  24  12  31  

ExponentialFunction 100  100  100  100  60  55  60  60  8  16  7  15  

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the 
Object under Test

VII. EXPERIMENTAL EVALUATION



ExponentialFunction 100  100  100  100  60  55  60  60  8  16  7  15  
ArrayUtil 100  99  100  100  9  9  9  9  64  141  64  141  

PolyFunction -  -  85  87  -  -  31  38  27  89  30  98  
Complex 100  100  100  100  34  37  34  37  13  27  12  31  

StringTokenizer 65  65  69  69  15  21  19  23  8  18  16  33  
GAAlgorithm 93  93  93  93  33  33  33  50  10  21  8  19  

Genome 44  44  55  55  0  4  0  4  3  6  4  10  
Population 92  92  100  100  32  32  32  32  11  29  11  29  

ExplorerFrame 8  15  8  15  0  3  0  3  2  2  2  3  
ObjectViewManager 54  54  54  54  17  24  17  24  2  3  2  3  

DirectoryDialog 6  6  6  6  0  0  0  0  5  11  5  11  
NewsFactory -  -  -  -  -  -  -  -  -  -  -  -  

SongInfo 50  50  50  50  22  27  24  27  5  12  8  19  
BatchJob 100  100  100  100  62  69  62  69  10  20  9  22  

StringSorter 100  100  100  100  17  17  17  17  6  17  6  17  
OptionPanel -  -  37  37  -  -  3  9  7  21  8  19  

Label 100  100  100  100  55  55  55  55  4  16  4  16  
Variable 100  100  100  100  55  56  56  59  6  9  9  19  

Average 60.5  69  74.8  75.2  37.9  42.7  35.9  41.5  -  -  -  -  

Total -  -  -  -  -  -  -  -  290  693  314  781  
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C RQ1: How does the usage of the proposed fitness 

function affect the branch coverage?
The branch coverage was measured with 

EclEmma. For both functions the average branch 
coverage is greater when the search budget is 10 min. 
This result was expected since the individuals improve 
during the search and more time results in better 
solutions.   

In order to do the best comparison of the 
approaches we focus on the case with search budget of 
10 min in this section, since for the scope of the 
experiment, it is not appropriate to compare results 
affected by the limited search time. 

The difference between the average branch 
coverage is inconsiderable (0.4%) when a search 
budget of 10 min is used. This difference may be due to 
the randomness of the results achieved by the search. 
Since the approach presented in this work does not 
change the targets to cover, the almost equal coverage 
was expected. For the class ExplorerFrame, there is an 
increase of 7% in the coverage achieved by the 
proposed approach. Even though the targets are 
identical, the proposed function rewards the individuals 
that reach more new states and therefore the test cases 
after minimization may be different and more complex. 
So, this increase probably is the effect of indirect 
coverage.

Only in the case of class ArrayUtil there was a 
decrease of 1% in the coverage achieved, with budget 2 

min, but more likely it is due to the randomness of the 
search. For the class NewsFactory the search failed to 
produce results for both approaches. We changed the 
parameters of the GA, but even for a population of 20, or 
30 individuals, no results were generated. It is not the 
scope of this work to investigate the reasons why this 
happened.

• RQ2: How does the usage of the proposed 
fitness function affect the mutation score of the 
suite?

Since mutation score is the measure used in 
the strongest criterion (Mutation Coverage), here we 
have used it to measure the quality of the generated test 
suite. Computing the mutation score for a test suite 
requires determining, for every mutant, whether the test 
suite succeeds or fails when run on the mutant. In the 
worst case each test must be run on each mutant. For 
each of the classes the mutants were generated using 
as a plugin in Eclipse the tool MuClipse v1.3 [30]. Mu
Clipse generates mutants using the traditional operators 
and the operators in the class level [31]. The number of 
generated mutants for each class is given in Table 2. 
Even classes with a small number of LOC can have 
many mutants (e.g. class Stack has 22 mutants). 
Assertions were inserted manually to the tests 

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the 
Object under Test

VIII. RESULTS AND DISCUSSION

RQ1: In our experiments, there is no difference in the average 
branch coverage achieved between the usage of the original 
fitness function and the proposed fitness function. 
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generated, so that these cases can be used by 
MuClipse. Then, the generated tests were executed with 
JUnit against all the mutants and the presence of 
failures shows that the tests were able to kill the 
mutants.  

 The results of the mutation scores of each 
class for all the configurations are given in Table 4. 

The mutation scores achieved by both of the 
fitness functions are far from the optimal value (100%). 
Almost this range of mutation scores is also obtained 
from other studies [32]. The main reasons of these low 
scores are:  

− the targets to cover are the branches and not 
the mutants  

− the presence of equivalent mutants (behave the 
same as the original program) which cannot be 
killed. 

Nevertheless, despite the relatively low mutation 
scores, our interest is focused on the difference 
between the scores achieved by the original function 
against the proposed function. 

For 6 classes (6/23 = 26%) there is an 
improvement in the mutation score achieved when using 
a search budget of 10 min against a search budget of 2 
min. 

For the same reasons mentioned in the 
discussion of RQ1, to answer RQ2 we are focusing 
mainly at the results achieved with a search budget of 
10 min. The average mutation score reached by the 
original function is 35.9%, whereas the mutation score 
reached by the proposed function is 41.5%, thus a 
difference of 5.6%. The improvement is 5.6/35.9 = 
15.6%. For 15 classes out of 23 (15/23 = 65%), there is 
an improvement in the mutation score achieved by the 
proposed function; for the remaining 8 classes (8/23 = 
35%), the scores achieved are identical. There is no 
class where using the proposed function results in a 
lower mutation score. Even though we are aware that 
the results depend on the CUT (despite the fact that 
CUT chosen have different characteristics), the results 
obtained are very promising. 

 

• RQ3: How does the usage of the proposed 
fitness function affect the number of suite’s test 
cases and their size? 

Automatically generated JUnit tests need to be 
manually checked in order to detect faults because 
automatic oracle generation is not possible today. This 
is the reason why not only the achieved coverage of the 

generated test suite is important, but the size of the test 
suite is of the same importance [33]. 

 Here we refer to the size of a test suite as the 
number of statements after the minimization phase 
(without assertions). 

 Only the results achieved with a search budget 
of 10 min, are shown in Table 4, because in answering 
RQ3 we are interested in the number of tests generated 
and their size in the “worst case”. The minimization 
phase does not depend on the search budget, so the 
results with search budget of 10 min, subsume the 
scenario with a search budget of 2 min. The LOC of the 
generated suite was obtained with the tool Metrics 1.3.6. 
      There is an increase of 314 – 290 = 24 tests in the 
total number of test generated, or a relative increase of 
24/290 = 8.2%. This increase is acceptable, although 
the number of tests in the test suite is not relevant in 
respect to the size of the test suite, because having 
many short size tests is not a problem for the tester who 
is detecting faults. 

Regarding the size of the test suite, we can 
see from the results in Table 4, that using the 
proposed fitness function results in an average test 
suite size of 33.9 (781/23) statements. The relative 
increase is (33.9 – 30.1) / 30.1 = 12.6%. For 8 of 
the classes (34%), there is no change in the 
average test suite size. Regarding classes 
ExponentialFunction and GAAlgorithm (8.7% of the 
classes), there is a decrease in the average test 
suite size, although there is no decrease either in 
branch coverage or mutation score. These results 
are explained with the appearance of indirect 
coverage [36].  

ArrayUtil is the class with the greatest test 
suite size because of the large number of branches 
(167).  The average increase in test suite size with 
the usage of the proposed function is the 
consequence of two reasons: 

− During the minimization phase the test cases 
that do not cover any target, but put the object 
under test in new states, are added in the 
minimized test suite (as explained in Section 6) 

− Two different fitness functions probably will generate 
different test suites with different number of 
statements (not necessarily a larger number). 
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RQ2: In our experiments, the usage of the proposed fitness
function results in a relative increase of 15.6% in the average 

mutation score achieved against the original fitness function. 

RQ3: In our experiments, the usage of the proposed fitness 
function results in a relative increase of 8.2% in the average 
number of test cases and 12.6% in the average test suite size 
achieved against the original fitness function.



IX. CONCLUSIONS 

 This paper concerns the fitness function used 
to guide the search during automatic unit test 
generation of Java classes. The branch coverage 
criterion is easy to implement but can produce weak test 
sets. Test cases that put the object under test in new 
states discover hidden behaviors and consequently are 
relevant in the testing context. Targeting all the states 
during the search is impossible due to the fact that 
some of them are infeasible. In this article we presented 
a new fitness function that takes into consideration the 
states reached during the execution of a test case. The 
implementation of this fitness function is very simple 
since the targets to cover remain the branches, but the 
state evolve during the search and the minimization 
phase the tests that reach one or more new states are 
not removed even though these tests does not reach 
any uncovered branches. The usage of the proposed 
fitness function does not decrease the branch coverage 
and results in a relative increase of 15.6% in the 
achieved average mutation score with the cost of a 
relative increase of 12.6% in the average test suite size. 
The results are promising but since the subjects under 
test are very different further evaluation of the proposed 
approach needs to be performed.  
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