

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 15 Issue 8 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Effect of Different UML Diagrams to Evaluate the Size Metric for
Different Software Projects

 Jayoti Vidyapeeth Women’s University, India

Abstract- In Software Engineering, an important activity is measuring of the Software in different ways.
For Measuring the Software, appropriate metrics are needed. Using Software metrics we are able to
attain the various qualitative and quantitative aspects of Software. To measure the Software in terms
of quality, size, efforts, efficiency, and reliability, performance etc. we have different metrics available
in Software Engineering and it has been an area of interest for the various researchers. Measures of
specific attributes of the process, project and product are used to compute Software metrics. This
work proposes a similar approach of measuring software using various UML diagrams and applied
Software size metric to evaluate the size of the Software. This paper discusses the proposed
approach using two different case studies and their source codes. This paper discusses the different
results obtained using different perspectives of the Software size metric measurements and
maintainability of the Software.

Keywords: software metrics, size metric, uml diagrams, use cases, cocomo, maintainability.

GJCST-C Classification : D.2.2 D.2.3

EffectofDifferentUMLDiagramstoEvaluatetheSizeMetricforDifferentSoftwareProjects

Strictly as per the compliance and regulations of:

By Preety Verma Dhaka & Dr. Amita Sharma

© 2015. Preety Verma Dhaka & Dr. Amita Sharma. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

© 2015 Global Journals Inc. (US)

1

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

Effect of Different UML Diagrams to Evaluate the
Size Metric for Different Software Projects

Abstract- In Software Engineering, an important activity is
measuring of the Software in different ways. For Measuring the
Software, appropriate metrics are needed. Using Software
metrics we are able to attain the various qualitative and
quantitative aspects of Software. To measure the Software in
terms of quality, size, efforts, efficiency, and reliability,
performance etc. we have different metrics available in
Software Engineering and it has been an area of interest for
the various researchers. Measures of specific attributes of the
process, project and product are used to compute Software
metrics. This work proposes a similar approach of measuring
software using various UML diagrams and applied Software
size metric to evaluate the size of the Software. This paper
discusses the proposed approach using two different case
studies and their source codes. This paper discusses the
different results obtained using different perspectives of the
Software size metric measurements and maintainability of the
Software.
Keywords: software metrics, size metric, uml diagrams,
use cases, cocomo, maintainability.

I. Introduction

he objectives of this analysis square measure to
create associate empirical analysis of computer
code size metrics supported UML with the

assistance of 2 case studies then calculate that
empirical information consisting of actual values and
therefore thereby showing that however the computer
code size metrics are going to be derived from
associate UML model via category Diagrams and the
below listed interaction diagrams.
1. Activity Diagrams
2. State chart Diagrams
3. Component Diagrams
4. Collaboration Diagrams

For winding up this analysis, 2 real case studies
particularly (i) Virtual category space and (ii) information
Secrecy System are going to be taken for sensible
analysis. The UML modeling of those systems are going
to be done and therefore the computer code size
metrics of those systems are going to be evaluated
supported the UML models, the non-functional
techniques (LOC, FP, and COCOMO-II). The metrics are
going to be such UML extension mechanism then are
going to be calculated with the assistance of a tool. The
calculable values are going to be compared with the

Author α : Research Scholar, Department of CS & IT Jayoti Vidyapeeth
Women’s University, Jaipur. e-mail: rpachori2006@gmail.com
Authorσ : Assistant Professor, Dept of CS &IT, I.I.S University, Jaipur.

particular computer code. Thus, the aim of our analysis
is to judge the empirical worth sets of UML models and
thereby, showing the utilization of assorted size metrics
and validate their extraction procedure from UML style
with the assistance of interaction diagrams.

II. Existing Work

Many scientists and researchers have studied
the package metrics supported UML models. And
therefore have given their large contributions to the
sector of analysis within the laptop sciences .A lot of
labor has been done until date within the space of
analysis whereas considering package metrics
associated with UML style.

In their paper Tong Yi et al. [7] analyzed and
compared some typical metrics for UML category
diagrams from totally different viewpoints , differing
types of relationships, differing types of metric values,
complexity, and fragrance theoretical and empirical
validation. They need tried to investigate the present
well-liked metrics for UML category diagrams each on
paper and by experimentation from many totally different
viewpoints. The analysis shows that the majority current
metrics have their shortcomings whereas being effective
or economical for a few special characteristics of the
system.

Li Wei dynasty et al. [8] has conferred AN
empirical study of OO metrics in 2 unvaried methodes:
the short-cycled agile method and therefore the long-
cycled framework evolution process. They need found
that OO metrics area unit effective in predicting style
efforts and supply lines of code superimposed,
changed, and deleted within the short-cycled agile
method and ineffective in predicting identical aspects
within the long-cycled framework method. This leads
them to believe that OO metrics’ prophetic capability is
proscribed to the planning and implementation changes
throughout the event iterations, not the long evolution of
a longtime system in numerous releases.

Mitchell et al. [9] conferred a footing paper
outlining a programmed of analysis supported the
quantification of run-time parts of Java programs.
Especially, we tend to adapt 2 common object-oriented
metrics, coupling and cohesion, so they'll be applied at
run-time. The results conferred during this paper area
unit of a preliminary nature, and don't offer a excusable
basis for generalization. However, she believed that they
are doing offer a sign that the analysis of package

T

Preety Verma Dhaka α & Dr. Amita Sharma σ

© 2015 Global Journals Inc. (US)1

2

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

metrics at run-time will offer a motivating measurement
of a program.

Through their paper Christodoulakis et al. [10]
have derived the results on metrics employed in object
orientating environments. Their survey includes a tiny
low set of the foremost renowned and ordinarily applied
ancient package metrics that can be applied to object–
oriented programming and a group of object–oriented
metrics (i.e. those designed specifically for object–
oriented programming). These metrics were evaluated
mistreatment existing meta–metrics further as meta–
metrics derived from our studies, primarily based on the
practitioner’s purpose of read, and accenting pertinence
in 3 totally different programming environments: Object
Pascal, C++ and Java.

In this paper M. Das et al. [11] have expressed
that Component-Based package Engineering (CBSE)
has shown important prospects in speedy production of
huge package systems with increased quality, and
stress on decomposition of the built systems into
purposeful or logical elements with well-defined
interfaces used for communication across the elements.
During this paper, a series of metrics projected by
numerous researchers are analyzed, evaluated and
benchmarked mistreatment many large-scale publically.
A scientific analysis of the values for numerous metrics
has been administrated and several other key inferences
are drawn from them. Varieties of helpful conclusions
are drawn from numerous metrics evaluations, which
embrace inferences on quality, reusability, testability,
modularity and stability of the underlying elements. The
inferences area unit argued to be useful for CBSE-based
package development, integration and maintenance.

Jamali [12] has expressed the central role that
package development plays within the delivery and
application of data technology, managers’ area unit
progressively that specializes in method improvement
within the package development space. The main target
on method improvement has inflated the demand for
package measures, or metrics with that to manage the
method. The necessity for such metrics is especially
acute once a corporation is adopting a brand new
technology that established practices have however to
be developed. He has self-addressed these wants
through the event and implementation of a collection of
metrics for OO style.

Shaik Amjan, et al. [13] has conferred the
getable and new package metrics helpful within the
totally different part of the Object-Oriented package
Development Life Cycle. Metrics area unit utilized by the
package trade to itemize the development; operation
and maintenance of package. They have conferred
metrics for Object-oriented package systems. A
mechanism is provided for comparison measures, that
examine identical ideas in numerous ways that, and
facilitating a lot of rigorous decision-making, relating to
the reason of latest measures and therefore the choice

of existing measures for a selected goal of
menstruation.

III. Proposed Methodology

This work is the UML diagrams to calculate the
dimensions metrics. It’s been found that existing
researches specialize in the utilization CASE to be the
UML diagram for analysis of the dimensions metric.
Inclusion of the opposite UML diagrams in analysis
method of the dimensions metric has been projected
during this analysis. The whole work is being carried in
following steps:
1. Taken 2 case studies and their ASCII text file

because the input of this work
2. UML diagrams of the case studies has been drawn

and enclosed for the evaluations of the dimensions
metric

3. Meta Mil computer code is getting used to come up
with the XMI document for analysis of the
dimensions metric

4. Generated XMI file is employed with the Mount
Rushmore State Metric tool for analysis of the metric
values.

5. For comparison purpose 2 alternative size metric
techniques are used i.e. Lines of Codes and
performance purpose Analysis

6. After analysis of the metrics varied strategies, a
chart of the all the metric values are going to be
generated to indicate the results.

The proposed work shall be carried out using
the following structural diagram:

Figure 1: Structural diagram of the proposed work

Unified Modeling Language (UML) is well-liked
these days for capturing necessities and for describing
the design of a software-intensive system. One among
the UML constructs may be a use case, that
diagrammatically depicts the manner within which a
user can act with the system to perform one operate or
one category of functions. 3 aspects of use cases are
often useful as inputs to a size estimate: the quantity of
use cases, the quantity of actors concerned in every use
case, and therefore the variety of situations. AN actor
may be a person or system that interacts with the
system beneath consideration; usually, there's one actor

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

© 2015 Global Journals Inc. (US)

3

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

per use case, however typically there square measure
additional. A state of affairs may be a potential outcome
from exploitation the software; the quantity of situations
will vary from one to thousands or millions, counting on
the system and its quality.

Figure 2 : Characteristic Flow and Transformation
Process Applied in UML Designing Tool

This technique may be helpful once the
dimensions estimate is needed once a UML
specification is completed. It may also be used as a
insure of another method; if the answers from each
strategies square measure similar, the analysts could
have additional confidence within the result.

IV. Metrics of Sdmetric

Metric NumAttr: the amount of attributes within the
category. The metric counts all properties no matter their
kind (data kind, category or interface), visibility, quality
(read solely or not), and owner scope (class-scope, i.e.
static, or instance attribute). Not counted square
measure genetic properties, associate degreed
properties that square measure members of an
association, i.e., that represents passable association
ends.
Metric NumOps: the amount of operations during a
category. Includes all operations within the category that
square measure expressly modeled (overriding
operations, constructors, destructors), no matter their
visibility, owner scope (class-scope, i.e., static), or
whether or not they square measure abstract or not.
Genetic operations don't seem to be counted.
Metric NumPubOps: the amount of public operations
during a category. This can be same as metric NumOps,
however solely counts operations with public visibility. It
measures the dimensions of the category in terms of its
public interface.
Metric Setters: the amount of operations with a
reputation beginning with 'set'. Note that this metric
doesn't perpetually yield correct results. As an example,
associate degree operation settle Account are going to
be counted as setter methodology.
Metric Getters: the amount of operations with a
reputation beginning with 'get', 'is', or 'has'. Note that this
metric doesn't perpetually yield correct results. As an
example, associate degree operation isolate Node are
going to be counted as getter methodology.

Metric Nesting: The nesting level of the category (for
inner classes). Measures however deeply a category is
nested at intervals different categories. Categories not
outlined within the context of another category have
nesting level zero, their inner categories have nesting
level one, etc. Nesting levels deeper than one square
measure unusual; associate degree excessive nesting
structure is troublesome to know, and may be revised.

Metric IFImpl: the amount of interfaces the category
implements. This solely counts direct interface
realization links from the category to the interface. as an
example, if a category C implements associate degree
interface I, that extends another interfaces, solely
interface I’ll be counted, however not the interfaces that I
extends (even although category c implements those
interfaces, too).

Metric NOC: the amount of youngsters of the category
(UML Generalization). Like export coupling, NOC
indicates the potential influence a category has on the
planning. If a category incorporates a sizable amount of
youngsters, it should need additional testing of the
strategies therein category. An outsized variety of kid
categories could indicate improper abstraction of the
parent category.

Metric NumDesc: the amount of descendents of the
category (UML Generalization). This counts the amount
of youngsters of the category, their kids, and so on.
Metric NumAnc: the amount of ancestors of the
category. This counts the amount of fogeys of the
category, their oldsters, and so on. If multiple
inheritances don't seem to be used, the metric yields
constant values as telegraphic signal.

Metric DIT: The depth of the category within the
inheritance hierarchy. This can be calculated because
the longest path from the category to the basis of the
inheritance tree. The telegraphic signal for a category
that has no oldsters is zero. A class with high
telegraphic signal inherits from several categories and
so harder to know. Also, categories with high telegraphic
signal might not be correct specializations of all of their
ascendant categories.

Metric CLD: category to leaf depth. This can be the
longest path from the category to a leaf node within the
inheritance hierarchy below the category.

Metric OpsInh: the amount of genetic operations. An
outsized variety of kid categories could indicate particle
of the parent category.

The amount of descendents of the category
UML Counts the amount of youngsters of the category,
their variety of ancestors of the category i.e. parents of
the category, their parents, and so on. If multiple
inheritances don't seem to be used, the metric yields
constant values because the depth of the category

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

© 2015 Global Journals Inc. (US)1

4

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

within the inheritance this can be calculated because the
longest path from the basis of the inheritance tree.

The telegraphic signal for a category that has
no oldsters is zero. Classes with from several categories
and so is harder to know. Also, categories with high
telegraphic signal might not be correct specializations of
sophistication to leaf depth. This can be calculated
because the ad of metric NumOps seized all ascendant
categories of the category.

a) Lines of Codes
This methodology tries to assess the seemingly

variety of lines of code within the finished merchandise.
Clearly, associate actual count typically created only the
merchandise is complete; lines of code area unit often
thought-about to be inappropriate for size estimates
early within the project life cycle. However, since several
of the size-estimation strategies specific size in terms of
lines of code, we will contemplate lines of code as a
separate methodology in this it expresses the
dimensions of a system in an exceedingly explicit
method.

b) Function Point Analysis
Function points were developed by Albrecht

(1979) at IBM as the simplest way to live the quantity of
practicality in an exceedingly system. They’re derived
from the wants. In contrast to lines of code, that capture
the dimensions of associate actual product, operate
points don't relate to one thing physical however, rather,
to one thing logical which will be assessed
quantitatively.
IFPUG FPA: Formal methodology to live size of
business applications. It introduces complexness issue
for size outlined as operate of input, output, query,
external input data and internal logical file. All elements
area unit rated as Low, Average or High After the
elements are classified together of the 5 major elements
(EI’s, EO’s, EQ’s, ILF’s or EIF’s), a ranking of low,
average or high is allotted. For transactions (EI’s, EO’s,
EQ’s) the ranking relies upon the variety of files updated
or documented (FTR’s) and also the number of
knowledge part sorts (DET’s). For each ILF’s and EIF’s
files the ranking relies upon record part sorts (RET’s)
and information part sorts (DET’s). A record part sort
could be a user recognizable subgroup of knowledge
parts among associate ILF or EIF. A knowledge part sort
could be a distinctive user recognizable, non
algorithmic, field.

Each of the subsequent tables assists within the
ranking method (the numerical rating is in parentheses).
As an example, associate EI that references or updates
a pair of File sorts documented (FTR’s) and has seven
information parts would be allotted a ranking of average
and associated rating of four. Wherever FTR’s area unit
the combined variety of Internal Logical Files (ILF’s)
documented or updated and External Interface Files
documented.

Table 1: EI Table

FTR’s DATA ELEMENTS
1-4 5-15 >15

0-1 LOW Low Average
2 LOW Average High

3 or More Average High High

Table 2 : Shared EO and EQ Table

FTR’s DATA ELEMENTS
1-5 6-19 >19

0-1 LOW Low Average
2-3 LOW Average High
> 3 Average High High

Table 3 : Values for Transactions

Rating VALUES
EO EQ EI

Low 4 3 3
Average 5 4 4

High 7 6 6

Like all components, EQ’s are rated and
scored. Basically, an EQ is rated (Low, Average or High)
like an EO, but assigned a value like and EI. The rating
is based upon the total number of unique (combined
unique input and out sides) data elements (DET’s) and
the file types referenced (FTR’s) (combined unique input
and output sides). If the same FTR is used on the input
and output side, then it is counted only one time. If the
same DET is used on the input and output side, then it
is only counted one time.

For both ILF’s and EIF’s the number of record
element types and the number of data elements types
are used to determine a ranking of low, average or high.
A Record Element Type is a user recognizable subgroup
of data elements within an ILF or EIF. A Data Element
Type (DET) is a unique user recognizable, non recursive
field on an ILF or EIF.

Table 4 : Table used to evaluate Rating of EI, EO, EQ

RET’s
DATA ELEMENTS

1-19 20-50 > 50
1 Low Low Average

2-5 Low Average High
> 5 Average High High

Table 5 : Values for transactions for ILF & EIF

Rating
VALUES

ILF EIF
Low 4 3

Average 5 4
High 7 6

The counts for every level of complexness for
every variety of part may be entered into a table like the
subsequent one. Every count is increased by the
numerical rating shown to work out the rated price. The

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

rated values on every row are summed across the table,
giving a complete price for every variety of part. These

© 2015 Global Journals Inc. (US)

5

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

totals are then summed across the table, giving a
complete price for every variety of part. These totals are
then summed all the way down to reach the overall
range of Unadjusted perform Points.

The value adjustment issue (VAF) relies on
fourteen general system characteristics (GSC's) that rate
the final practicality of the appliance being counted.
Every characteristic has associated descriptions that
facilitate confirm the degrees of influence of the
characteristics. The degrees of influence vary on a scale
of zero to 5, from no influence to robust influence. The
IFPUG investigating Practices Manual provides
elaborated analysis criteria for every of the GSC'S, the
table below is meant to produce a summary of every
GSC. Rate every issue (Fi, i=1 to14) on a scale of zero
to 5:

Table 6 : General System Characteristics

F1. Does the system require reliable backup
and recovery?

F2. Are data communications required?
F3. Are there distributed processing

functions?
F5. Will the system run in an existing, heavily

utilized operational environment?
F6. Does the system require on-line data

entry?
F7. Does the on-line data entry require the

input transaction to be built over multiple
screens or operations?

F8. Are the master files updated on-line?
F9. Are the inputs, outputs, files or inquiries

complex?
F10. Is the internal processing complex?
F11. Is the code designed to be reusable?
F12. Are conversion and installation included

in the design?
F13. Is the system designed for multiple

installations in different organizations?
F14. Is the application designed to facilitate

change and ease of use by the user?

Once all the fourteen GSC’s are answered, they
must be tabulated victimization the IFPUG price
Adjustment Equation (VAF) --14

VAF = 0.65 + [(Ci) / 100] .i = is from one to
fourteen representing every GSC.

Where: Ci = degree of influence for every
General System Characteristic

The final operate purpose Count is obtained by
multiplying the VAF times the Unadjusted operate
purpose (UAF).

FP = UAF * VAF

Summary of advantages of operate purpose Analysis
Function Points may be accustomed size software

system applications accurately. Filler is a vital element in
decisive productivity (outputs/inputs).

They can be counted by totally different folks, at
totally different times, to get a similar live at intervals an
affordable margin of error.

Function Points are simply understood by the
non technical user. This helps communicate filler data to
a user or client.

Function Points may be accustomed confirm
whether or not a tool, a language, associate
surroundings, is additional productive in comparison
with others.

c) Cocomo-Ii
The COCOMO II model makes its estimates of

needed effort (measured in Person-Months – PM) based
mostly totally on your estimate of the software system
project's size (as measured in thousands of SLOC,
KSLOC):

Effort = 2.94 * EAF * (KSLOC) E ... (3)

Where EAF is that the Effort Adjustment issue
derived from the price Drivers. E Is a disciple derived
from the 5 Scale Drivers. As associate example, a
project with all Nominal value Drivers associated Scale
Drivers would have an EAF of one.00 and exponent, E,
of 1.0997. presumptuous that the project is projected to
accommodates eight,000 supply lines of code,
COCOMO II estimates that twenty eight.9 Person
Months of effort is needed to finish it: Effort = a pair
of.94 * (1.0) * (8)1.0997 = 28.9 Person-Months

d) MAINTAINABILITY

In engineering, maintainability is that the ease
with that a product may be maintained so as to:
• isolate defects or their cause,
• correct defects or their cause,
• repair or replace faulty or worn-out elements while

not having to switch still operating components,
• prevent surprising breakdowns,
• maximize a product's helpful life,
• maximize potency, dependableness, and safety,
• meet new needs,
• make future maintenance easier, or
• Cope with modified surroundings.

In some cases, maintainability involves a
system of continuous improvement - learning from the
past so as to boost the flexibility to take care of systems,
or improve dependableness of systems supported
maintenance expertise.

Software maintenance prices result from
modifying your application to either support new use
cases or update existing ones, at the side of the
continual bug fixing when readying. The maximum
amount as 70-80% of the entire possession value (TCO)

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

© 2015 Global Journals Inc. (US)1

6

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

of the software system may be attributed to
maintenance prices alone!
Software maintenance activities may be classified as:
• Corrective maintenance – prices thanks to

modifying software system to correct problems
discovered when initial readying (generally two
hundredth of software system maintenance costs)

• Adaptive maintenance – prices thanks to modifying
a software system resolution to permit it to stay
effective in a very ever-changing business
surroundings (25% of software system maintenance
costs)

• Perfective maintenance – prices thanks to up or
enhancing a software system resolution to boost
overall performance (generally five-hitter of software
system maintenance costs)

• Enhancements-prices thanks to continued
innovations (generally five hundredth or additional of
software system maintenance costs)

• Since maintenance prices eclipse alternative
software system engineering activities by great deal,
it's imperative to answer the subsequent question:

Measuring software system maintainability is
non-trivial as there's no single metric to state if one
application is additional rectifiable than the opposite
associated there's no single tool which will analyze your
code repository and supply you with a correct answer
either. There’s no substitute for a personality's reviewer,
however even humans can’t analyze the complete code
repositories to grant a definitive answer. Some quantity
of automation is critical.

So, however are you able to live the
maintainability of your application? To answer this
question let’s dissect the definition of maintainability
additional. Imagine you have got access to the ASCII
text file of 2 applications – A and B. Let’s say you
furthermore may have the super human ability to match
each of them in a very little span of your time. Are you
able to tell, albeit subjectively, whether or not you think
that one is additional rectifiable than the other? What will
the adjective rectifiable imply for you once creating this
comparison – suppose this for a second before we have
a tendency to move?

Most software system engineers would think
about some combination of testability, perceive ability
and modifiability of code, as measures of maintainability.
Another facet that's equally vital is that the ability to
grasp the need, the “what” that's enforced by the code,
the “how”. These core aspects may be lessened
additional, to achieve additional insight into the
maintainability of the application:
1) Testability – the presence of an efficient takes a look

at harness; what proportion of the applying is being
tested, the categories of tests (unit, integration,
situation etc.,) and therefore the quality of the take a
look at case themselves?

2) Understandability – the readability of the code; are
naming conventions followed? Is it self-descriptive
and/or well commented? Are things (e.g., classes)
doing just one factor or several things at once? Are
the ways extremely long or short and might their
intent be understood in a very single pass of
reading or will it take an honest deal of screen
staring and whiteboard analysis?

3) Modifiability – structural and style simplicity.
4) Requirement to implementation mapping and

contrariwise: This data is preponderant for
maintenance efforts and it should or might not exist
for the applying into consideration, forcing you to
reverse engineer the code and fathom the ‘what’
yourself.

Those are the four major dimensions on that
one will measure maintainability. Every of the aspects
will (and is) lessened additional for an additional
granular comparison. These might or might not be the
precise same ones that you simply thought of; however
there'll be a good deal of overlap. Also, not each
criterion is equally vital. For a few groups, testability
might trump structural/design simplicity. That is, they'll
care lots additional regarding the presence of take a
look at cases (depth and breadth) than deep inheritance
trees or a rather additional tightly coupled style. It’s
therefore important to understand that dimension of
maintainability is additional important for your
maintenance team once menstruation the standard of
your application and perform the reviews and refactoring
with those in mind.

The table below, towards the top of the article,
shows a close breakdown of the on top of dimensions
of maintainability and elaborates on their connectedness
to menstruation the standard of the ASCII text file [2]:
Correlation with quality: what proportion will the metric
relate with our notion of software system quality? It
implies that almost all programs with the same price of
the metric can possess the same level of quality.
Importance: however vital is that the metric and are low
or high values desirable once menstruation them? The
scales, in declivitous order of priority are: very vital, vital
and sensible to possess
Feasibility of automatic evaluation: are things absolutely
or partly automatic and what types of metrics are
obtainable?
Ease of automatic evaluation: just in case of automation
however simple is it to cipher the metric? Will it involve
mammoth effort to line up or will or not it's plug-and-play
or will it has to be developed from scratch.
Completeness of automatic evaluation: will the
automation utterly capture the metric price or is it
inconclusive, requiring manual intervention? Do we have
a tendency to ought to verify things manually or will we
directly deem the metric reportable by the tool?
Units: units/measures accustomed quantify the metric.

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

© 2015 Global Journals Inc. (US)

7

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

e) Decision Tree
Decision Trees are wonderful tools for serving to

you to settle on between many courses of action.
They provide an extremely effective structure at

intervals that you'll lay out choices and investigate the
doable outcomes of selecting those choices. They
additionally assist you to create a balanced image of the
risks and rewards related to every doable course of
action.

f) Drawing a Decision Tree
You start a choice Tree with a choice that you

simply ought to create. Draw a tiny low sq. to represent
this towards the left of an outsized piece of paper.

From this box put off lines towards the correct
for every doable resolution, and write that resolution on
the road. Keep the lines apart as way as doable so you'll
expand your thoughts.

At the top of every line, think about the results. If
the results of taking that call are unsure, draw a tiny low
circle. If the result's another call that you simply ought to
create, draw another sq.. Squares represent choices,
and circles represent unsure outcomes. Write the choice
or issue on top of the sq. or circle. If you have got
completed the answer at the top of the road, simply
leave it blank.

Starting from the new node on your diagram,
put off lines representing the decisions you want to
choose. From the circles draw lines representing doable
outcomes. Once more create a short note on the road
expression what it suggests that. Keep it up doing this
till you have got drawn out as several of the doable
outcomes and choices as you'll see leading on from the
first choices.

Once you have got done this, review your tree.
Challenge every sq. and circle to visualize if there are
any solutions or outcomes you have got not thought of.
If there are, draw them in. If necessary, draft your tree if
components of it are too full or untidy. You ought to
currently have an honest understanding of the doable
outcomes of your choices.

V. Result and Discussion

Results of the Proposed UML Diagram Based
Metric Calculation & Count of Operations in Actual
Software. These are number of operations required in
the complete package and are an indicator of the
number of functions required in the project. This value is
a measure of the work done and found to be accurate
for both the case studies.

Table 7 : Obtained values from the processing using SD
Metrics

CASE
STUDY

UML DESIGN
METRIC

NUMOPSCLS
VALUE

ACTUAL
SOFTWARE

OPERATIONS
COUNT

DSS 1 1
VCR 12 12

Figure 3 : Graph showing comparison of the number of
operations evaluated using two different methods

Table 8 : Average Permissible Error obtained from the
Proposed Algorithms and Other Techniques

ALGORITHM AVERAGE PERMISSIBLE ERROR
LOC 27.5
FPA 7.5

UML TOOLS 3.5

Figure 4 : Graph showing Average Permissible Error in
Percent for the different techniques

VI. Conclusion

This work has been done to evaluate the result
of various UML diagrams to judge the dimensions
metric for the computer code comes. Size metric may
be a valuable measuring in shaping the value of the
computer code. During this work completely different
UML diagrams like collaboration diagram, state flow
chart, activity diagram, use case, element diagram area
unit used along to gauge the computer code size
metric. For confirmation and proof 2 alternative
techniques of lines of codes (LOC) and performance

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

© 2015 Global Journals Inc. (US)1

8

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
III

 V
er
sio

n
I

Ye
ar

20
15

(C
)

purpose analysis (FPA) are applied to live the computer
code size metrics. From the results obtained from the
output of American state Metric Tool, LOC and FPA, it's
found that the results obtained from the inclusion of the
various UML diagrams and most correct and matches
with the particular computer code ASCII text file.

References References Referencias

1. Pressman S. Roger ”Software Engineering” Sixth
Edition, McGraw Hill International 2005, pg649,
chap 22, ISBN : 007-124083-7.

2. Rumbaugh James, Jacobson, Ivar and Booch
Grady, “The Unified Modeling Language User
Guide” Second Edition2008, pg 5, chap1, ISBN:
978-81-317-1582-6.

3. Rumbaugh James, Jacobson Ivar and Booch
Grady” The Unified Modeling Language User
Guide” Second Edition2008, pg 6, chap1, ISBN:
978-81-317-1582-6.

4. Rumbaugh James, Jacobson Ivar and Booch
Grady” The Unified Modeling Language User
Guide” Second Edition 2008, ISBN: 978-81-317-
1582-6.

5. http://www.uml.org
6. Jacobson Magnus Christerson , Patrick Jonsson

,Gunnar Overgaard” Object-oriented Software
Engineering” 2008, pg 66, chap3, Isbn: 81-317-
0408-4.

7. Yi Tong et. al, ”A Comparison of Metrics for UML
Class Diagrams” ACM SIGSOFT Software
Engineering Notes Page 1, September 2004,
Volume 29 .

8. Li Wei et .al, ”An Empirical Validation of Object-
Oriented Metrics in Two Different Iterative Software
Processes” IEEE Transactions On Software
Engineering , November 2003 ,Volume 29 NO. 11,
1043.

9. Mitchell Aine et. al, ”Toward a definition of run-time
object-oriented metrics” 7TH ECOOP Workshop on
Quantitative Approaches in Object-Oriented
Software Engineering , 2003.

10. Xenos M. et al.,”Object-oriented metrics – a survey”
Proceedings of the FESMA 2000, Federation of
European Software Measurement Associations,
Madrid, Spain, 2000.

11. arasimhan Lakshmi.V et.al, ” Evaluation of a Suite of
Metrics for Component Based Software Engineering
(CBSE)” Issues in Informing Science and
Information Technology Volume 6, 2009.

12. Shaik Amjan et.al,” Metrics for Object Oriented
Design Software Systems: A Survey” Journal of
Emerging Trends in Engineering and Applied
Sciences (JETEAS) 1 (2): 190-198 c, 2010.

13. Jahan Vafaei et.al ,” A New Method Software Size
Estimation based on UML Metrics”.

14. Chen Yue , Boehm Barry et.al ,”An Empirical Study
of eServices Product UML Sizing Metrics.

15. Linda Edith P et. al ,” Metrics for Component based
Measurement Tools”, International Journal of
Science & Engineering ,Research Volume 2,Issue
5,May -2011

16. Subramanyam Ramanath et al, ”Empirical Analysis
of CK Metrics for Object-oriented Design
Complexity: Implications for Software Defects”, IEEE
Transactions on Software Engineering , Vol. 29.
NO.4 , April 2003.

17. Tegarden P. David et al., ”Effectiveness of
Traditional Software Metrics for Object-Oriented
Systems”

18. Doban Orysolya et. al ,”Cost Estimation Driven
Software Development Process”

19. Lavazza Luigi et al .,”Using Function Point in the
Estimation of Real-Time Software: an Experience”,
Proceedings 5th Software Measurement European
Forum, Milan 2008.

20. Chidamber et al., ”Managerial use of metrics for
Object-oriented software: an exploratory analysis”,
IEEE

Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects

	Effect of Different UML Diagrams to Evaluate the Size Metric for Different Software Projects
	Author
	Keywords
	I. Introduction
	II. Existing Work
	III. Proposed Methodology
	IV. Metrics of Sdmetric
	a) Lines of Codes
	b) Function Point Analysis
	c) Cocomo-Ii
	d) MAINTAINABILITY
	e) Decision Tree
	f) Drawing a Decision Tree

	V. Result and Discussion
	VI. Conclusion
	References References Referencias

