
© 2015. Japheth R. Bunakiye & Prince O. Asagba. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 15 Issue 6 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Design of Transmission Pipeline Modeling Language
 By Japheth R. Bunakiye & Prince O. Asagba

 Niger Delta University, Nigeria

Abstract- General purpose software design and development involves the repetition of many
processes, and the ability to automate these processes is often desired. To formalize a software
process, such as modelling pipeline systems that transport fluids, an existing general purpose
programming language (GPL) can be extended with its important aspects extracted as a model.
However, the complexities and boundaries the programming language places on the ability to
concisely and clearly describe the designing and modelling processes of the pipeline configurations
can be difficult. The reality is that the library of a typical GPL Application Programmers Interface (API)
constitutes class, method, and function names that become available only by object creation and
method invocation, and as such cannot express domain concepts effectively. An alternative
approach is to develop a language specifically for describing the processes. A language formalism
that encourages domain specific development and as a tool for solving the complex problem of
efficiently and effectively aiding the pipeline engineer in the design and implementation of pipeline
configurations is presented in this paper. The language tool is used on the .Net platform for domain
specific software development.

Keywords: pipeline engineering, modeling languages, design principles, domain-specific modeling
(dsm), model transformation.

GJCST-C Classification : B.5.1 C.1.3

DesignofTransmissionPipelineModelingLanguag
 Strictly as per the compliance and regulations of:

Design of Transmission Pipeline Modeling
Language

Japheth R. Bunakiye α & Prince O. Asagba σ

Abstract- General purpose software design and development
involves the repetition of many processes, and the ability to
automate these processes is often desired. To formalize a
software process, such as modelling pipeline systems that
transport fluids, an existing general purpose programming
language (GPL) can be extended with its important aspects
extracted as a model. However, the complexities and
boundaries the programming language places on the ability to
concisely and clearly describe the designing and modelling
processes of the pipeline configurations can be difficult. The
reality is that the library of a typical GPL Application
Programmers Interface (API) constitutes class, method, and
function names that become available only by object creation
and method invocation, and as such cannot express domain
concepts effectively. An alternative approach is to develop a
language specifically for describing the processes. A
language formalism that encourages domain specific
development and as a tool for solving the complex problem of
efficiently and effectively aiding the pipeline engineer in the
design and implementation of pipeline configurations is
presented in this paper. The language tool is used on the .Net
platform for domain specific software development.
Keywords: pipeline engineering, modeling languages,
design principles, domain-specific modeling (dsm),
model transformation.

I. Introduction

omain concepts are representations of
fundamental features inherent in specific fields of
human endeavour. From these concepts models

often referred to as the domain model, which
characterize things in the domain can be derived. The
description of concepts in this work was a domain
analysis exercise, targeted at the salient technical
characteristics prevalent in the domain of oil and gas
pipeline engineering [18]. What happens is that pipeline
components such as pipe cross sections, joints, fittings,
and other pressure containing ones are produced with
AutoCAD; these products usually referred to as graphics
models now represent the pipeline components model
from which the concepts for the language construction
were derived [14]. It followed a precise path from
specification of modelling primitives to formal feature

Author

 α : Dept. of Mathematics/Computer Science, Faculty of
Science, Niger Delta University, Nigeria.
e-mail: rb.japheth@ndu.edu.ng
Author

 σ : Department of Computer Science, Faculty of Physical
Sciences and Information Technology, University of Port Harcourt,
Nigeria asagba. e-mail: prince@uniport.edu.ng

models that moved into the formation of a language
metamodel.

One purpose of a model in this circumstance is
to reflect the control-flow of the design process without
incorporating nonessential properties. To this end, the
behaviour of meaningful design scenarios can be
depicted in a metamodel [2]. In order to effectively
incorporate stakeholders design intents and to ease the
modelling processes, the domain specific modelling
(DSM) approach was adopted. The DSM approach sees
the model as the core entity throughout development
and is basically a platform for language development. A
language is therefore designed to specify the model.
The language description entails flexibility, so that the
pipeline context model can be applied productively[1].

In addition to providing a design framework for
correctly fixing the application of the pipeline context
model, modelling allows the pipeline systems designers
to explore many different designs before representation.
It is observed that computer aided design (CAD)
software such as AutoCAD are indispensable tools in
the pipeline engineering work environment, but most
pipeline engineers find it worrisome to learn, understand
and use conventional computer aided design (CAD)
software in their line of business [3]. Modeling with
AutoCAD for example has been ccomplex processes
that are too costly to actually implement and refine.
Modeling in a domain specific modeling system allows
the modeler to easily modify the process and determine
if the changes are effective.

The advocated shift in the design environment
is domain specific modeling, which resolves many of the
problems inherent in the protocol based GPL/ CAD
systems design standard. In this approach, the
metamodeling mechanics allows the stakeholder to
determine the intents on an interface with very familiar
notations, which means the design complexity is
drastically reduced and control transferred from the
complex CAD system to the domain expert. This allows
the pipeline engineer to simply input familiar notations
(i.e. pipeline engineering concepts that are very familiar
to them e.g. pipe diameter, fittings dimensioning, flow
metrics etc.) on an interface to get the kind of design,
simulation artifact and other pipeline configurations
without having to use any CAD or related system [5].
Domain specific modeling involves the logical use of
models as core entities throughout development; it is

D

© 2015 Global Journals Inc. (US)

27

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er

sio
n

I
Ye

ar

20

15

 (
)

C

simply a domain specific modelling language whose
type systems and semantics will formalize the structure,
behaviour and requirements within the domain of oil and
gas transmission pipeline engineering. The
transformations from the AutoCAD objects to the
language formalism are typically designed starting with
abstract concepts and are iteratively refined into detailed
descriptions. Therefore, the language needs to reflect
this transmission pipelines development cycle, and can
still provide valuable information about the process at
every level of abstraction [9].

II. Related Work

A very recent language formalism implemented
by Phillip et al. [12] is a methodology addressing issues
surrounding a scheme for modeling, scalability and
accessibility to modeling and verification processes for
practitioners within the railway domain. Their work
introduced a methodology for developing domain
specific languages for modeling and verification that
aims to aid in the uptake of formal methods within
industry. It also concretely illustrates the success of this
methodology for the railway domain. This present work
has acknowledged the design methodology and the
specification patterns of the domain specific language
for the application in the Railway industry as presented
by Philip et al [12]. In our approach we have made
efforts to move away from the use of the Generic
Modelling Environment (GME) suite for specifying
modelling concepts. The challenge in the UML
paradigms is the lack of a semantic definition within the
context of the metamodel. This problem has negative
impact on reusability of DSMLs, because a well-made
DSML captures the concepts, relationships, integrity
constraints, and semantics of the application domain
and allows users to program declaratively through
model construction. Incorporated in our metamodel is a
semantic module to alleviate this challenge.

Milan et al. [11] discuss a method for designing
modelling languages by presenting a platform
independent model (PIM) for information systems (ISs).
The concepts are described by Meta Object Facility
(MOF) specification, one of the commonly used
approaches for describing meta-models. One of the
main reasons for this technique is to specify the
concepts through the meta-model, as well as a domain
analysis purposed at creating a domain specific
language to support IS design. As such, it complements
our technique, which is a top down approach. Similarly,
Christian Hahn and Klaus Fischer [13] presented a UML
based domain specific modelling language for multi-
agent systems (DSML4MAS), in their approach the
language semantics are restricted only to the definition
of concepts and their relationships within the
metamodel. UML is not an end user representation
language, and so domain specificity couldn’t possibly

be better represented then our approach. The focus of
Jonathan Sprinkle et al. [10] research uses endogenous
refinements approach to analysing models on a shred
metamodel with only evolutionary changes. Starting with
a set of rules, model transformation was automated
between the source and the target environments all in
the same problem space. Conceptually, this work is
closely related to ours, but we transformed a seemingly
graphical domain model to a textual application model
for user interaction.

III. The language Design

Considerations

The consideration is modelling pipeline design
including pipe sections joined with fittings and other
supports features such as flanges, bolting, gaskets,
valves, hangers and the pressure containing portions of
pipeline components [7]. A pipeline design dedicated
for transmission of oil and gas from wells to tanks for
storage or to refineries for processing. The pipe sections
joined with fittings etc. are here referred to as the
pipeline model; they are graphics models, solid objects
aggregated from primitives of AutoCAD that depict the
typical pipeline fundamentals, materials and joints in situ
that forms the instances of the language creation [18] .

a) Capturing the aspects of design
Domain specific modeling of solid objects such

as oil and gas pipeline components comes in different
forms. Although there are many different ways to
modelling, very common steps that capture the aspects
of designing a modelling language that exemplifies
stakeholders design intents in the domain of oil and gas
pipeline engineering are presented below. The identified
ones are:

• Effortlessness: the design aspect has to capture
metrics that can enable a non-programmer or a
non-technical domain expert model a pipeline
design without necessarily writing lines of codes

• Tractability: the language design should capture
applicability tailored to stakeholders design
intents and view points

• Reflectiveness: the language should be able to
accurately reflect a pipeline design scenario in
order to correctly represent useful artefacts i.e.
the language should be able to evolve products
that can reflect oil and gas pipeline design
artefacts

• Passability: the language design has to capture
the aspects of symbolizing the actual execution
of a pipeline transmission process

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)1© 2015 Global Journals Inc. (US)1

28

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

These steps are clearly stated in the language
design specifically to achieve significant functionality

These steps are clearly stated in the language
design specifically to achieve significant functionality
during implementation [6]. In conventional engineering
design modeling, objects are explicitly described, for
this reason, when one aspect of the model is changed;
often several changes have to be made to satisfy design
intent or the implicit rules of the design. All these
changes have to be made because the software [19]
does not keep track of the rules and the modeler must
decide where and when they are broken. In AutoCAD,
for example models are created in a conventional way.
AutoCAD, however, comes with more than one
programming environment for creating a set of
instructions, including the rules and constraints of the
design as well as parameters defining certain aspects of
the design, which can be used to build a model [7].
These instructions can be used to build the model from
scratch, each time using the same parameters, or
experimenting with different ones. The parameters can
be numeric values, relationships, and can even include
graphic parameters already existing in the model (e.g., a
building lot, angular pipes, etc.).

The programming environment makes it
possible to define variables [18]. It also allows
conditional branching to different sets of instructions in
the program and can repeat the instructions until a
condition in the program or model is met. This
capability of defining solid behaviours through variables
fosters model interaction in such a way that transfer of
information is only possible within the set conditions in
the CAD system [5].

One basic consideration and challenge is the
issue of interaction between models, interactions in the
way of concepts devoid of possible parametric
constraints within a CAD system [20]. Interactions that
can produce other complete models with noticeable
properties relative to a given set of concerns in relevant
domains that captures accurately and concisely all of its
interpretation and design intent for specific problems
and solutions. This has not been achieved with current
CAD systems, and coupled with the third generation
programming APIs inherent in them, they still lack
sufficient linguistic power to handle domain and platform
complexities and hasn’t moved speedily with domain
technologies [19]. Model interactions that creates new
objects that encapsulates and relates the details
pertinent to the viewpoint of domain experts is still
lacking in current CAD/GPL modeling systems.

This constrains the expressiveness of the
modeling systems, and the primary concern with this
limitation is that it is a limitation imposed by the systems
internal construction and technologies. Additionally, how
the designs will be created depends on the underlying
APIs and how the design will execute once compiled. In
domain specific modeling, the modeler may want to
experiment with familiar domain notations to obtain
feedback. Therefore, a new language design is needed

that focuses on and represents the concepts of domain
models rather than relying on CAD systems and
programming languages [9]. The believe is that such
software development efforts will enable stakeholders to
cope with platform complexities, it will also be cost
effective, save time, and raise productivity levels [8].

b) The Methodology
The approach is hinged on examining the

requirements of a modeling language for the oil and gas
transmission pipeline domain. The requirements criteria
are based on getting the pipeline models from AutoCAD
and making them to represent things in the pipeline
engineering domain. The aim is to take away the design
and programming complexities associated with any
CAD/GPL systems. The expectation of adopting this
methodology is a pipeline systems modeling language
(PSML) [2], which fundamentally, should support
pipeline engineering concepts rather than relying on
function calls and method invocations inherent in
programming languages. There are quite a number of
implications to this design methodology: the language is
user friendly, showcases concrete syntax of domain
notations that makes it more attractive to domain
experts without programming expertise. Another
implication is that the context free grammar is
recursively defined to capture only oil and gas pipeline
physical components configurations and constraints [6].

The syntax and semantic definitions of the
language were clearly defined to exemplify our
approach. The semantics are precisely defined and
specified as denotational units to capture concurrency,
and communication abstractions of the features of the
pipeline product family. PSML incorporates a language
construct called a translator, which is a process oriented
specification that computes the resource request
tendencies from the application model, which allows the
stakeholder to evolve designs according to the defined
viewpoints. In the core of the grammar is the vocabulary
of components and associated attributes and values,
which are transferred into an instruction sequence
corresponding to any particular feature model as the
modelling element. The translator does the transfer
through a translation scheme based on syntax directed
translation. The attributes such as angle, units, length,
and size from the vocabulary of components keeps
track of the resulting design object once a request
triggered by stakeholders design intent is made into the
system [17]. To achieve this possibility, the non-
terminals such as fitting type (flange-ft.) and type name
(elbow‐T) etc. are marked with the attributes-angle,
units, length, and size, and value points(x, y, z),and
must be available when referenced within the instruction
sequence of the context free grammar (CFG). The
translation scheme which serves as the translation
engine now enables the processing of these modelling
elements into new artefacts [16]. In the operational

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)

29

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er

sio
n

I
Ye

ar

20

15

 (
)

C

sequence (i.e. integrating the semantic elements) of the
translation scheme, the grammar symbols associated
with attributes in the CFG are rendered semantic actions
inserted within right sides of the productions [2], so from
each non‐terminal, a value function that has a formal
primitive parameter for each inherited attribute is made.
The values are then returned to complete translation
with the correct tokens specified.

c) The Language Rudiments
The predominant factor of an engineering

design process is a task on the interactive aggregation
of graphics primitives, graphics assemblies and
subassemblies of CAD systems, which can be used
interchangeably to produce solid model. With this
language it is simply a modeling action, the PSML
syntax for a modeling action is:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖 {… … … … … }

The resultant language rubrics are simply
defining notations for the concrete syntax. The possible
representations of the model are denotational semantic
algebra as follows:
 𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖𝑠𝑠
 {
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 { }
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚 { }
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 { }
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖 { }

Though presented here is not enough details
about this high level descriptions, it provides information
about what steps need to be completed and the order in
which they should be performed in order to trigger a
modeling action.

IV. Modeling Primitives

The modeling primitives are the resources to
creating a pipeline model that creates the platform for
tackling the complexity of CAD systems being unable to
express domain concepts effectively. The ability to
express domain concepts effectively allows the domain
expert to recreate a variety of interdependencies that
occur within a modelling process. The language logic
allows modeling actions to require and provide
resources, which typifies the need for the production of
a transmission pipeline model. Using the option
constructs, valuations can be initiated to provide more
optional and variable entities for a particular modeling
action. The optional entities are functions defined
recursively over abstract syntax arguments that do
denote unique scenarios as follows:

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
 {
 𝑚𝑚𝑜𝑜𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 {𝑖𝑖𝑓𝑓𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 }

 𝑜𝑜𝑖𝑖𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 {𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠 &&𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑓𝑓𝑖𝑖𝑚𝑚𝑠𝑠 }
 𝑚𝑚𝑜𝑜𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 {𝑚𝑚𝑚𝑚𝑚𝑚 }

Some conditions must be met for the modeling
definitions to be precise, the statements provided
ensures that the definition standards are correctly put in
place. Now the option action for the valuation functions
cannot be possible unless the statements and the
pipeline components attributes are available for
processing. Using these primitives, a stakeholder can
initiate interdependencies that could exist within a
pipeline design by specifying aspects of its functional
quality. Though the syntax is the pipeline domain
organizational structure with the semantics indicating
the configuration constraints such as attributes,
relationship, interdependencies, and changes in system
states due to compositions and domain-specific
pipeline domain operational rules; specific qualities of
attribute resource are essential in keeping track of
domain specific relevant information [17]. The
information is tagged with the pipeline component
attribute values, so that in the end the vocabulary can be
transferred as attributes into the instruction sequence in
the language construct. The set of semantic rules and
attributes (A) associated with each grammar symbol;
value types such as string, real, and arity, and terminals
are all assigned functional dependencies. The attributes
are provided to describe the state of a resource and
thus it would be clearer to state attributes as follows:

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑓𝑓𝑖𝑖𝑚𝑚𝑠𝑠 {𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖ℎ.𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑖𝑖ℎ𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠. 𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 =
 = ′ 𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚′

Attributes not only describe the state and
specific qualities but also provide a means to describe
changes to resources. They also provide some control
over the translations from what the domain specific
language does and what is carried out in real life.
Through the attributes the vocabulary bridges the
semantic gap between writing lines of code and design
intents of stakeholders; this is made possible by raising
abstraction levels of the problem domain and mapping
these abstraction levels to appropriate concepts in the
application domain. The statements are essentially
necessary steps towards describing the state of the
attribute of a resource in the application environment
with the correct state after execution.

V. The Design Paradigm

There are some mechanisms put in place for
describing the operational mode and control of a
design. These mechanisms, which reflect the constructs
for the operations designate the system flow in
designing a pipeline model.

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)1© 2015 Global Journals Inc. (US)1

30

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

a) The CFG Instruction Sequence
The instruction sequence is the context free

grammar in BNF notation. It is the repository of

 specifications that guides the fundamental flow of
instructions in the systems internal mechanism. The
CFG design specifications are as follows:

𝐶𝐶𝐶𝐶𝐶𝐶

𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚{𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

&&

𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 −
𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

&&

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

&&

𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 −
𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

&&

𝑠𝑠𝑓𝑓𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑓𝑓𝑖𝑖𝑚𝑚𝑠𝑠

{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖ℎ

&&

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚

&&

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

&&

𝑖𝑖ℎ𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠}
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠{𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚}

To start and complete a pipeline design, the
CFG instruction sequence has to be accomplished in
the internal mechanism to attain valid

demonstration.

b)

Repetitive tasks

 This design step takes into consideration some

 conditions that occur

quite frequently

within the design
process. A necessary condition is the repeating of
certain vital steps whenever a particular design scenario
returns. Following

the

functionality in the instruction
sequence, the syntax for

the iteration

is specified

to
determine what repetitions need to be evaluated and
affected:
𝑅𝑅𝑚𝑚𝑜𝑜𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑝𝑝𝑚𝑚

𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚

𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚

𝑜𝑜𝑖𝑖{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑜𝑜𝑖𝑖. 𝑝𝑝𝑠𝑠𝑚𝑚}
𝑖𝑖𝑖𝑖{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑜𝑜𝑖𝑖. 𝑝𝑝𝑠𝑠𝑚𝑚}
𝑗𝑗𝑖𝑖{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑜𝑜𝑖𝑖. 𝑝𝑝𝑠𝑠𝑚𝑚}
𝑠𝑠𝑖𝑖{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑜𝑜𝑖𝑖. 𝑝𝑝𝑠𝑠𝑚𝑚}
𝑚𝑚𝑖𝑖{𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑜𝑜𝑖𝑖. 𝑝𝑝𝑠𝑠𝑚𝑚}
 }

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑓𝑓𝑖𝑖𝑚𝑚𝑠𝑠

𝑜𝑜𝑖𝑖{𝑠𝑠𝑚𝑚𝑚𝑚. 𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚 == 𝑚𝑚𝑚𝑚. 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚}
}
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠

{𝑠𝑠𝑚𝑚𝑚𝑚. 𝑖𝑖𝑠𝑠𝑜𝑜𝑚𝑚 == 𝑚𝑚𝑚𝑚.𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚}

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑚𝑚 { }
Although

there are many conditions in the
modelling process

that are based

on human judgment,
when determining the path to take in PSML, the
primitives of the first modelling action actually allow

the
process to

be more dynamic by providing multiple
options.

c)

The Decision

repository
This is the store house of the specifications of

the semantic domain and its operations

as

depicted in

the semantic algebra. The pipeline is the root concept,

meaning that it is the target result of all the underlying
interdependencies of the components interactions. The
decision procedure for determining which path to take
clearly describes the structure of the oil and gas pipeline
domain and how its elements are used by the functions,
which makes it easier to analyse the semantic definition
concept by concept.

The specifications are as follows:

𝑃𝑃𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖

𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑜𝑜𝑖𝑖

 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

{𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚}
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑠𝑠𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 {𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 == 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚}
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 {𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ∗}

In line with the earlier showcased modelling
primitive’s

description, the processing of these
primitives to artefacts is depended on the pipeline
design configurations.

d)

Traceability

This operational construct specifies a set of

parallel

actions within a pipeline build process:

𝑇𝑇𝑖𝑖𝑠𝑠𝑐𝑐𝑚𝑚𝑠𝑠𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠 {
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚
 {

𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑠𝑠𝑓𝑓𝑜𝑜𝑜𝑜𝑚𝑚𝑖𝑖𝑖𝑖 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 == (

); �𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

(𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖)�

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 == (

); �𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑓𝑓𝑖𝑖𝑚𝑚𝑖𝑖

(𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑖𝑖)�

𝑖𝑖ℎ𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 == (

); (𝑚𝑚𝑚𝑚𝑖𝑖)

𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠 == (

); (𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑚𝑚𝑚𝑚)

𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑠𝑠

𝑠𝑠,𝑠𝑠, 𝑠𝑠 == (

); (𝑚𝑚𝑚𝑚𝑖𝑖)
𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚. 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚.𝑚𝑚𝑚𝑚𝑖𝑖ℎ𝑚𝑚𝑚𝑚. 𝑖𝑖ℎ𝑚𝑚𝑠𝑠𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚.𝑜𝑜(0.1)

 }
Parallelism is employed here

generally to allow
for

the

performance

of the embedded actions that
pertain to model execution.

At this point, the language

interpreter

decides the path because the dynamic
nature of the pipeline build processes does

not adhere
to the

strict nature of programming

languages.

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)

31

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er

sio
n

I
Ye

ar

20

15

 (
)

C

VI. Progressive Language Features

The semantic module in this instance is an
abstraction that describes the semantics, the syntax, the
necessary parsing dynamics and the resultant abstract

 syntax tree. What this means is that the language
metamodel

reflects the problem domain

abstractions;

incorporating domain concepts and associated

rules

in

a detailed denotational semantic algebra presented in
figure 1 to provide for better translation interpretation
[22].

Figure 1 :

Semantic Algebra of Resources

The editor defines the concrete syntax and
creates interactive notations the end user will utilize to
build his model. The target code layer

is the rule
processing module and code generator that enforces
the

rules defined in the metamodel. Bringing together all
these modules into a unified modelling infrastructure
covers

the scope of the new system. Three collaborative
sub-systems that can make the artefact orientation very
feasible

are suggested [23, 26]. The first phase is the
domain model, which captures the metrics of the
pipeline engineering field. The second layer is the user
interface

or application

model that enables stakeholder
interaction with the system and then a solution model
that integrates the parsing mechanism for production of
desired designs.

As far as experts could see through to
a design scenario, the system will be able to capture it
and evolve a design that meets their needs. The user
could make some input through guided notations from
the interface, and the system can then match these
inputs with a parsing grammar to produce desired
designs. Internal communication among these phases
is enforced and can be made possible by utilizing the
.NET CLR Object Serialization system function

tool set
[64].

This denotationl definition of pipeline resources
capturing the repository for the

concepts of the
language vocabulary, the domain abstractions and
semantics, can allow

users to perceive themselves as
working directly with domain concepts [17].

VII.

Discussion of Results

The

tool is designed to translate a domain
model which represents the relationships and classes of
the core features of the application domain

into

a text
template; resulting to the user interface environment

[21].

The procedure for mapping to

the text template

is
relatively

through

an object binder that specifies the
event states.

a)

The Domain Model

The domain model

comprises

the pipeline
atomic and composite features [21]. The language
encompasses in its domain model

sound underlying
pipeline engineering principles

pertaining to the
language keywords

(see fig. 2), and how they are linked
to produce a total life cycle approach to pipeline

systems design and operation.

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)1© 2015 Global Journals Inc. (US)1

32

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

Figure 3 is showing how the language
resources are related to produce a total pipeline system
design operation. These relationships captured as all

the semantic behaviours of the

essential components
and attributes, are the user centred composition rules of
the semantic model comprising the events handler.

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)

33

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er

sio
n

I
Ye

ar

20

15

 (
)

C

Figure 2 : Pipeline Engineering Principles

Figure 3 : Domain Model Relationships

b) Data Binding
In order to evaluate these semantic behaviours

as the overall performance of the modelling system, a
text template transformation is automatically performed
via data binding. The data binding process is automated
to be an object binder from the .net platform that

specifies the event states. The events become more
vivid as text inputs from the UI, what happens is that the
components container binds the data source from the
internal representations to the PSML model. Shown in
figure 4 is the code snippet for the data binding action
that results in the UI.

partial

class

PipeLineControl

 {
 public

IContainer Components { get { return components; } }

 ///

<summary>Binds the WinForms data source to the DSL model.

 ///

</summary>

 ///

<param name="nodelRoot">The root element of the model.</param>

 public

void DataBind(ModelElement modelRoot)

 {
 WinFormsDataBindingHelper.PreInitializeDataSources(this);
 this.pipeLineBindingSource.DataSource = modelRoot;
 WinFormsDataBindingHelper.InitializeDataSources(this);
 }
 }
}

Figure 4 :

Object Binder

The user interface or application model in figure
5 is the layer that enables stakeholders’ interaction with
the system. As far as experts could see through to a
design scenario, the system will be able to capture it
and evolve a design that meets their needs. The user

could make some input through guided notations from
the interface, and the system can then match these
inputs with a parsing grammar following internal
communication among the application model, the
domain model and the translator.

Figure 5 :

Modelling Action with User Interface

A modelling idea based on domain specific
modelling is presented with the intention of highlighting

the essential components of pipelines designed to
transport oil and gas from source to destination. We
utilized this domain specific modelling philosophy as a
framework for designing a domain specific language for

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)1© 2015 Global Journals Inc. (US)1

34

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

VIII. Conclusion and Future Work

modelling transmission pipeline designs. The language
has the expressive capability to model pipeline designs
at abstract and concrete levels of specification. This
language has a number of features such as application
model with familiar notations that allows flexible
development and specification. However, the
significance of constructing this new language is lack of
tool support and modeling for the purpose of tackling
complexities associated with computer aided design
systems and general purpose programming language
platforms for modelling engineering designs such s
transmission pipeline systems. To provide support for
the language, we tested the implementation of the
application model through a text template
transformation of the domain model of the language
metamodel. The testing of the language tool was based
on the .Net platform for domain specific software
development. In the future the focus will be on the
strategies for implementation of the integration of the
editor and the grammar, which will lead to the actual
writing of virtual pipelines.

1.

Richard F. Paige,

Jonathan S. Ostroff , Phillip

J. Brooke. Principles for Modeling Language
Design Department of Computer Science, York
University, 4700 Keele St., Toronto, Ontario
Supported by the National Sciences and
Engineering Research Council of Canada.

Preprint

submitted to Elsevier Preprint 28 February 2000.

2.

Darren C. Atkinson,

Daniel C. Weeks, and John Noll.

The Design of Evolutionary Process Modeling

Languages

Department of Computer Engineering
Santa Clara University Santa Clara, CA 95053-0566
USA,

Proceedings of the 11th Asia-Pacific Software

Engineering Conference (APSEC-2004), November
30–December 3, 2004, Busan, Korea.

3.

Andrade S.F.A. (2011) Asymptotic Model of the 3D
Flow in a Progressing-Cavity Pump SPE Journal
Volume 16, Number 2, June 2011 p

451-462

4.

F. Klar, A. K¨onigs, and A. Schurr, “Model
Transformation in the Large,” in Proceedings of the
the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on the foundations of software
engineering, ser. N.York: ACM Press, 2007, pp.
285–294.

5.

Alessandro NADDEO, CAD Active Models: An
Innovative Method in Assembly Environment,
Journal of Industrial Design and Engineering
Graphics

Volume 5 Issue No. 1 – 2010

6.

Franklyn Turbak and David Gifford, (2008), Design
Concepts in Programming Languages The MIT
Press Cambridge, Massachusetts London, England

7.

Germanischer Lloyd (2008) Energy Solutions
Pipeline Management Solutions Industrial Services

GmbH Oil and Gas Steinhöft 9 20459 Hamburg,
Germany glis@gl-group.com www.gl-group.com/
glis Hans Vangheluwe (2010), (Domain-Specific)
Modelling Language Engineering, Lisboa, Portugal

8. I. Porres, “Rule-based update transformations and
their application to model refactorings,” Software
and Systems Modeling, vol. 4, no. 5, pp. 368–385,
2005.

9. Angel Roman & Bruce Trask (2011), Applying Model
Driven Technologies in the Creation of Domain
Specific Modelling Languages, Proceedings of 14th
International Conference on Model Driven
Engineering Languages and Systems Wellington
New Zealand

10. Jonathan Sprinkle, Jeff Gray, and Marjan Mernik
Fundamental Limitations in Domain-Specific
Modeling Language Evolution University Of Arizona,
Ece, Technical Report #Tr-090831 1

11. Milan Čeliković, Ivan Luković, Slavica Aleksić, and
Vladimir Ivančević, A MOF based Meta-Model and
a Concrete DSL Syntax of IIS*Case PIM Concept
ComSIS Vol. 9, No. 3, Special Issue, 1076
September 2012

12. Philip. J, M. Roggenbach, Encapsulating formal
methods within domain specific languages: A
solution for verifying railway scheme plans,
Mathematics in Computer Science 8 (1) (2014) 11-
38.

13. Christian Hahn and Klaus Fischer, Domain Specific
Modeling Language for Multiagent Systems German
Research Institute for Artificial Intelligence (DFKI);
Springer-Verlag Berlin Heidelberg 2009

14. Autodesk Inc. (2013) AutoCAD Release 2013
Programmers Reference Manual

15. Anders Eriksson and Andler Jeff Offutt (2012),
Model Transformation Impact on Test Artifacts: An
Empirical Study, Proceedings of ACM Conference,

MoDeVVa’, Innsbruck, Austria

16. S. M. Sutton, Jr., D. Heimbinger, and L. J. Osterweil.
APPL/ A: A language for software-process
programming. ACM Trans. Softw. Eng. Methodol.,
4(3):221–286, July 1995.

17. S. M. Sutton, Jr. and L. J. Osterweil. The design of a
next generation process language. In Proc. 6th Euro.
Softw. Eng. Conf. and 5th ACM Symp. on Found.
Softw. Eng., pages 142– 158, Zurich, Switzerland,
Sept. 1997.

19. Kaskil, D.J. W. Buxton, D.R. Ferguson, Ten CAD

challenges, IEE Computer Graphics and
Applications 25 (2) (2005) 81-92.

20. Neil C. Katz, Skidmore, Owings & Merrill, LLP
(2007), Parametric Modeling in AutoCAD, AEC bytes
Viewpoint Issue #32

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)

35

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er

sio
n

I
Ye

ar

20

15

 (
)

C

References Références Referencias

18. B.G. Technical LTD - B.G. Technical Oil & Gas
industry Port Harcourt, Nigeria; www.bgtechnical
.com/ Annual Reports 2009 to 2013

21. Kyo C. Kang, Sholom G. Cohen, James A. H.
William E (1990), Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technology Technical
Report CMU/SEI-90-TR-21 ESD-90-TR-222

22. David A. Schmidt, (1997), Denotational Semantics:
A methodology for language development
Department of Computing and Information Sciences,
234 Nichols Hall, Kansas State University,
Manhattan, KS 66506 schmidt@cis.ksu.edu

Design of Transmission Pipeline Modeling Language

© 2015 Global Journals Inc. (US)1© 2015 Global Journals Inc. (US)1

36

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

	Design of Transmission Pipeline Modeling Language
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. The language DesignConsiderations
	a) Capturing the aspects of design
	b) The Methodology
	c) The Language Rudiments

	IV. Modeling Primitives
	V. The Design Paradigm
	a) The CFG Instruction Sequence
	b)Repetitive tasks
	c)The Decisionrepository

	VI. Progressive Language Features
	VII.Discussion of Results
	VIII. Conclusion and Future Work
	References Références Referencias

