

GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: E NETWORK, WEB & SECURITY Volume 15 Issue 4 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Implementation of AES with Time Complexity Measurement for Various Input

By Shraddha More & Rajesh Bansode

Mumbai university, India

Abstract- Network Security has a major role in the development of data communication system, where more randomization in the secret keys increases the security as well as the complexity of the cryptography algorithms. In the recent years network security has become an important issue. Cryptography has come up as a solution which plays a vital role in the information security system against various attacks. This security mechanism uses the AES algorithm to scramble data into unreadable text which can only be decrypted with the associated key. The AES algorithm is limited only for text as an input. It also has, the more time complexity. So it suffers from vulnerabilities associated with another type of input and time constraints. So its challenge to implement the AES algorithm for various types of input and require less decryption time. The propose work demonstrate implementation of a 128-bit Advanced Encryption Standard (AES), which consists of both symmetric key encryption and decryption algorithms for input as a text, image and audio. It also gives less time complexity as compared to existing one. At the last stage comparing the time complexity for encryption and decryption process for all three types of input. This paper also demonstrates a side channel attack on the standard software implementation of the AES cryptographic algorithm.de

Keywords: side channel attack, aes, des,rsa, encryption, decryption, cryptography, network security..

GJCST-E Classification : F.1.3 C.2.1

Strictly as per the compliance and regulations of:

© 2015. Shraddha More & Rajesh Bansode. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

2015 Year Global Journal of Computer Science and Technology (E) Volume XV Issue IV Version I

Implementation of AES with Time Complexity Measurement for Various Input

Shraddha More^a & Rajesh Bansode^p

Abstract- Network Security has a major role in the development of data communication system, where more randomization in the secret keys increases the security as well as the complexity of the cryptography algorithms. In the recent years network security has become an important issue. Cryptography has come up as a solution which plays a vital role in the information security system against various attacks. This security mechanism uses the AES algorithm to scramble data into unreadable text which can only be decrypted with the associated key. The AES algorithm is limited only for text as an input. It also has, the more time complexity. So it suffers from vulnerabilities associated with another type of input and time constraints. So its challenge to implement the AES algorithm for various types of input and require less decryption time. The propose work demonstrate implementation of a 128bit Advanced Encryption Standard (AES), which consists of both symmetric key encryption and decryption algorithms for input as a text, image and audio. It also gives less time complexity as compared to existing one. At the last stage comparing the time complexity for encryption and decryption process for all three types of input. This paper also demonstrates a side channel attack on the standard software implementation of the AES cryptographic algorithm.de

Keywords: side channel attack, aes, des,rsa, encryption, decryption, cryptography, network security.

I. INTRODUCTION

ryptography plays an important role in the security of data transmission. Data Security is a challenging concern of data communications that focuses on many areas including secure communication channel and strong data encryption technique. The secure transmission of confidential data enclosed gets a great deal of attention because of the rapid development in information technology. The predictable methods of encryption can only maintain the data security. The development of computing technology imposes stronger requirements on the cryptography schemes. The rapidly growing number of wireless communication users has led to the increasing demand for security measures and devices to protect user data transmitted over wireless channels[1].

Two types of cryptographic systems have been developed for that purpose symmetric (secret key) and asymmetric (public key) cryptosystems. Symmetric

Author ρ : Associate professor in Department of Information technology, TCET, Mumbai university, India.

e-mail: rajesh.bansode@thakureducation.org

cryptography, such as in the Data Encryption Standard (DES), 3DES, and Advanced Encryption Standard (AES) uses an identical key of the sender to encrypt the message text and receiver to decrypt the encrypted text. Asymmetric cryptography, such as the Rivest-Shamir-Adleman (RSA) uses different public keys for encryption and decryption, eliminating the key exchange problem.[2] Symmetric cryptography is more suitable for the encryption of a large amount of data. The Data Encryption Standard (DES) has been used by the U.S. government standard since 1977. However, now, it can be cracked quickly and inexpensively. The AES algorithm defined by the National Institute of Standards and Technology (NIST) of the United States has widely accepted to replace DES as the new symmetric encryption algorithm [3]. This above cryptographic algorithms are not more secure. To overcome the vulnerabilities in network security in 2000, the Advanced Encryption Standard (AES) replaced the DES to meet the ever-increasing requirements for security. In cryptography, the AES, also called as Rijndael, is a block cipher adopted as an encryption standard by the US government, which specifies an encryption algorithm capable of protecting sensitive information[4]. The Rijndael algorithm is a symmetric block cipher that can encrypt and decrypt information. Encryption converts data into an unintelligible form called cipher-text. Decryption of the cipher-text converts the data back into its unique form which is called plaintext. The AES algorithm supports 128, 192 and 256 bit key length to encrypt and decrypt data in blocks of 128 bits, hence AES-128. AES-192 and the name AES-256 respectively[5]. The hardware implementation of the AES algorithm can provide high performance, low cost for specific applications and trustworthiness compared to its software counterparts[6].

The organization of the paper is as follows, Section II describes the design overview of AES algorithm for both encryption and decryption. Section III presents implementation Details, Section IV is discussed on Experimental Results. Section V projects on future scope and conclusion.

II. DESIGN OVERVIEW OF AES

AES is a symmetric block cipher with block length of 128 bits. It allows three different key lengths 128,192 and 256 bits. In encryption process processing of 128 bit keys required for 10 rounds, 192 bit keys

Author α : Master of engineering in Information technology, TCET, Mumbai university, India. e-mail: moreshraddha30@gmail.com

required for 12 rounds and 256 bit keys required for 14 rounds which is shown in table1. AES is a round based algorithm. For encryption and decryption each round has four functions excepting last round. Last round required three functions. The encryption algorithm has four round functions SubByte(), ShiftRows(), MixColumn() and AddRoundKey(). The decryption, also has the same number of rounds with reverse transformation, order of round function is different i.e. InvShiftRow(), InvSubByte(), AddRoundKey() and InvMixColumn() [2]-[3].

Table 1 : AES parameters for the various AES versions

AES PARAMETERS	AES-128	AES-192	AES-256
Key Size (Bits)	128	192	256
Number of rounds	10	12	14
Plaintext box size (Bits)	128	128	128

a) AES Encryption Algorithm

The Encryption process consists of a number of different transformations applied consecutively over the data block bits in a fixed number of iterations which is called as rounds. The number of rounds depends on the length of the key used for the encryption process. 10 iterations are required for key length of 128 bits.

i. High-level description of the algorithm

KeyExpansions -round keys are derived from the cipher key using Rijndael's key schedule. AES requires a separate 128-bit round key block for each round plus one more.

- ii. InitialRound
- AddRoundKey()- Each byte of the state is combined with a block of the round key using bitwise xor. Rounds
- 2. SubBytes()- A non-linear substitution step where each byte is replaced with another according to a lookup table.
- ShiftRows()-A transposition step where the last three rows of the state are shifted cyclically a certain number of steps.
- 4. MixColumns()-A mixing operation which operates on the columns of the state, combining the four bytes in each column.
 - iii. Final Round (No MixColumns)

SubBytes()

ShiftRows()

AddRoundKey().

Steps : These steps are used to encrypt128-bit block.

- 1. The set of round keys from the cipher key.
- 2. Initialize state array and add the initial round key to the starting state array.
- 3. Perform round = 1 to 9 : Execute Usual Round.

- 4. Execute Final Round.
- 5. Corresponding cipher text chunk output of Final Round Step

iv. Encryption process

Each round consists of the following four steps:

SubBytes Transformation: In this transformation, each of the byte in the state matrix is replaced with another byte as per the S-box (Substitution Box)[7]. The S-box is generated by firstly calculating the respective reciprocal of that byte in GF (2^8) and then affine transform is applied.

ShiftRows Transformation: In this transformation, the bytes in the first row of the State do not change. The second, third, fourth and fifth rows shift cyclically to the left by one byte, two bytes, three bytes and four bytes respectively [7].

MixColumns Transformation: It is the operation that mixes the bytes in each column by the multiplication of the state with a fixed polynomial matrix [7]. It completely changes the scenario of the cipher even if all bytes look very similar. The Inverse Polynomial Matrix does exist in order to reverse the mix column transformation.

AddRoundKey Transformation: In AddRoundKey transformation, a roundkey is added to the State by bitwise Exclusive-OR (XOR) operation. AddRoundKey proceeds onecolumn at a time. AddRoundKey adds a roundkey word with each state column matrix.The operation performed in AddRoundKey is matrix addition.

b) AES Decryption Algorithm

Decryption is the process of extracting the plaintext from cipher text. For decryption the same process occurs simply in reverse order by taking the 128-bit block of cipher text and converting it to plaintext by the application of the inverse of the four operations. Decryption involves reversing all the steps taken in encryption using following inverse functions.

InvSubBytes Transformation: InvSubBytes is the inverse transformation of SubBytes, in which the inverse S-box is applied to individual bytes in the State. The inverse S-box is constructed by first applying the inverse of the affine transformation, then computing the multiplicative inverse in GF(2^8).

Figure 1: AES Encryption and Decryption

InvShiftRows Transformation: InvShiftRows is the inverse transformation of ShiftRows. In this transformation, the bytes in the first row of the State do not change. The second, third, and fourth and fifth rows are shifted cyclically by one byte, two bytes, three bytes and four bytes to the right respectively [2].

InvMixColumns Transformation: InvMixColumns is the inverse transformation of MixColumns. This is a complex procedure as it involves severely the byte multiplication under GF (2⁸)[2].

Key Expansion (Keyexpansion Operation)

Keyexpansion refers to the process in which the 128 bits of the original key are expanded into eleven 128-bit round keys.

To compute round key (n+1) from round key (n) these steps are performed:

 Compute the new first column of the next round key. First all the bytes of the old fourth column have to be substituted using the Subbytes operation. These four bytes are shifted vertically by one byte position and then

XORed to the old first column. The result of these operations is the new first column.

- 2. Columns 2 to 4 of the new round key are calculated as shown:
- [new second column] = [new first column] XOR
 [old second column]

- [new third column] = [new second column] XOR
 [old third column]
- [new fourth column] = [new third column] XOR [old fourth column]

The key expansion algorithm generates 128 bit key for each round and one more key for initial AddRoundKey function. The same expanded key is used for encryption and decryption except for decryption it reads in reverse order.

III. IMPLEMENTATION DETAILS

The system proposing aims to achieve network security by implementing appropriate countermeasures based on concept of constant time encryption against side channel timing attack to protect implementations of secret key cryptography. The contribution work includes implementing more suitable countermeasures against side channel attack.

a) System Overview

The propose system, is intended to provide secure transmission of data over the network by implementing the appropriate countermeasures against side channel attack on AES implementation which is shown in Fig.2. Here the work implementing AES 128bit algorithm using 10 rounds by taking input as text, image and audio. In AES encryption process, system

performs round functions like SubByte(), ShiftRows(), MixColumn() and AddRoundKey(). On the other side, the decryption processperforms round functions like InvShiftRow(), InvSubByte(), AddRoundKey() and InvMixColumn(). After that the work implementing side channel attack on the AES implementation in such a way that the receiver cannot decrypt the encrypted data. After successful implementation of side channel attack, work implementing some research appropriate countermeasures against side channel attack on AES implementation and finally evaluating their performance and soundness to prevent possible vulnerabilities and develop more secure systems.

Figure 2 : System architecture

b) AES Implementation

The work implemented AES 128-bit, 10 rounds algorithm by taking input as text, image and audio.

Encryption Process when input as an Text file

The work implemented 128 bit AES algorithm (10 round) encryption using text as an input by measuring performance parameter as time complexity which is shown in Fig.3.Time required for encryption process is 1.166557 milliseconds.

Encryption an	a Decryption							
Encryption	Decryption							
		Select a Plaintext File C:U This is just File Contents new line characters	sers\dell\Desktop t a little test of my a couple	NSJCET III sem) AES writer.	document.bt	Browse		
	Key			1234567890qv	verty			
Click to encrypt ==>					Encry	pt		
		SubBytes	ShiftRows		MixColumns		AddRoundKe	Ŋ
Round 1		1b3c171819105157455254	i9 bafca20a0d40i ▶ ◀	083ad6e5bf05b	bafca20a0d400	83ad6e5bf05b	c5766c1ae1	41e693835c94e0
Round 2		c5766c1ae141e693835c94	e0 a6832210f84a ▶ ◀	16a2ece050dc	a6832210f84a	16a2ece050dc	28452e29c83	2cd13ca6ef614a9
Round 3		28452e29c82cd13ca6ef614	i9 35fbdfaaa134: ▶ ◀	233de9fa39874	35fbdfaaa1342 ◀	33de9fa39874	26d1700a1a	75a6da3a81a4c5
Round 4		26d1700a1a75a6da3a81a4	:5 6f79d4988a20 ▶ ◀	cf36780be5157	6f79d4988a20c	f36780be5157	ba00f59e6e0	13030cef6248074
Round 5		ba00f59e6e03030cef62480	'4 2e004cdb3e13 ▶ ◀	86f58e42f7cb8b	2e004cdb3e13	6f58e42f7cb8b	289ed74f46	3d193e4a77ed9b Ⅲ ▶
Round 6		289ed74f466d193e4a77ed	b 343c55b65af5	e884d6180eb2	343c55b65af5e	884d6180eb2	1062111dbc	101377dce4688f9
Round 7		1062111dbd01377dce4688	f9 9ca7cc45b7a5 ▶ ◀	adba48b0b82ff	9ca7cc45b7a5a	adba48b0b82ff	d363f15dea6 ◀	10635443f30b13
Round 8		d363f15dea610635443f30b	3 05ca2b7a240	d3b1d1af65920	105ca2b7a240d	3b1d1af65920	Bdbff3fc741b	1c8a060058425e
Round 9		3dbff3fc741b1c8a06005842	ie 8089c2c5daf6: ▶ ◀	a1d926301b06f	8089c2c5daf6a	1d926301b06f	94132dae5d	ada6787ed8208f
Round 10		r227dd8e44a9524bcf361b7	'3 f227dd8e44a9 ▶ ◀	524bcf361b773	•	•	112f325251	0880138c95210e Ⅲ ►
Time Taken				1.166557 ms				

Figure 3 : AES Encryption: Input as Text

Decryption Process when input as an Text file

The work implemented 128 bit AES algorithm (10 round) decryption using text as an input by measuring performance parameter as time complexity which is shown in Fig.4.Time required for decryption process is 2.128282 milliseconds.

Encryption Process when input as an audio file

The work implemented 128 bit AES algorithm (10 round) encryption using audio as an input by measuring performance parameter as time complexity which is shown in Fig.5.Time required for encryption process is 13.899532 milliseconds.

Global Journal of Computer Science and Technology (E) Volume XV Issue IV Version I F Year 201

Decryption Process when input as an audio file

The work implemented 128 bit AES algorithm (10 round) decryption using audio as an input by measuring performance parameter as time complexity which is shown in Fig.6.Time required for decryption process is 20.183485milliseconds.

Encryption Process when input as an Image file

The work implemented 128 bit AES algorithm (10 round) encryption using image as an input by

measuring performance parameter as time complexity which is shown in Fig.7. Time required for encryption process is 61.958627 milliseconds.

Decryption Process when input as an Image file

The work implemented 128 bit AES algorithm (10round) decryption us ing image as an input by measuring performance parameter as time complexity which is shown in Fig.8.Time required for decryption process is 31.509569milliseconds.

Encryption and Decryption								×
Encryption Decryption								
	Select a Ciphertex	t File s\dell\	Desktop\SJCET	III sem\docum	ent.txt.encrypted	Browse		
	Decrypted Text	This is just Let us try a new line characters.	a little test of my couple	AES writer.	k.			
Key				1234567890qv	werty			
Click to dec	:rypt ==>				Dесгур	t		
	InvShiftRows		InvSubBytes		InvMixColumns		InvAddRound	lKey
Round 1	32295b77f4a61f1e	e4f351d8bc	94132dae5cad	a6787ed8208f	94132dae5cada	6787ed8208f	8089c2c5da	f6a1d926301b06f
Round 2	8089c2c5daf6a1d9	26301b06f	Bdbff3fc741b1c8	3a060058425e	Bdbff3fc741b1c8a	060058425e	105ca2b7a24	l0d3b1d1af65920
Round 3	105ca2b7a240d3b1	d1af65920	d363f15dea610	635443f30b13	d363f15dea6106	35443f30b13	9ca7cc45b7	a5adba48b0b82ff
Round 4	9ca7cc45b7a5adb	a48b0b82ff	1062111dbd01	377dce4688f9	1062111dbd013	77dce4688f9	343c55b65a	af5e884d6180eb2
Round 5	343c55b65af5e88	4d6180eb2	289ed74f466d1	93e4a77ed9b	289ed74f466d19	3e4a77ed9b	2e004cdb3e	136f58e42f7cb8b
Round 6	2e004cdb3e136f58	3e42f7cb8b	ba00f59e6e030	30cef6248074	ba00f59e6e0303	0cef6248074	6f79d4988a	20cf36780be5157
Round 7	6f79d4988a20cf36	780be5157	26d1700a1a75a	a6da3a81a4c5	26d1700a1a75a8	ida3a81a4c5	35fbdfaaa13	4233de9fa39874
Round 8	I35fbdfaaa1342330	le9fa39874	4 28452e29c82cd	13ca6ef614a9	4 28452e29c82cd1	3ca6ef614a9	▲ a6832210f8	4a16a2ece050dc
Bound 9	4 a6832210f84a16a	2ece050dc	C5766c1ae1416	e693835c94e0	C5766c1ae141e8	93835c94e0	▲ bafca20a0d4	10083ad6e5bf05b
Round 10	↓ bafca20a0d40083a	d6e5bf05b	l ▲ bafca20a0d400	83ad6e5bf05b	•		4 2e0a202020	20202020202020
round to			•		4	Þ	4	
Time Taken				2.128282 ms				

Figure 4 : AES Decryption : Input as Text

Figure 6 : AES Decryption: Input as Audio

Figure 8 : AES Decryption Process: Input as Image

c) Attack on AES implementation

After successful implementation of AES algorithm. The work implemented attack in such a way that at the time of decryption, receivers cannot get the

decrypted file as a plain text file instead of that the user will get the file which is in the human non-readable format which is shown in the Fig.9.

g Encryption a	nd Decryption		-	_	_				
Encryption	Decryption								
		Select a Ciphertex Decrypted Text	t File serstd 7(&%1® ÛR ¥6)ÓÈù	lell\Desktop\fina Yg≇M öÏËl§°ấ : ⊮_§:œ(Áë9µ ál	I attack\documi £Îl9*i#"*ì®Û·iy őxèäÅtå(ent.bd.encrypted // 6, ,7 %(Đ?Cí)	Browse		
	Key				1234567890qv	werty			
Click to decrypt ==>									
Round 1		InvShiftRows	5c227c6b5d	InvSubBytes	488d944976ba	InvMixColumns	188d944976ba	InvAddRound	IKey 37dd87617b3e
Round 2		 ■c387bd60887dd8 ■c387bd60887dd8 	7617b3e81	 ■ ■ ■ ■ 	6a91d8ea0393	 ■ aa55d1eabf766 ■ 	6a91d8ea0393	4 8d819b090at	073833d3c9def
Round 3		3d819b090ab7383	/3d3c9deb7	0b4cf9c66a391	4020a920e8cf	0b4cf9c66a391	4020a920e8cf	}ed286ec1e5	i6cdfda01b20d
Round 4		ed286ec1e56cdfd	a01b20d45	1531df37a2aee:	2c6809b845e2	1531df37a2aee2	2c6809b845e2)abb0412ffd0 4	lc702a09def8al
Round 5		abb0412ffd0c702	a09def8a65	dfed6cf476030	84bc753139c0	dfed6cf4760308	84bc753139c0	29665729582	c8e56709fd9cl
tounu o									
Round 6		9665729582c8e5	6709fd9c6b	135f51c0a11bce	e20540b11e04	135f51c0a11bce	e20540b11e04	b27df684624	lc52f6b62f7b57

Figure 9 : A on AES implementation

IV. EXPERIMENTAL RESULTS

In this section The work presented result graph of our proposed system, implementation of the AES algorithm by taking text, image and audio as input. The work used 10 rounds technique for implementing AES 128- bit algorithm.

a) Result graph for encryption time

In Fig. 10. The graph shows the time needed to encrypt the input as a text, image and audio data file by the proposed system .

b) Result graph for decryption time

In Fig. 11. The graph shows the time needed to decrypt the input as a text, image and audio data file by the proposed system .

Figure 11: Decryption time taken by AES algorithm

Conclusion Andfuture Scope

Due to the increasing needs for secure communications а safer and more secured cryptographic algorithm has to be proposed and implemented. The Advanced Encryption Standard (AES-128bit) is widely used nowadays in many applications. In this paper, the work implemented an efficient AES128 bit encryption and decryption algorithm. The execution time for AES encryption and decryption is calculated by performing 10 round functions. The system presented an attack on AES software implementations. Future work will focus on investigating and implementing a number of countermeasures against side channel attack on AES implementation and have evaluated their performance and soundness to prevent possible vulnerabilities and develop more secure systems.

References Références Referencias

- 1. Vinayak Bajirao Patil, Prof.Dr.Uttam.L.Bombale ,Pallavi Hemant Dixit, "Implementation of AES algorithm on ARM processor for wireless network, " in International Journal of Advanced Research in Computer and Communication Engineering ,Vol. 2, Issue 8, August 2013, pp.3204-3209.
- 2. Xinmiao Zhang and Keshab K. Parhi, "Implementation approaches for the advanced encryption standard algorithm," in IEEE Transactions, 2002.
- Chih-Pin Su, Tsung-Fu Lin, Chih-Tsun Huang, and Cheng-Wen Wu, "A high throughput low cost AES processor," in IEEE Communications Magazine, 2003.
- "Advanced Encryption Standard (AES)" Federal Information Processing Standards Publication 197, Nov. 2001.
- M.Gnanambika, S.Adilakshmi, Dr.Fazal Noorbasha, "AES-128 Bit Algorithm Using Fully Pipelined Architecture for Secret Communication," in International Journal of Engineering Research and

Applications Vol. 3, Issue 2, March -April 2013, pp.166-169.

- Rishabh Jain, Rahul Jejurka2, Shrikrishna Chopade, Someshwar Vaidya, Mahesh Sanap, "AES Algorithm Using 512 Bit Key Implementationfor Secure Communication," in International Journal of Innovative Research in Computerand Communication Engineering, Vol. 2, Issue 3, March 2014, pp. 3516-3522.
- 7. Vinayak Bajirao Patil, Prof. Dr. Uttam. L.Bombale, Pallavi Hemant Dixit, "Implementation of AES algorithm on ARM processor for wireless network," in International Journal of Advanced Research in Computer and Communication Engineering ,Vol. 2, Issue 8, August 2013,pp.3204-3209.
- 8. Ritu Pahal and Vikas kumar, "Efficient Implementation of AES," in International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue 7, July 2013, pp. 290-295
- K. Soumya, G. Shyam Kishore, "Design and Implementation of Rijndael Encryption Algorithm Based on FPGA," in International Journal of Computer Science and Mobile Computing, Vol. 2, Issue. 9, September 2013, pp.120 – 127.
- Sumedha Kaushik and Ankur Singhal, "Network Security Using Cryptographic Techniques ,"in International Journal of Advanced Research in Computer Science and Software Engineering ,Vol. 2, Issue 12, December 2012, pp.105-107.
- 11. Dr. Prerna Mahajan & Abhishek Sachdeva, "A Study of Encryption Algorithms AES, DES and RSA forSecurity," in Global Journal of Computer Science and Technology Network, Web & Security, Vol 13, Issue 15,2013, pp.15-22.
- H. Kuo and I. Verbauwhede, "Architectural optimization for a 1.82 Gbits/sec VLSImple mentation of the AES Rijndael algorithm," in Proc. CHES 2001, Paris, France, May 2001, pp. 51-64.
- Navraj Khatri, Rajeev Dhanda, Jagtar Singh," Comparison of power consumption and strict avalanche criteria at encryption/Decryption side of Different AES standards," International Journal Of Computational Engineering Research, Vol. 2 Issue. 4, August 2012.
- Das Debasis, Misra Rajiv. "Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm". International Journal of Network Security & Its Applications (IJNSA), Vol. 3, No.6, November 2011, pp. 204.
- 15. Hiremath.S. and Suma.M.S., "Advanced Encryption Standard Implemented on FPGA,"in IEEE Inter. Conf. Comp Elec Engin. (IECEE), vol. 02, issue. 28, pp.656-660, Dec. 2009.
- 16. Chehal Ritika, Singh Kuldeep. "Efficiency and Security of Data with Symmetric Encryption Algorithms," inInternational Journal of Advanced

Research in Computer Science and Software Engineering, Vol. 2, Issue 8, August 2012, pp. 1.

- Z. Xinjie, W. Tao, M. Dong , Z. Yuanyuan, L. Zhaoyang, "Robust First Two Rounds Access Driven Cache Timing Attack on AES," in IEEE InternationalConference on Computer Science and Software Engineering , Dec. 2008, Wuhan, Hubei, China, pp. 785 – 788.
- P.C. Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems," in 16th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO), 1996, Springer-Verlag London UK, pp. 104-113.
- 19. W. Stallings, Cryptography and network security.
- 20. J. Daemen and V. Rijmen, AES Proposal: Rijndael (Version 2).