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Abstract- Textural patterns can often be used to recognize familiar objects in an image or retrieve 
images with similar texture from a database. Texture patterns can provide significant and abundance 
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is an extension of our previous paper [1]. The present paper divides the 3 × 3 neighbourhood into 
two different 2 × 2 neighbourhood grids each consist four pixels. On this 2 × 2 grids shape 
descriptor indexes (SDI) are evaluated separately and added to form a Total Shape Descriptor Index 
Image (TSDI). By deriving textons on TSDI image Total Texton Shape Matrix (TTSM) image is formed 
and Grey Level Co-Occurence Matrix (GLCM) parameters are derived on it for efficient texture 
discrimination. The experimental result shows the efficacy of the present method. 
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Abstract- Textural patterns can often be used to 
recognize familiar objects in an image or retrieve images 
with similar texture from a database. Texture patterns 
can provide significant and abundance of texture and 
shape information. One of the recent significant and 
important texture features called Texton represents the 
various patterns of image which is useful in texture 
analysis. The present paper is an extension of our 
previous paper [1]. The present paper divides the 3 × 3 
neighbourhood into two different 2 × 2 neighbourhood 
grids each consist four pixels. On this 2 × 2 grids shape 
descriptor indexes (SDI) are evaluated separately and 
added to form a Total Shape Descriptor Index Image 
(TSDI). By deriving textons on TSDI image Total Texton 
Shape Matrix (TTSM) image is formed and Grey Level 
Co-Occurence Matrix (GLCM) parameters are derived 
on it for efficient texture discrimination. The experimental 
result shows the efficacy of the present method. 
Keywords: textons, glcm features, shape descriptor index 
(sdi), total shape descriptor index image (tsdi).  total 
texton shape matrix (ttsm),  2 × 2 grids. 

I. Introduction 

nalysis of texture requires the identification of 
proper attributes or features that differentiate the 
textures in the image for segmentation, 

classification and recognition. Initially, texture analysis 
was based on the first order or second order statistics of 
textures [6, 7, 8, 9, 10]. Then, Gaussian Markov random 
field (GMRF) and Gibbs random field models were 
proposed to characterize textures [11, 12, 13, 14, 15, 
16]. Later, local linear transformations are used to 
compute texture features [17, 18]. Then, texture 
spectrum technique was proposed for texture analysis 
[19]. The above traditional statistical approaches to 
texture analysis, such as co- occurrence matrices, 
second order statistics, GMRF, local linear transforms 
and texture spectrum are restricted to the analysis of 
spatial interactions over relatively small neighborhoods 
on a single scale. As a consequence, their performance 
is best for the analysis of micro textures only [20]. More 
recently, methods based on multi-resolution or multi-
channel analysis, such as Gabor filters and wavelet 
transform, have received a lot of attention [21, 22, 23, 
24, 25, 26, 27, 23, 25]. From the literature survey, the 
present  study   found   the   Gray  Level  Co-occurrence  
 

  

  
   

  

Matrix (GLCM) is a benchmark method for extracting 
Haralick features (angular second moment, contrast, 
correlation, variance, inverse difference moment, 
sum average, sum variance, sum entropy, entropy, 
difference variance, difference entropy, information 
measures of correlation and maximal correlation 
coefficient) or Conners features [28] (inertia, cluster 
shade, cluster prominence, local homogeneity, 
energy and entropy). These features have been 
widely used in the analysis, classification and 
interpretation of remotely sensed data. Its aim is to 
characterize the stochastic properties of the spatial 
distribution of grey levels in an image.  

The present paper is organized as follows. In 
he second section we have given clear information 

about grey level co-occurrence matrix information and 
the third section  we discussed about textons. In fourth 
section we discussed deriving different Shape 
Descriptor Indexes (SDI). In the fifth section, proposed 
methodology is discussed and in sixth section results 
and discussions are given. Finally in last section we 
concluded about this paper. 

II. Gray Level Co-occurrence Matrix 

One of the other most popular statistical 
methods used to measure the textural information of 
images is the Gray Level Co-occurrence Matrix (GLCM). 
The GLCM method gives reasonable texture information 
of an image that can be obtained only from two pixels. 
Grey level co-occurrence matrices introduced by 
Haralick [29] attempt to describe texture by statistically 
sampling how certain grey levels occur in relation to 
other grey levels. Suppose an image to be analyzed is 
rectangular and has Nx

 rows and Ny
 columns. Assume 

that the gray level appearing at each pixel is quantized 
to Ng levels. Let Lx= {1,2,…,Nx} be the horizontal 
spatial domain, Ly= {1,2,…,Ny} be the vertical spatial 
domain, and G= {0,1,2,…,Ng-1} be the set of Ng 
quantized gray levels. The set Lx

 × Ly
 is the set of pixels 

of the image ordered by their row-column designations. 
Then the image I can be represented as a function of 
co-occurrence matrix that assigns some gray level in Lx

 

× Ly; I: Lx
 × Ly

 
→ G. The g ray level transitions are 

calculated based on the parameters, displacement (d) 
and angular orientation (θ). By using a d istance of one 
pixel and angles quantized to 450 intervals, four matrices 
of horizontal, first diagonal, vertical, and second 
diagonal (00, 450, 900 and 1350 degrees) are used. Then 

A 
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the un-normalized frequency in the four principal 
directions is defined by Equation (1).  

 

where # is the number of elements in the set, 
(k, l) the coordinates with gray level i, (m, n) the 
coordinates with gray level j. The following Fig. 1 

illustrates the above definitions
 

of a co-occurrence 
matrix (d=1,

 
θ

 
= 00).

 

  

 

Even though Haralick extracted 24 parameters 
from co-occurrence matrix, the present paper used only 
energy, contrast, local homogeneity, and correlation as 
given in Equations (2) to (5).

 

Energy = � −ln�𝑃𝑃𝑖𝑖𝑖𝑖 �
2𝑁𝑁−1

𝑖𝑖 ,𝑖𝑖=0
                                           (2)

 

 

Energy measures the number of repeated pairs and also 
measures uniformity of the normalized matrix.                             

Contrast = � −𝑃𝑃𝑖𝑖𝑖𝑖 (i − j)2𝑁𝑁−1
𝑖𝑖 ,𝑖𝑖=0             (3)

 

The contrast feature is a difference moment of 
the P matrix and is a standard measurement of the 
amount of local variations present in an image. The 
higher the value of contrast are, the sharper the 
structural variations in the image.              

 

Local
 
Homogenity = � �

𝑃𝑃𝑖𝑖𝑖𝑖
1+(i−j)2�

𝑁𝑁−1

𝑖𝑖 ,𝑖𝑖=0
       (4)

 

It measures the closeness of the distribution of 
elements in the GLCM to the GLCM diagonal. The 
converse of homogeneity results in the statement of 
contrast.

 

Correlation = � �𝑃𝑃𝑖𝑖𝑖𝑖
(i−μ)(j−μ)

(σ)2 �
𝑁𝑁−1

𝑖𝑖 ,𝑖𝑖=0
                         (5)

 

Where Pij

 
is the pixel value in position (i, j) of the 

texture image, N is the number
 
of gray levels in the 

image,
 
μ  is μ = ∑ i𝑃𝑃𝑖𝑖𝑖𝑖N−1

i,j=0    mean of the texture image 

and (σ)2   is (σ)2= � 𝑃𝑃𝑖𝑖𝑖𝑖 (i − μ)2𝑁𝑁−1
𝑖𝑖 ,𝑖𝑖=0

 
variance of the 

texture image. Correlation is the measure of similarity 

between two images in comparison. The measures 
mean (m), which represents the average intensity.

 

III.

 

textons

 

Textons [30, 31] are considered as texture 
primitives, which are located with certain placement 
rules. A close relationship can be obtained with image 
features such as shape, pattern, local distribution 
orientation, spatial distribution, etc. using textons. The 
textons are defined as a set of blobs or emergent 
patterns sharing a common property all over the image.  
The different textons may form various image features. 
To have a precise and accurate texture classification, 
the present study strongly believes that one need to 
consider all different textons. That is the reason the 
present study considered all. There are several issues 
related with i) texton size ii) tonal difference between the 
size of neighbouring pixels iii) texton categories iv) 
expansion of textons in one orientation v) elongated 
elements of textons. By this sometimes a fine or coarse 
or an obvious shape may results or a pre-attentive 
discrimination is reduced or texton gradients at the 
texture boundaries may be increased. The present 
paper utilized the following five texton shades of 2×2 
grid shown in Fig. 2. In Fig. 2 (a), the pixels are 
represented as d1, d2, d3

 

and d4. The present paper 
considered texton shades if three or more pixels have 
the same intensity levels. This rule derives five texton 
shapes denoted as T1, T2, T3, T4

 

and T5

 

as shown in 
Fig.2.
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Figure 1: An example of Gray level co-occurrence matrix



 

 

 

Figure 2 : Proposed 2×2 grid textons 

 

Hole shape (Index = 0): The TU with 0 
represents a hole shape. The hole shape consists all 0’s 
as shown in the Fig.3.

 

 

Figure 3
 
:
 
Hole shape with SDI value

 
0

 

Dot shape (Index =1): The TU with 1, 2, 4 and 8 
represents a dot shape. The dot shape will have only a 
single 1 as shown in Fig.4.

 

 

Figure 4
 
:
 
The four dot shapes with SDI value 1

 

Horizontal/Vertical line shape (Index =2): The 
two adjacent 1’s results four different TU weights i.e. 3, 
6, 9 and 12 and all of them represents a horizontal or 
vertical line as shown in Fig.5.

 

 

Figure 5
 
:
 
Representation of horizontal / vertical 

lines with SDI value 2. Diagonal Line shape (Index= 3): 
The other two adjacent 1’s with TU values 5 and 10 
represents diagonal lines as shown in Fig.6.

 

 

Figure 6
 
:
 
Representation of

 
diagonal line with SDI value 

3
 

Triangle shape (Index = 4): The three adjacent 
1’s with TU values 7, 11, 13 and 14 represents triangle 
shape as shown in Fig.7.

 
 

 

Figure 7
 
:
 
Representation of triangle shape with SDI 

value  4
 

Blob shape (Index =5): TU 15 with all 1’s 
represents a blob shape as shown in Fig.8.

 
 

 

Figure 8
 
:
 
Representation

 
of blob shape with SDI value 5

 

The advantage of SDI is they don’t depend on 
relative order

 
of texture unit weights and can be given in 

any of the four forms as shown in Fig.9 where the 
relative TU will change, but shape remains the same.

 

 

Figure 9
 
:
 
Four different ways of assigning weights to TU

 

 
  

Discrimination of Textures using Texton Patterns

If the given image is colour convert into gray 
level image. Divide each 3×3 window into two separate 
units by comparing neighbouring pixel value with the 
centre pixel as shown in fig.10 for deriving Binary Cross 
Texture Unit Element (BCTUE) and Binary Diagonal 
Texture Unit Element (BDTUE)[2,3,4,5]. As shown in Fig.
10(a) a 3×3 neighbourhood will have 8 neighbouring 
pixels and are divided into two sets of cross and 
diagonal sets with four pixels of binary values as shown 
in Fig.10(b & c), by following the equation 6. Represent 
BCTUE and BDTUE in the form of two separate 2×2 
grids as shown in Fig.11.

𝑏𝑏𝑖𝑖 = �0 𝑖𝑖𝑖𝑖 𝑆𝑆
(𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑖𝑖) < 0

1 𝑖𝑖𝑖𝑖 𝑆𝑆(𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑖𝑖) ≥ 0
� (6)
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IV. Deriving Different Shape Descriptor 
Indexes (sdi)

V. Derivation of Total Texton Shape 
Co-occurrence Matrix (ttscm)



 

 

 

 
 

      
                        

 
 

 

Figure 10

 

:

 

Representation of 3×3 neighborhood and its 
BDTUE and BCTUE

 

 

Figure 11

 

:

 

Representation of 2×2 grid BDTUE and 
BCTUE

 

Derive Shape Descriptor Indexes (SDI) on 
BDTUE and BCTUE for deriving Diagonal SDI (DSDI) 
and Cross SDI (CSDI) is as shown in Fig.12 and Fig.13.

 

 

Figure 12

 

:

 

BDTUE in the form 2×2 grid and derived 
DSDI

 

 

Figure 13 :

 

BCTUE in the

 

form 2×2 grid and derived 
CSDI

 

Repeating above process on entire image by 
convolving in an overlapped manner forms two separate 
images namely Cross Shape Descriptor Index (CSDI) 
and Diagonal Shape Descriptor Index (DSDI). SDI on a 2 
× 2 grid ranges from 0 to 5 therefore the pixel grey level 
values of CSDI and DSDI images ranges from 0 to 5 
only. 

 

For forming Total Shape Descriptor Index (TSDI) 
image add CSDI and DSDI images as shown in Fig.14 
and the pixel grey level values of TSDI image ranges 
from 0 to 10. Now derive textons on TSDI to

 

form Total 
Texton Shape Matrix (TTSM ) image. Finally construct 
co-occurrence matrix on TTSM that which leads to the 
formation of Total Texton Shape co-occurrence Matrix 
(TTSCM) on which GLCM features with 0o, 45o, 90o, and 
135o

 

are derived. For efficient

 

discrimination algorithm is 
derived based on the feature set values of TTSCM.

 

 

Figure 14

 

:

 

Formation mechanism of TSDI image

 

The Fig.15, 16 and 17 represents TSDI for Car, 
Water and Elephant images respectively.

 
 

 

Figure 15

 

:

 

(a) Car image (b) TSDI of (a)

 

 

Figure 16

 

:

 

(a) Water image (b) TSDI of (a)

 

Discrimination of Textures using Texton Patterns

Figure 17 : (a) Elephant image (b) TSDI of (a)

The average of contrast, correlation, energy and 
homogeneity features set values on TTSCM are 
evaluated with a distance of one and with an orientation 
of 0o,45o,90o and 135o are tabulated in Table 1, 2 and 3 
for the Car, Elephant and Water texture images collected 

© 2015   Global Journals Inc.  (US)1
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VI. Results and Discussions



 

 

 

  

  

  

from Google data base respectively. A sample texture 
images of Car, Water and Elephant are shown in Fig.18. 
Based on feature set values of TTSCM images, 
Algorithm 1 is derived. Discrimination results are 
tabulated in Table 4 along with a bar graph shown in 
Fig.19. The Table 5 compares discrimination rates of our 
earlier methods Texton based Cross Shape Descriptor 
Index (TCSDI) Texton based Diagonal Shape Descriptor 
Index (TDSDI) [ 2,4 ] with the current method TTSCM 
approach of this paper. The corresponding bar graph 
representation is shown in Fig.20. 

 

The proposed TTSCM obtained high 
discrimination rate over our earlier TCSDI and TDSDI 
methods. This is because the TTSCM represent the SDI 
of the entire image instead of two separate or partial 
images of TCSDI and TDSDI. 

 
 

Figure

 

18

 

:

 

Images of car, water and Eelephant textures

Table 1:

 

Average GLCM feature values with 0o, 45o, 90o

 

and 135o

 

for TTSCM of Car images

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discrimination of Textures using Texton Patterns

Table 2 : Average GLCM feature values with 0o, 45o, 90o

and 135o for TTSCM of Elephant images

Texture 
numbe

r

Contras
t

Correlat
ion Energy Homog

eneity

E_1 9.159 0.3525 0.032 0.4971
E_2 9.809 0.3369 0.0354 0.5044
E_3 9.129 0.3472 0.0375 0.5137
E_4 9.268 0.3631 0.0375 0.5165
E_5 8.801 0.3546 0.0387 0.5187
E_6 9.187 0.3343 0.0371 0.5156
E_7 7.254 0.2813 0.0474 0.5335
E_8 6.479 0.2645 0.0509 0.5414
E_9 12.69 0.4056 0.0324 0.5063
E_10 6.252 0.2921 0.0495 0.5478

Table 3 : Average GLCM feature values with 0o, 45o, 90o

and 135o for TTSCM of Water images

Texture 
numbe

r

Contras
t

Correlati
on Energy Homog

eneity

W_1 18.74 0.4686 0.0402 0.5306
W_2 16.83 0.3171 0.0327 0.4965
W_3 15.08 0.328 0.0352 0.5022
W_4 17.71 0.3615 0.0345 0.4859
W_5 18.45 0.4389 0.0301 0.5002
W_6 12.03 0.314 0.0359 0.5031
W_7 16.48 0.4387 0.0317 0.5013
W_8 15.26 0.5095 0.0408 0.5462
W_9 16.43 0.3591 0.0316 0.5024

W_10 19.39 0.3411 0.027 0.4851

Algorithm 1: Discrimination algorithm using the proposed 
TTSCM method.
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Figure 19

 

:

 

Bar graph representation for Discrimination 
rates

 

Table 5

 

:

 

Discrimination rates of the earlier and 
proposed method

 

Methods

 

Average discrimination rates (%)

 

TCSDI

 

84.33

 

TDSDI

 

88.66

 

TTSCM

 

93

 
 

 

Figure 20

 

:

 

Bar graph representation of proposed 
methods

 

  

The present paper derived TTSCM image by 
adding CSDI and DSDI images. By this TTSCM 
captured all local shape features. The present paper 
compared the discrimination rates of TCSDI, TDSDI and 
TTSCM approaches. The results clearly indicate the high 
discrimination rates of TTSCM over our earlier TCSDI 
and TDSDI methods. The TSDI represents efficient 
border without any disturbances when compared to 
CSDI and DSDI images. This is because TTSCM forms 
only one SDI image on the original image instead of two 
different SDI namely, i) TCSDI ii) TDSDI. The intensity 
values of TSDI image range from 0 to 10. Moreover 
TTSCM reduces the formation of two GLCM on the 
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VII. Conclusion

      Begin
            if contrast >=1 && contrast <=10
                     Print “Texture image is    Elephant”
             else if contrast > 10 && contrast <=15
                               Print “Texture image is Car”
              else if contrast >15 && contrast <=20
                     Print “Texture image is Water”
      End

Table 4 : Discrimination rates of the proposed TTSCM 
method

Texture Database
Discrimination rate (%) 
TTSCM method

Elephant 93 
Car 100 
Water 86 
Average Discrimination rate 93 

original image one representing the cross and other 
representing the diagonal features. 
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