
© 2015. Geethu Elizebeth Mathew & Mrs. G. Malathy. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: F
Graphics & Vision
Volume 15 Issue 1 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Direction based Heuristic for Pathfinding in Video Games
By Geethu Elizebeth Mathew & Mrs. G. Malathy

 Anna University, India

Abstract - Pathfinding has been one of major research areas in video games for many years. It is a
key problem that most of the video games are confronted with. Search algorithms such as the A*
algorithm and the Dijkstra’s algorithm representing such regular grid, visibility graphs also have
significant impact on the performance. This paper reviews the current widely used solutions for
pathfinding and proposes a new method which is expected to generate a higher quality path using
less time and memory than other existing solutions. The deployment of the methodologies and
techniques is described in detail. The significance of the proposed method in future video games is
addressed and the conclusion is given at the end.

Keywards: pathfinding, A*, A* optimization, computer game.

GJCST-F Classification: I.2.1 K.8.0

DirectionBasedHeuristicforPathfindinginVideoGames

Strictly as per the compliance and regulations of:

Direction based Heuristic for Pathfinding in
Video Games

Geethu Elizebeth Mathew α & Mrs. G. Malathy σ

Abstract- Pathfinding has been one of major research areas in
video games for many years. It is a key problem that most of
the video games are confronted with. Search algorithms such
as the A* algorithm and the Dijkstra’s algorithm representing
such regular grid, visibility graphs also have significant impact
on the performance. This paper reviews the current widely
used solutions for pathfinding and proposes a new method
which is expected to generate a higher quality path using less
time and memory than other existing solutions. The
deployment of the methodologies and techniques is described
in detail. The significance of the proposed method in future
video games is addressed and the conclusion is given at the
end.
Keywords: pathfinding, A*, A* optimization, computer
game.

I. Introduction

athfinding is the plotting, by a computer
application, to find the shortest path between two
points. It starts from a start node and reaches the

goal node by repeatedly searching for the same, for
finding a path between these points. Finding the optimal
path is a complicated scenario. There are significant
difference between the terms path and shortest path. In
graph theory, the problem of finding a path between two
vertices in a graph such that the sum of the weights this
path’s edges is minimized is called a shortest path
problem. Two primary problems of pathfinding are to
find a path between two nodes in a graph and to find
the optimal shortest path[4]. Pathfinding in the context
of video games concerns the way in which an object
finds a path around obstacles; the best explained
context is real-time strategy games in which the player
leads units around a play area containing obstacles, but
the variations of this approaches are found in many of
the games. path finding has grown in importance as
games and their environments have become more
complex. Many Artificial Intelligence based platforms
and the tools are developed for providing solutions to
pathfinding problem. Many of them uses basic
pathfinding and provides ready made plugins for users
to incorporate in their games. Real-time strategy games
sometimes contain large areas of open terrain which is
often relatively simple to navigate through, although it is
common for more than one unit to travel simultaneously;
this makes it necessary to employ different, and often

Author

α σ:

Computer Science and Engineering Ksriet Nammakal, India.

e-mails: gemsmat8@gmail.com, malathi.gurunathan@gmail.com

more complex algorithms and methods to avoid traffic
problems and bottlenecks at some points in terrain. In
strategy games the map is normally divided into sub-
worlds and there are practical methods of applying
some algorithms in the smaller problems to apply it to
larger sets.

II. A* Algorithm

A* is a generic search algorithm that can be
used to find solutions to many problems, pathfinding is
just one of them. Many problem in the engineering are
related to pathfinding problems. The lookahead effort in
searching trees are found to provide improved results in
pathfinding. The base of the A* algorithm arises from a
view that the information from the problem domain can
be incorporated in a formal mathematical manner to
analyse the problem. The method shows that this
approach will always try to find out a path by exploring
minimum number of nodes to offer a minimum cost
solution. A* is the most popular and widely used AI
pathfinding algorithm proposed by Hart, Nilsson and
Raphael in the year 1967. Due to its simplicity it
guarantees, A* is almost always the search method of
choice. This is because A* is guaranteed to find a
shortest path on the graph. The problem with A* is that
a shortest path on the graph is not equivalent to a
shortest path in the continuous environment. Another
issue related to A* is that, when the map size is
significantly larger, A* algorithm cannot find a minimum
path to goal state in limited amount of time. Also for
large maps A* uses memory extensively. Even though
many other methods are emerging, A* and its variations
are widely used in pathfinding. A* uses this heuristic to
improve on the behavior relative to Dijkstra’s algorithm.
When the heuristic evaluates to zero, A* is equivalent to
Dijkstra’s algorithm. As the heuristic estimate increases
and gets closer to the true distance, A* continues to find
optimal paths, but runs faster. When the value of the
heuristic is exactly the true distance, A* examines the
fewest of the nodes .However it is generally impractical
to write a heuristic function that always computes the
true distance. As the value of the heuristic increases, A*
examines fewer nodes but no longer guarantees an
optimal path. In many applications this is acceptable
and even desirable, in order to keep the algorithm
running quickly. In order to expand less number of
nodes as possible while searching for an optimal path,
A* constantly make informed decision as possible about

P

© 2015 Global Journals Inc. (US)

1

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

which node to expand next. Otherwise it is a wasting
effort to use that particular method. If the algorithm
constantly avoids nodes on optimal path, then there is
less chance that the algorithm will come up with a
solution. Suppose, we have some evaluation function
f(n) to be calculated for some node n. The nodes with f
values are considered for exploring next. The node with
the minimum f value is explored then we can define the
A* search algorithm as follows[8].

Search Algorithm A*:

1. Add the starting node to the open list.
2. Repeat the following steps:

a) Look for the node which has the lowest f on the
open list. Refer to this node as the current node.

b) Switch it to the closed list.
c) For each reachable node from the current node

i. If it is on the closed list, ignore it.
ii. If it isn’t on the open list, add it to the open

list. Make the current node the parent of this
node. Record the f, g, and h value of this
node.

iii. If it is on the open list already, check to see if
this is a better path. If so, change its parent to
the current node, and recalculate the f and g
value.

d) Stop when
i. Add the target node to the closed list.
ii. Fail to find the target node, and the open list is

empty.
3. Tracing backwards from the target node to the

starting node. That is your path.

Figure: Pseudocode of A* [3]

For any sub graph G and goal set T, let f(n) be
the actual cost of an optimal path which go through n,
from s to a preferred goal node of n. Determination of
f(n) is the primary interest. In A* algorithm we see that,
the function f(n) can be written as the sum of two
functions:

f(n)=g(n)+h(n)

where g(n) is the actual cost from s to the node n, and
h(n) is the actual cost from n to the preferred goal node
of n. Let ĝ (n) be the estimate of g(n). An excellant choice
for ĝ (n) is the minimum cost that has found so far. We
observe ĝ (n) ≥ g(n).

Consider the subgraph shown in Fig. It consists

of a start node s and three other nodes n1, n2 and n3.

The arcs are shown with arrowheads and costs. Starting
from s, we get successors n1, n2. The estimates ĝ (n)
and ĝ (n2) are 3 and 7 respectively. Suppose A*
expands n1 next with successors n2,n3. At this stage
ĝ (n3)=3 + 2 = 5, and ĝ (n2) is lowered to 3 + 3 = 6.
The value of ĝ (n1) remains equal to 3. Next we must

have an estimate ĥ (n) of h(n). Here we rely on
information from the problem domain. Many minimum
cost path problems through a paragraph has some

information to estimate ĥ . In a city example where our
paths are roads, we can use airline distance as the
heuristic function. If h is any lower bound, then we can
say that algorithm is admissible [8].There are variations
of A* to optimize algorithm so that less memory is used.

The traditional A* algorithm has shortages as follows:

1. It is slow in searching speed is slow and is poor
applicability in the large scale path search
environment. For example to get the optimal
diagonal path in the 100*100 grid environment
needs for searching 513 nodes at least.

2. Due to the limitations of the traditional A* algorithm,
the algorithm always lead to fall into failing situation
in the unknown and complex grid environment.

3. The traditional A* doesn’t support path search
operation between multi nodes at the same time
which means generating different path from multi-
starts to multi-target needs to retry.

a) Heuristics
Heuristics is a method used for experience

based problem solving, which may or may not end up
with an optimal solution. Algorithm’s behavior based on
the heuristic and cost functions can be very useful in a
game. The trade off between speed and accuracy can
be exploited to make your game faster. One way to
construct an exact heuristic is to precompute the length
of the shortest path between every pair of points. This is
not feasible for most game maps. However, there are
ways to ap proximate this heuristic:

• Fit a coarse grid on top of the fine grid. Precompute
the shortest path between any pair of coarse grid
locations.

• Precompute the shortest path between any pair of
waypoints. This is a generalization of the coarse grid
approach.

In a special circumstance, the heuristic can be
exact without precomputing

anything. If there is a map

with no obstacles and no slow terrain, then the shortest
path from the starting point to the goal should be a
straight line.On a grid, there are well-known heuristic
functions to use

•

On a square grid that allows 4 directions of

movement, use Manhattan distance

© 2015 Global Journals Inc. (US)1

2

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

• On a square grid that allows 8 directions of
movement, use Diagonal distance

• On a square grid that allows any direction of
movement, might or might not want Euclidean
distance.

• On a hexagon grid that allows 6 directions of
movement, uses the Manhattan distance adapted to
hexagonal grids.

b) Manhattan Distance
The standard heuristic for a square grid is the

Manhattan distance. Look at cost function and find the
minimum cost D for moving from one space to an
adjacent space. In the simple case, we can set D to be
1.The heuristic on a square grid where you can move in
4 directions should be D times the Manhattan distance:

Function heuristic(node)

dx=abs(node.x-goal.x)

dy=abs(node.y-goal.y)

return d*(dx+dy)

Set D to the lowest cost between adjacent
squares. In the absence of obstacles, and on terrain
that has the minimum movement cost D, moving one
step closer to the goal should increase g by D and
decrease h by D. When we find f (which is set to g + h)
will stay the same; thats a sign that the heuristic and
cost function scales match.

c) Grids
A grid map uses a uniform subdivision of the

world into small regular shapes some- times called tiles.
Common grids in use are square, triangular, and
hexagonal. Grids are simple and easy to understand. If
were using grids for pathfinding, units are not
constrained to grids, and movement costs are uniform,
We may want to straighten the paths by moving in a
straight line from one node to a node far ahead when
there are no obstacles between the two. If units can
move anywhere within a grid space, or if the tiles are
large, think about whether edges or vertices would be
better choice for our application. A unit usually enters a
tile at one of the edges (often in the middle) and exits tile
at another edge. With pathfinding on tiles, the unit
moves to the center of the tile, but with pathfinding on
edges, the unit will move directly from one edge to the
other. Obstacles in a grid system typically have their
corners at vertices. The shortest path around an
obstacle will be to go around the corners. With
pathfinding on vertices, the unit moves from corner to
corner. This produces the least wasted movement, but
paths need to be adjusted to account for the size of the
unit. This is referred as Vertex movement.

III. Proposed Work

After performing the literature survey, it is clear
that a lot more improvements and optimisations are
possible in the field of pathfinding in video games. So in
our paper, we are intended to work on the pathfinding
and the path planning in games using the Artificial
Intelligence principles. The proposed work is aimed at
combining different approaches for pathfinding to
effectively find out paths in video game environments
using less resources by utilizing Artificial Intelligence
Concepts.

In our paper, we put forward an Efficient
Pathfinding Algorithm for video games by

• Optimizing search techniques.

• Effective terrain mapping.

• Improving Heuristics.
We here use the direction based approach for

pathfinding. New approach is applied in a grid based
environment. As most of the game worlds are divided
into grids for simplicity, this method has scope in all of
them. This method can also be extended to all types of
grid based worlds.

To find the shortest paths between two points in
a map, is an important topic in mathematics and
algorithm research. In the present gaming industry,
pathfinding has its own requirements:

1. We do not really care too much whether a path is
optimal in a mathematical sense, so long as it is
virtually short enough.

2. We do not want to devote too much resource for
pathfinding in the gaming environment which which
is usually resource constrained.

a) Direction Based Heuristics
In order to apply some sort of optimisation in

pathfinding algorithms, the first thing needed is an
efficient approach for pathfinding. The method I use
here is applied on grid based maps. It uses the direction
to the goal state as the heuristic function

A grid map example

In the above figure there is a starting and an
ending point. The Heuristic Information needed is the

© 2015 Global Journals Inc. (US)

3

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

relative position of a particular node to the end node.
We start with the Start node. In order to calculate the
information regarding the relative position of the goal
node, In our approach, we use four letters (For
explanation purpose). They are L, R, U, D which
represents Left, Right, Up and Down respectively. Every
node will have a Heuristic information which gives a
clear idea about the relative position of that node with
the goal node. In the above figure, the Heuristic Key can
be recorded as L0 (Where ’L’ represents left and ’0’
indicates that end state is in the same horizontal level as
that of the start state.) The following figure gives more
clear idea about direction based Heuristics

Grid showing direction based heuristics of all cell

As in the above figure, there are 8 Heuristic
Keys applied in a pathfinding environment which are
explained using table

Direction Keys used for determining the direction of
exploration

These information is used to determine which
are the next nodes to be explored in order to reach the
goal faster. For example, when the Heuristic key of a
node is LU it has children in the top and in the left side.
We then check whether those cells are free or not. A
cell is said to be free if it is not previously explored or its
not a non traversable cell. If there are no free children for
a particular node, then we change the direction key by
making L as R, R as L, U as D, D as U and ’0’ is kept as
such. In usual practice with lightly obstructed map, this
is not required in general. We continue to explore new
children obtained through the changed Heuristic key.

The method continues as such till it reaches the goal
state. The above explained method is just a framework
of the method. As it is very simple and straight, many
optimizations are possible for the above mentioned
method. In this work, We aim to implement the above
direction concept so as to reduce the memory
overheads and hence execution time.

b) Comparison with Other Algorithms in A Small Grid
The new method is compared with other basic

grid based pathfinding algorithms and results are
analyzed. Here this analysis is made for some fixed grid
environments. Preliminary analysis is conducted only to
analyse the number of nodes explored in the Direction
based Heuristics method and in other methods for a
small graph.

This algorithm is compared with other
algorithms such as breath first search,, A* algorithm.
Comparison results are shown below. Even though A*
solves a given problem based on heuristics a necessary
condition has to be satisfied. Basic comparison with the
A* algorithm indicates that, this approach converges to
the direction of goal as in the A* algorithm. Comparison
with the other two algorithms also shows that the new
approach converges to the direction of the goal state,
even faster than Breadth First Search. These have to be
proved mathematically.

c) Converging Behavoiur of Direction Hueristics
The method based on Direction Heuristic

converges towards the goal state faster than Breadth
First Search in tested environments. This makes it more
usable. It also explores less number of nodes to reach
final state. This is a good expected behaviour for a
pathfinding algorithm. The proposed method explores
less number of neighbors and hence the number of
nodes processed each time is reduced. By using
perfect data structures we can make it more appealing.
So that the optimization for this particular work mainly
concentrate on a data struture which can process nodes
faster and which converges to the goal nodes so easily.

(a) Path obtained by direction heuristics

Direction Key Interpretation and
direction of exploration

L0 Left
LU Left – Up
0U Up
RU Right – Up
R0 Right
RD Right – Down
0D Down
LD Left – Down

© 2015 Global Journals Inc. (US)1

4

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

(b) Path obtained by breathfirst search and depth first
serach

(c) Path obtained by A Star algorithm

The converging behaviour and thus the
improvement of the work in obtaining a path in less time
need to be theoretically proved. The converging
behaviour of the algorithm of the algorithm can be
explained as

• Compared to A* and other algorithms like Breadth
First Search, the direction Heuristic approach
explores less node each time. This is because of the
fact that only those nodes in the direction of the
goal node is considered in for expansion.

• Each time this approaches avoids a certain
direction, in many of the cases the same direction is
chosen. This implies that the portions in the graph
which are not relevant is not searched

d) Applying The Concept of Direction Based
Heuristics On A Star Algorithm

Developed in the context of learning based
heuristics our method speeds up search by expanding
and evaluating only necessary nodes in the map.
Further, this method eliminates redundant nodes from
the graph which reduces additional memory over-heads.
Using this heuristic function, we are able to identify a
large set of cells which can be skipped. We have
implemented the direction oriented Heuristic function
normally in a simple grid based environment. The aim is
to study the behaviour of the algorithm. Following are
the scenarios taken under consideration:

• A square grid of typical size is used. The algorithm
works on every kind of grid based maps. But for the

ease of calculation of results and observing the
performance, square worlds are considered.

• The territory type used is spacious maps and lightly
obstructed maps. The method is based on finding
out the cells to be expanded out of many
neighboring cells. So this is perfectly applicable in
the above mentioned types. Also it can be applied
on mazes. But for experimental purpose I used
maps with less obstacle density.

Every edge has given same weight as we are
considering diagonal direction also. This is a mandatory
step in the implementation. Expanding diagonal nodes
improves the realistic movement which is very essential
in game playing. There are a total of eight neighbors for
a node under consideration. Sup- pose we are
considering a particular node which can be denoted by
(x,y) in a grid based environment. Then we can consider
the neighboring nodes as a set:

{(x-1,y-1),(x,y-1),(x+1,y-1),
(x1,y),(x+1,y),

(x-1,y+1),(x,y+1),(x+1,y+1)}

Our particular aim is to eliminate some nodes
from the above eight neighbors to optimize the result.
Popular algorithms like the A star algorithm and Breadth
First Search algorithm expands every node so that all
nodes are to be processed.

Here Simple direction based Heuristics is
applied for the implementation. We used the same
datastructures as used by the A* algorithm and Breadth
First Search algorithm to study the behaviour of the
algorithm. From the above implementation, we could
see that the proposed approach always finds solution
without fail. A* algorithm can find out a solution pretty
faster and the drawback is it eats up lot of memory. So
an efficient optimization applied as this would greatly
enhance the approach

An example for game world simulated in browser

IV. Evaluation

Evaluating of the proposed system is perhaps
the most important part of a our work. For precisely

© 2015 Global Journals Inc. (US)

5

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

evaluating the results a common benchmark should be
considered where all the algorithms under consideration
can be executed. As we know A* algorithm is the most
popular algorithm for pathfinding. Based on the time of
excecution, Comparisons are made between a*
algorithm and direction heuristic approach Every game
world is represented as grids in the evaluation. For world
representation a multi dimensional array is used. For
getting the stable results in every platform, world
representations in all such cases should be same. In
most of the game worlds are represented using arrays.
By using the same representation, results obtained are
standard results which can be applied universally. A
screen shot for running benchmark for the performance
evaluation is given where it uses a 150 × 150 grid. The
experiment is done in browser.

Map is represented using a 2D array for obtaining
standard results.

First, both the algorithms are run several times
and values are taken for execution time. The time thus
calculated in milliseconds is plotted. An important
observation is that the time taken by the proposed
method is always less than that of A*. Both the
algorithms, A* and Direction Heuristic approach are run
thousand times and the average of the execution time is
calculated for a grid of same size and obstacle density
but randomly distributed obstacles. This result is given
as the first instance. Fifteen such instances are
calculated and result is plotted. By doing this we will get
a result which is stable. Here also we have better
performance for proposed algorithm

Comparision between A* and direction

Heuristics for 15 randon worlds of same size

V. Conclusion

In our work, we have introduced a new Heuristic
method for speeding up Pathfinding on uniform cost
maps which are represented using grids. The new
approach selectively expands certain nodes from grid
map so that minimum number of nodes are explored.
The most important highlight of this work is identification
of the nodes to be explored and proper usage of
efficient data structure. we prove that unnecessary
nodes are not expanded in this approach, or Direction
Heuristics would try to minimize the number of nodes to
be explored and yet come up with a solution in less
time.

One of the important observation is that
applying the new logic will not affect the solution. the
solution is guaranteed by the new heuristic. it is simple
yet highly efficient ,it reduces the amount of the memory
needed by wisely choosing the nodes to be explored. It
does not require any pre-processing and therefore it is a
very fast method. Due to its simplicity it can easily be
combined with other pathfinding methods, speedup
methods and path smoothing methods to get a solution
faster and there is scope for research in all these
combinations. Direction based heuristic approach is
highly competitive to other works from literature
especially when dealing with large maps. When
compared to the most popular A* algorithm and its
optimized variation which is using priority queue for
implementing data structures, Direction Based
Heuristics is found to show improve ments.

The process speed up the path finding process
by implementing an efficient data structure to handle the
nodes for the evaluatation. This reflects in improvement
in time when compared to traditional list based linear
data structures. By efficiently deciding the number of
nodes that are to be explored, new approach needs to
process less number of nodes than other. This results
in a memory efficient solution, Memory efficiency
obtained by using Direction Heuristics is a key highlight
when compared to A* algorithm which uses more
memory. An interesting direction for further work is to
extend Direction Based Heuristic approach to other type
of grids like hexagonal and triangular grids. This can be
easily achieved by employing proper direction keys for
obtaining goal information pretty faster. Utility libraries
and the pathfinding plug-ins can be developed by
employing this idea so that it is avaliable as a package
for the pathfinding. Much remains to be done in the field
of Artificial Intelligence and pathfinding. Most of the
research is oriented towards other areas like robotics
and very few has been done towards their application in
tile based games. We hope that our work would
certainly benefit the game industry.

© 2015 Global Journals Inc. (US)1

6

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

References Références Referencias

1. E. P. Hart, N. J. Nilsson; B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern: Vol. SSC-4,
1968, No.2:100 - 107 ,.Korf, R. Depth-first iterative-
deepening:

2. An optimal admissible tree search. Artificial
Intelligence, 1985, 27:97–109.

3. Björnsson, Yngvi; Enzenberger, Markus; Holte,
Robert C. Fringe Search: Beating A* at Pathfinding
Game Maps; IEEE 2005 Symposium on
Computational Intelligence and Games, 2005, 125-
132.

4. Björnsson, Yngvi; Vadim Bulitko ; Nathan Sturtevant.
TBA*: Time-Bounded A*. Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI-
09);2009，431-436.

5. Rahul Kala, Anupam Shukla, Ritu Tiwari. Fusion of
probabilistic A* algorithm and fuzzy inference
system for robotic path planning, Artificial
Intelligence Review, 334, 2010.

6. Cen Zeng, Qiang Zhang, Xiaopeng Wei. GA-based
Global Path Planning for Mobile Robot Employing
A* Algorithm[J]. Journal of Computers, 72, 2012.

7. Qing Xue, Yung-Ping Chien. Determining the path
search graph and finding a collision-free path by the
modified A* algorithm for a 5-link closed chain.
Applied Artificial Intelligence, vol. 92, 1995.

8. B. Stout, “The basics of A* for path planning,” in
Game Programming GEMS, pp.254-262, Charles
River Meida, America, 2000.

9. A. Botea, M. Mueller, and J. Schaeffer, “Near
optimal hierarchical path-finding,” J. GD, vol.1, no.1,
pp.7-28, 2004.

10. N. Nilsson, Artificial Intelligence: A New Synthesis,
Morgan Kaufmann Publishers, San Francisco, 1998.

11. P. Hart, N. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost
paths,” IEEE Trans. Syst. Sci. Cybernet., vol.4, no.2,
pp.100-107, 1968.

12. B. Stout, “Smart moves: intelligent path-finding,” in
Game Developer Magazine, pp.28-35, 1996.

13. P. Tozour, “Building a near-optimal navigation
mesh,” in AI Game Programming Wisdom, pp.171-
185, Charles River Media, America, 2002.

14. S. Rabin, “A* speed optimizations,” in Game
Programming GEMS, pp.264-271, Charles River
Media, America, 2000.

15. N. R. Sturtevant and M. Buro, “Partial pathfinding
usingmap abstraction and refinement,” in Proc. 20th
Nat. Conf. Artif. Intell., 2005, pp. 1392–1397.

16. N. R. Sturtevant, “Memory-efficient abstractions for
pathfinding,” in Proc. Conf. Artif. Intell. Interactive
Digit. Entertainment, 2007, pp.31–36.

© 2015 Global Journals Inc. (US)

7

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

This page is intentionally left blank

© 2015 Global Journals Inc. (US)1

8

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
F

20
15

Direction Based Heuristic for Pathfinding in Video Games

	Direction based Heuristic for Pathfinding in Video Games
	Author
	Keywords
	I. Introduction
	II. A* Algorithm
	a) Heuristics
	b) Manhattan Distance
	c) Grids

	III. Proposed Work
	a) Direction Based Heuristics
	b) Comparison with Other Algorithms in A Small Grid
	c) Converging Behavoiur of Direction Hueristics
	d) Applying The Concept of Direction Based Heuristics On A Star Algorithm

	IV. Evaluation
	V. Conclusion
	References Références Referencias

