
© 2015. Racharla Suresh Kumar & Bachala Satyanarayana. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 15 Issue 1 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Adaptive Genetic Algorithm Based Artificial Neural Network for
Software Defect Prediction

 By Racharla Suresh Kumar & Bachala Satyanarayana
 Sri Krishnadevaraya University, India

Abstract- To meet the requirement of an efficient software defect prediction,in this paper an evolutionary
computing based neural network learning scheme has been developed that alleviates the existing Artificial
Neural Network (ANN) limitations such as local minima and convergence issues. To achieve optimal software
defect prediction, in this paper, Adaptive-Genetic Algorithm (A-GA) based ANN learning and weightestimation
scheme has been developed. Unlike conventional GA, in this paper we have used adaptive crossover and
mutation probability parameter that alleviates the issue of disruption towards optimal solution. We have used
object oriented software metrics, CK metrics for fault prediction and the proposed Evolutionary Computing
Based Hybrid Neural Network (HENN)algorithm has been examined for performance in terms of accuracy,
precision, recall, F-measure, completeness etc, where it has performed better as compared to major existing
schemes. The proposed scheme exhibited 97.99% prediction accuracy while ensuring optimal precision, F-
measure and recall.

Keywords: software defect prediction, machine learning, genetic algorithm, artificial neural network, object
oriented software metrics.

GJCST-D Classification : C.1.3 F.1.1

AdaptiveGeneticAlgorithmBasedArtificialNeuralNetworkforSoftwareDefectPrediction

Strictly as per the compliance and regulations of:

Adaptive Genetic Algorithm Based Artificial
Neural Network for Software Defect Prediction

Racharla Suresh Kumar α & Bachala Satyanarayana σ

Abstract- To meet the requirement of an efficient software
defect prediction,in this paper an evolutionary computing
based neural network learning scheme has been developed
that alleviates the existing Artificial Neural Network (ANN)
limitations such as local minima and convergence issues. To
achieve optimal software defect prediction, in this paper,
Adaptive-Genetic Algorithm (A-GA) based ANN learning and
weightestimation scheme has been developed. Unlike
conventional GA, in this paper we have used adaptive
crossover and mutation probability parameter that alleviates
the issue of disruption towards optimal solution. We have used
object oriented software metrics, CK metrics for fault
prediction and the proposed Evolutionary Computing Based
Hybrid Neural Network (HENN)algorithm has been examined
for performance in terms of accuracy, precision, recall, F-
measure, completeness etc, where it has performed better as
compared to major existing schemes. The proposed scheme
exhibited 97.99% prediction accuracy while ensuring optimal
precision, F-measure and recall.
Keywords: software defect prediction, machine learning,
genetic algorithm, artificial neural network, object
oriented software metrics.

I. Introduction
s per high pace rise in software applications and
major dependency on it, the fault prediction has
become one of the inevitable parts of software

development life cycle (SDLC) that can play significant
role in reducing the probability of software failure.

Software defect prediction (SDP) can be
performed while planning to identify fault-prone modules
in software product that as a result can provide the
insight to the need for increased quality of monitoring
during software development. In addition, it can also
facilitate necessary approaches to incorporate certain
proper fault verification schemes leading to enhanced
software quality [1, 2, 3, 4] and reliability. SDP can be
functional based on certain software metrics [3, 4, 5],
such as source code changes, previous defects, etc. In
fact software metrics are the quantitative data that are
employed for characterizing the properties of source
code and can be significant for predicting software
quality. The efforts made through many generations
have facilitated a number

of

schemes to mitigate

Author

α: Research Scholar, Department of Computer Science, Sri
Krishnadevaraya University, Andhra Pradesh, India.

e-mail: suresh_sku@yahoo.com

Author

σ: Professor, Department of Computer Science, Sri
Krishnadevaraya University, Andhra Pradesh, India.

e-mail: bachalasatya@yahoo.com

defects, but the continuation of researches still indicates
towards search for certain optimal SDP solution to
ensure optimal performance, reliability, cost optimization
and minimal maintenance. A number of efforts have
been made for SDP using machine learning and neural
network [6, 7, 8, 9, 10], clustering techniques, statistical
method, mining and random forest [44, 45, 50] etc. In
recent years, majority of software are being developed
based on Object-Oriented (OO) paradigm. Thus, the
quality of the software can be optimally assessed by
employing software metrics, such as Abreu MOOD
metric suite [11], QMOOD metrics suite [12], Bieman
and Kang [13], Briand et al. [14], Etzkorn et al. [15],
Halstead [16], Henderson-sellers [17], Li and Henry
[18], McCabe [19], Tegarden et al. [20], Lorenz and
Kidd [21] and CK metric [22] suite. These software
metrics plays significant role in assessing the quality of
software such as precision, accuracy, fault-resilience
and sensitivity etc. The significance of these object
oriented software metrics lies in their capability to
predict the software quality in terms of adaptability,
functionality, usability, portability, supportability,
reliability and cost effectiveness. Predominantly two data
driven algorithms, support vector machine (SVM) and
artificial neural network (ANN) algorithms have been
employed for fault detection. ANN approach functions
on the basis of the human brain behaviorand possesses
neurons and directed edges with certain weights
existing between input and output layers. ANN employs
output as the input so as to learn complex non-linear
input-output relationship and can be stated to be a
complex nonlinear mapping model between input and
output layer. The processes in ANN comprise data sets
to enhance the weight parameters, risk minimization
scheme for stopping training as soon as the learning
error enters in expected margin level. In fact, ANN has
been employed in numerous utilities, but still it
possesses certain limitations in terms of slow learning
ability, local minima etc and hence require further
optimization to achieve certain optimal SDP efficiency
and performance. Thus, there is the requirement of
further optimization of ANN approaches to accomplish a
potential SDP solution. Some researches [23, 24]
advocate the implementation of evolutionary computing
techniques for SDP optimization. This paper proposes a
novel evolutionary computing based enhanced ANN
algorithmnamed Hybrid Evolutionary Computation

A

© 2015 Global Journals Inc. (US)

15

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

based Neural Network (HENN) for defect prediction and
classification. HENN system employs Adaptive Genetic
Algorithm (A-GA) for optimal weight estimation so as to
enhance weight update and learning efficiency of the
ANN.In this paper, the object oriented software metrics,
CK metrics [22] have been employed as a fault
classification data and the respective performance has
been analyzed using confusion matrix.

The remaining sections discusses, related work
in Section II, problem definition is briefed in Section III,
which has been followed by proposed research
discussion in Section IV. Section V presents the results
and analysis and conclusion has been discussed in
Section VI.

II. Related Work

The emergence of software applications and
associated need of quality and reliability has motivated
software practitioners as well as academia to develop
certain novel scheme for defect prediction.With an
objective to examine the relation between software
metrics and associated faults some initiatives were
made in [25, 26, 27, 28, 29, 30] where machine learning
mechanism were used for fault detection. With an
enthuse to compare the performance of varied other
schemes such as decision trees, naïve Bayes, and 1-
rule [31] performed fault detection using NASA MDP
project. Chug et al [32] performed data mining based
fault estimation using conventional J48, Random Forest,
and Naive Bayesian Classifier (NBC) schemes but still
couldn’t employ the benefits of advanced classification
schemes. With an objective to enhance conventional
schemes Pushphavathi et al [33] introduced hybrid
scheme of random forest (RF) and Fuzzy C Means
(FCM) clustering. Then while, these systems were found
limited for unbalanced data sets, which motivated
author [34] to propose an approach called
AdaBoost.NC that explored varied kinds of class
imbalance learning schemes comprising resampling
techniques, threshold moving, and ensemble
algorithms. With an objective to explore SVM
optimization in [35, 36] a dynamic SVM model was
proposed for fault detection in source code using with
error data and faulty code execution. Researcher in [37]
developed an ANN based SDP system. This is the
matter of fact that SVM refers the functional paradigm of
single layer perceptron’s NN which on addition with
kernels behaves like multilayered perceptron’s [38]. Till
available systems based neural network with
conventional learning and weight estimation suffers from
local optima and convergence issue, which has not
been discussed dominantly. On contrary, these days the
software are developed and examined for faults using
object oriented software metrics which even being
significant has not been explored in depth to ensure
optimal solution for reliability oriented defect prediction.

This paper intends to provide an optimal solution for
software defect prediction using evolutionary computing
based neural network for efficient fault classification.

III. Problem Definition

In software development life cycle the reliability
assurance is of great significance and to achieve it, the
defect prediction is an inevitable need. The defect
prediction can be performed using software metrics
data, in which either it is predicted whether the code is
defective or not or the magnitude of the probable defect
and its severity is examined. In this research work, the
predominant questions are whether evolutionary
computing schemes, specifically GA can optimize
neural network based artificial intelligence (AI) to achieve
optimal software defect prediction. An another question
that this research paper considers is that whether the
conventional Genetic Algorithm can be further enhanced
to deal with a scenario where multiple chromosomes are
having similar fitness, and how this enhancement would
perform classification or fault prediction?. In order to
explore the answers of this significant question, in this
paper it has been intended to optimize ANN learning
and respective optimal weight estimation using GA,
which has further being optimized to behave as an
Adaptive GA (A-GA) scheme that ensures adaptive GA
parameters (Crossover and mutation) estimation. Here,
considering requirements of object oriented software
metrics, CK metrics [22] have been considered that
characterizes overall features of software in terms of
varied component features. In this paper, the key
software metrics considered are WMC,
NOC,DIT,CBO,RFC,LCOM, which can be considered for
defect prediction in certain class or data model. Based
on the proposed model, the defect can be predicted
which can be useful for ensuring quality and reliability of
the software product. Given a training data, certain
learning model can be developed that can classify the
data for its faulty or non-faulty status. The artificial
intelligence technique neural network has been used
extensively so far for classification utilities, but being
conventional these approaches do suffer from local
minima and weight update issues. Thus, to enhance the
systems, certain global optimization schemes like
evolutionary computing can be considered. Since
Particle Swarm Optimization suffers due to optimal
minima and convergence issues, here we proposed an
adaptive GA (A-GA) for ANN weight estimation where
the weights are estimated dynamically in each iteration.
Here, mean square error has been considered as the
fitness value for A-GA. Further, the GA parameters such
as crossover probability and mutation probability can be
adaptively updated to make the overall system more
robust and efficient. The optimization of ANN with A-GA
can make it more effective and can be a potential
candidate for fault detection in SDLC applications. The

© 2015 Global Journals Inc. (US)1

16

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

performance evaluation for these two approaches can
be done in terms of accuracy, precision, recall,
specificity etc.

IV. Proposed System

This section discusses the proposed
evolutionary computing based hybrid neural network
(HENN) for software defect prediction.
HENN: Evolutionary Computing Based Neural Network
for Software Defect Prediction

Neural networks (NN) have seen an explosion
of interest over the years, and are being successfully
applied across a range of problem domains. Indeed,
anywhere dealing with the problem of classification and
prediction, neural networks are being used. For software
defect prediction, ANN can be employed with learning
approaches such as Gradient Descent (GD), Gauss
Newton, and Levenberg Marquardt (LM) etc. Unlike
conventional approach, in this paper, we have proposed
an evolutionary computing technique called Adaptive
Genetic Algorithm for ANN learning optimization and
weight estimation, which has been further employed for
fault prediction. Here, we intend to find relation between
object oriented software metrics and fault prone classes
and six CK metrics; WMC, NOC, DIT, RFC, CBO, LCOM
have been taken as independent variable while fault
data has been considered as dependent data. To
design ANN, six inputs have been considered which do
receive CK metrics individually as input having multiple
classes, as per benchmark data (here PROMISE data).
In this paper we have considered 8 hidden layers. Since,
in the proposed SDP model, only FAULTY and NON-
FAULTY are the results expected for prediction,
therefore only one output node. The overall design of the
proposed ANN model can be presented as follows:

Input Layer

Hidden Layer

Output Layer

WMC

NOC

DIT

CBO

RFC

LCOM

W

Wk

Figure 1 : ANN model for Defect prediction

The above mentioned figure illustrates the
architecture of ANN containing three layers i.e., input
layer, hidden layer and output layer. In the considered
ANN model, the linear activation function has been used

for input layer i.e., the output of the output layer is
treated as input of the input layer(𝑂𝑂𝑜𝑜 = 𝐼𝐼𝑖𝑖). Further, the
sigmoid function has been employed for hidden layer𝑂𝑂ℎ .
Hence, the result of the hidden nodes 𝑂𝑂ℎ with the fed
input of 𝐼𝐼ℎ is estimated mathematically as 𝑂𝑂ℎ =

1
1+𝑒𝑒−𝐼𝐼ℎ

and final outcome of output nodes Oo is presented

mathematically by𝑂𝑂𝑜𝑜 = 1
1+𝑒𝑒−𝑂𝑂𝑖𝑖

.
In general, ANN is represented by a function

𝑌𝑌′ = 𝑓𝑓(𝑊𝑊,𝑋𝑋) where 𝑌𝑌′ represents the output vector
and𝑊𝑊 and 𝑋𝑋 are the weight vector and the input vector
respectively. In process, the weight factor 𝑊𝑊is updated
in each iterations to reduce Mean Square Error (MSE),
which is estimated as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 (1)

Where 𝑦𝑦 represents the actual output while the expected
output is given by𝑦𝑦𝑖𝑖′ .

In order to process the datasets using ANN, at
first the normalization of data is required. A discussion
of the proposed data normalization technique in this
paper is given as follows:

a) Data normalization
In the proposed model, initially the

normalization has been performed before data
processing that strengthens the system for better
readability and defect prediction. Here the data
normalization has been done over the range of [0, 1] for
adjusting the defined range of input feature value and
avoid the saturation of neurons. A number of schemes
such as Min-Max normalization, Z-Score normalization
and decimal scaling can be employed for the purpose
of data normalization. In this paper, Min-Max
normalization approach has been used that performs a
linear transformation on the original data and maps
each of the actual data 𝑥𝑥𝑖𝑖 of attribute 𝑋𝑋 to normalized
value 𝑥𝑥′𝑖𝑖 that exists in the range of [0, 1]. The Min-Max
based normalized data has been obtained by the
following expression:

 𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑒𝑒𝑁𝑁(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖" = 𝑥𝑥𝑖𝑖−𝑁𝑁𝑖𝑖𝑛𝑛 (𝑋𝑋)
𝑁𝑁𝑁𝑁𝑥𝑥 (𝑋𝑋)−𝑁𝑁𝑖𝑖𝑛𝑛 (𝑋𝑋)

 (2)

Where 𝑁𝑁𝑁𝑁𝑥𝑥(𝑋𝑋) and 𝑁𝑁𝑖𝑖𝑛𝑛(𝑋𝑋) represent the
maximum and minimum value of the attribute 𝑋𝑋
respectively. Performing data normalization the ANN
model has been employed for fault classification and
SDP functions.

In ANN based artificial intelligence systems, the
efficient weight estimation is of great significance and till
existing approaches have explored techniques such as
Gauss Newton, Gradient descent, Levenberg Marquardt
etc. Unfortunately these approaches couldn’t be
enhanced by scientific society to make weight
estimation effective by means of certain global
optimization techniques such as Genetic Algorithm.
Efficient weight estimation during ANN learning can

© 2015 Global Journals Inc. (US)

17

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

make classification optimal. This requirement motivated
us to employ genetic algorithm for dynamic weight
estimation during ANN learning. A brief discussion of the
proposed Adaptive Genetic Algorithm (A-GA) is given in
the following section.

b) Adaptive Genetic Algorithm(A-GA)
Genetic Algorithm (GA) is an adaptive search

method for finding optimal or near optimal solutions,
premised on the evolutionary ideas of natural selection.
The fundamental concept of GA is emphasized on
simulating processes in the natural system required for
evolution, distinctively those that consider the Charles
Darwin principles representing the terms of the survival
of the fittest. Considering procedural flow, GA at first
generates the initial population arbitrarily, where
population refers a set of solutions. These solutions are
nothing else but a chromosome that possesses a form
of binary strings where all the comprising parameters
are supposed to be encoded. Generating the
population, GA estimates the fitness function of
individual chromosome. Here the fitness function states
toward a user-defined function that returns the
evaluation results of each chromosome, thus a higher
fitness value means its chromosome is a dominant
gene. As per retrieved fitness values, offspring are
generated using genetic operators—crossover and
mutation. Applying these genetic operators the
generations of the population are repeated iteratively
until the stopping criteria are satisfied and an optimal
solution is achieved. As illustrated in Figure-1, in this
paper, the proposed HENN model comprises𝑖𝑖 − ℎ − 𝑜𝑜
network configuration with 𝑖𝑖 input layer, ℎ hidden layer
and 𝑂𝑂 output layer or neurons. In the proposed ANN
model, all the six considered CK metrics or feature
vector are fed as input to the individual input node,
where each feature vector metrics accompanies the
number of classes available in datasets. Considering
Figure-1 and relevant network configuration, there is N
weight required to be estimated. Mathematically, the
number of weight vectors is:

 𝑁𝑁 = (𝑖𝑖 + 𝑂𝑂) ∗ ℎ (3)

Here, the individual weight, which is considered
as gene in the chromosomes of the A-GA, is a real
number. Considering the gene length or the number of
digits be𝑁𝑁. Then the length of the chromosome 𝐿𝐿𝐶𝐶ℎ𝑁𝑁𝑜𝑜𝑁𝑁
can be estimated by the following expression:

 𝐿𝐿𝐶𝐶ℎ𝑁𝑁𝑜𝑜𝑁𝑁 = 𝑁𝑁 ∗ 𝑁𝑁 = (𝑖𝑖 + 𝑂𝑂) ∗ ℎ ∗ 𝑁𝑁 (4)

These all chromosomes are considered as the
population of the genetic algorithm. In the proposed
model to estimate the fitness value of the individual
chromosome, the weights are required to be extracted
from the individual chromosome. In our proposed
model, the weights (𝑊𝑊𝑘𝑘) are estimated by the following
expression:

 𝑊𝑊𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑖𝑖𝑓𝑓 0 ≤ 𝑥𝑥𝑘𝑘𝑁𝑁+1 < 5

−
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2+𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3+⋯+𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

𝑖𝑖𝑓𝑓 5 <= 𝑥𝑥𝑘𝑘𝑁𝑁+𝑁𝑁 <= 9

+
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2+𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3+⋯+𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

� (5)

In order to process the Adaptive Genetic
Algorithm (A-GA), the fitness values for each
chromosome are required to be estimated. The fitness
generation algorithm for the proposed A-GA system is
given in Figure-2. The fitness values of each
chromosome is estimated on the basis of the derived
fitness function and the considered algorithm for
deriving fitness function are 𝐼𝐼�̅�𝑖 = (𝐼𝐼1𝑖𝑖 , 𝐼𝐼2𝑖𝑖 , 𝐼𝐼3𝑖𝑖 ,⋯ , 𝐼𝐼𝑁𝑁𝑖𝑖)
and 𝑇𝑇�𝑖𝑖 = (𝑇𝑇1𝑖𝑖 ,𝑇𝑇2𝑖𝑖 ,𝑇𝑇3𝑖𝑖 ,⋯ ,𝑇𝑇𝑛𝑛𝑖𝑖) . For each
chromosome 𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1, 2, 3, … . ,𝑝𝑝 , belonging to the
current population 𝑃𝑃𝑖𝑖 of size𝑃𝑃.

Algorithm for Fitness Estimation

Input:𝐼𝐼�̅�𝑖 = (𝐼𝐼1𝑖𝑖 , 𝐼𝐼2𝑖𝑖 , 𝐼𝐼3𝑖𝑖 ,⋯ , 𝐼𝐼𝑁𝑁𝑖𝑖)
Output:𝑇𝑇�𝑖𝑖 = (𝑇𝑇1𝑖𝑖 ,𝑇𝑇2𝑖𝑖 ,𝑇𝑇3𝑖𝑖 ,⋯ ,𝑇𝑇𝑛𝑛𝑖𝑖)
Where 𝐼𝐼�̅�𝑖 ,𝑇𝑇�𝑖𝑖 represent the input and output pairs of the
𝑖𝑖 − ℎ − 𝑜𝑜 configuration of neural network.

Phase-1 : Weights 𝑊𝑊�𝑖𝑖 from 𝐶𝐶𝑖𝑖 can be estimated by

𝑊𝑊𝑘𝑘 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑖𝑖𝑓𝑓 0 ≤ 𝑥𝑥𝑘𝑘𝑁𝑁+1 < 5

−
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2 + 𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

𝑖𝑖𝑓𝑓 5 <= 𝑥𝑥𝑘𝑘𝑁𝑁+𝑁𝑁 <= 9

+
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2 + 𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

�

Phase-2: Considering 𝑊𝑊�𝑖𝑖 as a constant weight, train the
network for 𝑁𝑁 input instances and estimate output 𝑂𝑂𝑖𝑖
Phase-3: Estimate error 𝑀𝑀𝑗𝑗 for each input instance 𝑗𝑗

𝑀𝑀𝑗𝑗 = (𝑇𝑇𝑗𝑗𝑖𝑖 − 𝑂𝑂𝑗𝑗𝑖𝑖)

Phase-4: Estimate Root mean square error (RMSE) of
chromosome𝐶𝐶𝑖𝑖

𝑀𝑀𝑖𝑖 = �∑ 𝑀𝑀𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1

𝑁𝑁

Where 𝑁𝑁 is the total number of training data set

Phase-5: Estimate the fitnessvalue for chromosome𝐶𝐶𝑖𝑖

𝐹𝐹𝑖𝑖 =
1
𝑀𝑀𝑖𝑖

=
1

�∑ 𝑀𝑀𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1
𝑁𝑁

Figure 2 : Algorithm for Fitness generation using A-GA

This is the matter of fact that the evolutionary
computing scheme named Genetic Algorithm has
established itself as a potential optimization technique
for various application scenarios, still this approach
possess scopes for further optimization that specifically
depends on the working environment. In this paper,
there might be the possibility that after every generation
to achieve optimal fitness, certain new population would
be generated and thus the processing data might be
increased after each iterations, thus resulting into certain

© 2015 Global Journals Inc. (US)1

18

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

restraints such as premature convergence caused due
to local optima and low convergence speed, which is
common in other evolutionary techniques such as
Particle Swarm Optimization. In order to alleviate these
issues, the parameters like cross over probability (𝑃𝑃𝑐𝑐)
and mutation probability (𝑃𝑃𝑁𝑁) can be made dynamic and
weight adaptive. In addition, such novelty can deal with
a common scenario, where there is the possibility of
multiple chromosomes having similar fitness value,
causing degraded classification accuracy. Taking into
consideration of these all factors and motivations, in this
paper a weight adaptive genetic algorithm (A-GA) has
been developed where the genetic parameters
(Crossover and mutation) are updated dynamically. In
the proposed approach the parameters 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑁𝑁have
been dynamically updated by means of the following
mathematical model:

 (𝑃𝑃𝑐𝑐)𝑘𝑘+1 = (𝑃𝑃𝑐𝑐)𝑘𝑘 −
𝐶𝐶1∗𝑛𝑛

5
 (6)

(𝑃𝑃𝑁𝑁)𝑘𝑘+1 = (𝑃𝑃𝑁𝑁)𝑘𝑘 −
𝐶𝐶2 ∗ 𝑛𝑛

5

Where (𝑃𝑃𝑐𝑐)𝑘𝑘+1
 and (𝑃𝑃𝑁𝑁)𝑘𝑘+1

 represent the
updated probability of cross over and mutation, (𝑃𝑃𝑐𝑐)𝑘𝑘

and (𝑃𝑃𝑁𝑁)𝑘𝑘are the current probability of cross over and
mutation, 𝐶𝐶1

 and 𝐶𝐶2
 can be the positive constant and𝑛𝑛 is

the number of chromosome having same fitness value.
Thus, implementing these discussed approaches, if the
final output estimated is greater than 0.5, then the class
is labeled as FAULTY otherwise NON-FAULTY. Figure-3
represents the overall process of software defect
prediction using Adaptive Genetic Algorithm (A-GA).

Generate Random Population of
‘n=50’ genes or Chrosomes

Extract the Weight of each
chromosomes

Fed the Weight values for
training in HENN model

Estimate the Fitness value for
each chrosomesPerform Crossover

Replace the Minimum Fitness
value Chromosome by Maximum

fitness value Chromosome

Is threshold meet? (If
Stop Criteria is
accomplished.

Implement the Model for
Software Defect Prediction

No

Yes

Figure 3 : Proposed HENN Scheme for Software Defect Prediction

The discussion of Figure-3 for HENN simulation is given
as follows:
i. HENN-SDP Simulation

As illustrated in Figure-1, in the proposed HENN
model, three layers of neural network has been
considered comprising six input nodes, eight hidden

nodes and one output node. The overall process of
HENN based fault estimation is discussed as follows:

Chromosome Initialization: Initial chromosome selection
with population size is 50 has been considered using
random selection process.

© 2015 Global Journals Inc. (US)

19

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

Weight Estimation: Obtained the weight vector W_kfor
each chromosome as the input to hiddenlayer and
hidden layer to output layer and thus the weight of input
to hidden node and hidden node to output are
estimated using equation 5.
Fitness Estimation: On the basis of weights retrieved, the
fitness value is estimated for each chromosome, where
the proposed HENN intends to minimize the mean
square error as defined in Figure 2.
Ranking of Chromosomes: Perform the ranking of each
chromosomes based on respective fitness value and
substitute the chromosomes with minimum fitness value
by the chromosomes with highest fitness value
chromosome.
Crossover: Perform two point crossover
processdynamically vary the GA parameters Pcand Pm till
reaching optimal criteria using equation(6).

In the simulation model, the initial Pc and Pm are
0.6 and 0.1 respectively and n signifies the number of
chromosome having similar fitness value.
Stopping Criteria: The developed system terminates
once the 95% chromosomes in the gene pool
accomplishes its unique fitness value and beyond this
the fitness level of chromosomes gets saturated.
Classify Faults: If the final weight is greater than 0.5, then
the class is labeled as FAULTY otherwise NON-FAULTY.
Confusion Matrix Generate the confusion matrix for each
classes of OO-SM and classify fault/non-fault
distribution for performance evaluation.

Thus, employing the proposed HENN model,
the fault classification and prediction has been done.
The simulation, results and discussion is provided in the
following section.

V. Result and Analysis

This section discusses the research variables,
simulation setups, results obtained and respective
performance analysis.

a) Data collection
In this paper, the CK metric suites have been

employed which have been defined for varied objectives
such as software fault detection/prediction, effort
evaluation, re-usability and maintenance. Considering
the robustness of CK metric suite [27], it has been used
as object oriented software metrics which has been
processed using Chidamber and Kemerer Java Metrics
tool (CKJM) tool that extracts software metrics by
executing byte code of compiled Java cases and
assigns a definite weight of the comprising classes
having feature vectors. In this paper, PROMISE fault
benchmark data [39] and NASA MDP datasets [40] and
PROMISE repository to evaluate the performance of the
proposed fault prediction scheme. We intended to
establish the relationship between Object-Oriented
software metrics (OO-SM) and the fault proneness at the

class level. In order to perform defect prediction using
regression analysis paradigm, we have considered fault
as a dependent variable while the CK metric as the
independent variable. The predominant OO-SM metrics
are given in Table-1.

Table 1 : Object Oriented Software Metrics (CK Metrics
[22])

WMC Overall complexities of the methods in
comprising classes

NOC Number of sub-classes subordinate to a class
in the class hierarchy

DIT Maximum height of the class hierarchy
CBO Number of other classes to which it is allied

with
RFC A set of approaches that can be executed in

response to a message received by an object
of that class

LCOM Dissimilarity measurement of varied methods in
a class using instanced attributes/variables

NOM Number of methods (in a class)
NOA Number of attribute (in a class)
NOAI Number of attributes inherited by subclasses.
NOMI Number of methods inherited by subclasses.
Fan-in Total number of local flows in certain process

and data structures from where it retrieves
information

Fan-out Total number of local flows in certain process
and data structures from where it retrieves

information
NOPM Total number of private methods in a class

NOPA Total number of private attribute in a class
NOPM Total number of public methods in a class
NOPA Total number of public attribute in a class
NLOC Size of program by counting the number of

lines in the source code.

In our work, we have developed a function to
explore the relation between Object-Oriented software
metrics (OO-SM) (WMC, NOC, DIT, RFC, CBO and
LCOM) and faults existing in class under consideration.
The minimization of faults can be of great significance
towards optimization of software equality, and to ensure
optimal defect prediction, the fault has been derived as
the function of software metrics as illustrated as follows:

𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝐹𝐹 = 𝑓𝑓(𝑊𝑊𝑀𝑀𝐶𝐶,𝑁𝑁𝑂𝑂𝐶𝐶,𝐷𝐷𝐼𝐼𝑇𝑇,𝐶𝐶𝐶𝐶𝑂𝑂,𝑅𝑅𝐹𝐹𝐶𝐶, 𝐿𝐿𝐶𝐶𝑂𝑂𝑀𝑀)

We used four public domain defect datasets
from the PROMISE repository [9][39]. The considered
data sets are JEdit, IVY, Ant and Camel which contain
static code measures along with varied modules sizes,
defective modules and defect rates. In our simulation
model, the respective extracted weights and features of
the data classes are taken as input. The datasets with
respective classes or modules are given in Table-2.

Table 2 : PROMISE Data and modules

PROMISE JEdit IVY Ant Camel

Number of
modules

492 352 744 965

© 2015 Global Journals Inc. (US)1

20

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

In this paper, HENN algorithm has been
developed for simulation using MATLAB 2012b software
tool having artificial intelligence and ANN toolboxes. The
proposed models examined defect datasets and the
FAULTY and NON FAULTY data have been classified.
Here on the basis of FAULT distribution by proposed
model, a confusion matrix has been generated that
encompasses two rows and columns comprising true
negatives, true positive, false negative and false positive
variables. The respective values of True negatives (TN)
refer the modules which are NON FAULTY or fault-free
on the other hand, true positives (TP) represents for
those modules which are classified as FAULTY. False
negatives (FN) are those modules which are FAULTY
and are classified incorrectly as NON FAULTY. Similarly,
false positives (FP) modules are those modules which
are faultless but are classified incorrectly as FAULTY. A
matrix presentation of confusion matrix is given in Table
3.

Table 3 : Confusion Matrix

 Predicted
Defective

Predicted Defect
Free FAULTY

 True Positive False Negative NON-FAULTY
 False Positive True Negative

Generally, the meanings of the values of the
binary variables are not needed to be defined, however,
in our work, especially for performance assessment the
variables have been labeled as positive and negative.
The positive levels refer towards the results as FAULTY
in that specific simulation scenario. In this paper, we
have measured the performance of the proposed HENN
SDP in terms of correctness, precision, F-measures,
accuracy, recall, specification and cost factor analysis. A
brief mathematical definition of these variables is given
as follows:

Table 4 : Performance Parameters

Construct Mathematical
Expression

Description

Recall TP/(TP+FN) Proportion of
defective units
correctly classified

Precision TP/(TP+FP) Proportion of Units
correctly predicted
as defective

Specification TN/(TN+FP) Proportion of
correctly classified
non defective units

F-measure 2.
𝑅𝑅𝑒𝑒𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁.𝑃𝑃𝑁𝑁𝑒𝑒𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑜𝑜𝑛𝑛
𝑅𝑅𝑒𝑒𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑁𝑁𝑒𝑒𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑜𝑜𝑛𝑛

Defined as harmonic
mean of precision
and recall

Accuracy (𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑃𝑃)/(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
+ 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃)

Proportion of
correctly defined
units

Performance analysis for proposed HENN SDP
model and other existing models

 SDP
Techniques

Accuracy
(%)

Precision
(%)

F-
Measure

(%)

LLE-SVM[41]

81.1

82.5

80.4

SVM [41]

69.4

68.1

69.7

SVM [42]

55.3

88.0

83.2

Natural Gas [48]

94.25

-

-

Symbolic

Regression [48]

89.50

-

-

 RBP-NN [48]

80.0

-

-

MLP [42]

86.6

86.6

87.4

Naive Based [42]

85.6

83.1

83.9

CPSO[43]

69.2

67.6

-

T-SVM [44]

75.8

84.1

80.91

GANN[43]

73.4

81.6

-

AdaBoost [43]

79.1

82.3

-

Random Forest

[50]

91.4

-

-

 k-NN [47]

91.8

-

-

C4.5 [47]

88.39

-

-

J 48 [47]

90.90

Levenberg-

Marquardt-NN
[47]

88.0

-

-

NNEP-

Evolutionary [43]

88.8

81.2

-

 PSO [46]

78.78

-

-

PSO-NN [48]

97.75

-

-

HENN SDP*

97.9*

1

98.9

 *-

The best performance of HENN

Thus, the results obtained exhibit that the

optimization made by means of Adaptive Genetic
Algorithm has enhanced ANN learning for fault
detection. The ultimate results obtained for HENN
represents the most effective and optimal results as
compared to other existing approaches, especially
neural network based SDP models. The performance
analysis for the proposed systems is given in Table-6.

Table

6

:

Performance analysis for proposed HENN SDP Model

Technique

Data

Modules

Accuracy

Precision

F-Measure

Recall

Specification

HENN

JEdit

492

0.9799

1

0.9897

1

0.9756

HENN

IVY

352

0.8835

0.9936

0.9380

0.8883

0.3333

HENN

Ant

744

0.8145

0.9343

0.8867

0.8438

0.6346

HENN

Camel

965

0.8114

1

0.8952

0.8102

1

© 2015 Global Journals Inc. (US)

21

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

Table 5 :

VI. Conclusion

Software defect prediction has become an
inevitable need for organizations to ensure quality and
reliability of software products. The early defect
prediction can facilitate managers to rectify and enrich
reliability of product. Approaches such as machine
learning and neural network have become eminent
solution for training and classification of data and can
be significant for defect prediction. However, these
approaches need optimization in terms of weight
update, parametric enhancement while performing
defect prediction. The local minima and convergence
issue of ANN can be significantly dealt with employing
evolutionary computing schemes and the
implementation of genetic algorithm can be the
dominant candidate. In this paper, Adaptive Genetic
Algorithm (A-GA) has been used for ANN optimization,
where A-GA functions for optimal weight estimation. The
proposed HENN model has been tested with PROMISE
data sets, where the average accuracy for HENN was
retrieved as 87.23 % while the best classification
performance was observed with JEdit datasets where
HENN exhibited 97.99% accuracy while ensuring 100%
precision. Performance in terms of F-measure using
HENN was obtained as 98.97%. The results also
depicted that A-GA based ANN can outperform Particle
Swarm Optimization based defect prediction schemes,
regression techniques, AdaBoost, and other
conventional weight estimation based ANN models. In
future, the efficiency of the proposed HENN model can
be examined in comparison with optimized machine
learning such as SVM with varied kernel functions.

References Références Referencias

1. Zuse H., “A Framework of Software Measurement,
Walter de Grutger Publish” 1998.

2. University of Texas, Software Quality Institute
Report, May 2002.

3. Rosenberg, L., S. B., Sheppard, “Metrics in Software
Process Assessment, Quality Assurance and Risk
Assessment”, 2nd International Symposium on
Software Metrics, London, October, 1994.

4. Boehm, B. W., Software Engineering Economics,
Prentice-Hall, 1981.

5. L.C. Briand, W.L. Melo, J. Wu st, “Assessing the
Applicability of Fault-Proneness Models Across
Object-Oriented Software Projects,” IEEE Trans.
Software Eng., vol. 28, no. 7, pp. 706-720, July
2002.

6. Kutlubay O., A. Bener, “A Machine Learning Based
Model for Software Defect Prediction,” working paer,
Boaziçi University, Computer Engineering
Department 2005.

7. Bo. Yang, Xiang Li, “A study on software reliability
prediction based on support vector machines”, The
Annual IEEE International Conference on Industrial

Engineering and Engineering Management, pp.
1176-1180, 2-4 Dec. 2007.

8. Sandhu, Parvinder Singh, Sunil Kumar, Hardeep
Singh, “Intelligence System for Software
Maintenance Severity Prediction”, Journal of
Computer Science, Vol. 3 (5), pp. 281-288, 2007.

9. Gondra, "Applying machine learning to software
fault-proneness prediction," Journal of Systems and
Software, vol. 81, no. 2, pp. 186-195, Feb. 2008.

10. Q. P Hu, Y. S. Dai, M. Xie, S. H. Ng.,”Early software
reliability prediction with extended ANN model,”
Proceedings of the 30th Annual International
Computer Software and Applications Conference
(COMPSAC’06), Vol. 2, pp. 234-239, September
2006.

11. F. B. E. Abreu, R. Carapuca, “Object-Oriented
software engineering: Measuring and controlling the
development process,” in Proceedings of the 4th
International Conference on Software Quality, vol.
186, 1994.

12. J. Bansiya, C. G. Davis, “A hierarchical model for
Object-Oriented design quality assessment,” ACM
Transactions on Programming Languages and
Systems., vol. 128, pp. 4–17, August 2002.

13. B. K. Kang and J. M. Bieman, “Cohesion and reuse
in an Object-Oriented system,” in Proceedings of
the ACM SIGSOFT Symposium on software
reusability, pp. 259–262, Seattle, March 1995.

14. L. C. Briand, J. Wust, J. W. Daly, D. V. Porter,
“Exploring the relationships between design
measures and software quality in Object-Oriented
systems,” The Journal of Systems and Software, vol.
51, pp. 245–273, May 2000.

15. L. Etzkorn, J. Bansiya, and C. Davis, “Design and
code complexity metrics for Object-Oriented
classes,” Object-Oriented Programming, vol. 12, no.
10, pp. 35–40, 1999.

16. [16] M. Halstead, Elements of Software Sciencel.
New York, USA: Elsevier Science, 1977.

17. B. Henderson-Sellers, Software Metrics. UK:
Prentice-Hall, 1996.

18. W. Li and S. Henry, “Maintenance metrics for the
Object-Oriented paradigm,” in Proceedings of First
International Software Metrics Symposium, pp. 52–
60, 1993.

19. T. J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, vol. 2, pp.
308–320, December 1976.

20. D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, “A
software complexity model of Object-Oriented
systems,” Decision Support Systems, vol. 13, no. 3,
pp. 241–262, 1995.

21. M. Lorenz and J. Kidd, Object-Oriented Software
Metrics. NJ, Englewood: Prentice-Hall, 1994.

22. S. R. Chidamber and C. F. Kemerer, “A metrics
suite for Object-Oriented design,” IEEE

© 2015 Global Journals Inc. (US)1

22

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

Transactions on Software Engineering on June
1994, vol. 20, pp. 476–493.

23. M. Harman, “Why the Virtual Nature of Software
makes it Ideal for Search Based Optimization”,
Fundamental Approaches to Software Engineering,
2010.

24. C. Grosan, and A. Abraham, “Hybrid Evolutionary
Algorithms: Methodologies, Architectures, and
Reviews”, Studies in Computational Intelligence, vol.
75, pp. 1-17, 2011.

25. Saida Benlarbi, Khaled El Emam, Nishith Geol
(1999), “Issues in Validating Object-Oriented Metrics
for Early Risk Prediction”, by Cistel Technology 210
Colonnade Road Suite 204 Nepean, Ontario
Canada K2E 7L5.

26. Lanubile F., Lonigro A., Visaggio G. “Comparing
Models for Identifying Fault-Prone Software
Components”, Proceedings of Seventh International
Conference on Software Engineering and
Knowledge Engineering, pp. 12-19, June 1995.

27. Fenton, N. E. and Neil, M., “A Critique of Software
Defect Prediction Models”, Bellini, I. Bruno, P. Nesi,
D. Rogai, University of Florence, IEEE Trans. Softw.
Engineering, vol. 25, Issue no. 5, pp. 675-689, 1999.

28. Giovanni Denaro, ”Estimating Software Fault-
Proneness for Tuning Testing Activities”
Proceedings of the 22nd International Conference
on Software Engineering, Limerick, Ireland, June
2000.

29. Manasi Deodhar, “Prediction Model and the Size
Factor for Fault-proneness of Object Oriented
Systems”, MS Thesis, Michigan Tech. University,
Dec. 2002.

30. Bellini, P., “Comparing Fault-Proneness Estimation
Models”, 10th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS'05), pp. 205-214, 2005

31. Khoshgoftaar, T.M., K. Gao and R. M. Szabo, “An
Application of Zero-Inflated Poisson Regression for
Software Fault Prediction. Software Reliability
Engineering”, ISSRE 2001. Proceedings of 12th
International Symposium, pp: 66 -73, 27-30 Nov.
2001.

32. Chug, A., Dhall, S., "Software defect prediction
using supervised learning algorithm and
unsupervised learning algorithm," Confluence 2013:
The Next Generation Information Technology
Summit, pp.173-179, 26-27 Sept. 2013.

33. Pushphavathi, T.P.; Suma, V.; Ramaswamy, V., "A
novel method for software defect prediction: Hybrid
of FCM and random forest," Electronics and
Communication Systems (ICECS), 2014
International Conference, vol., no., pp.1,5, 13-14
Feb. 2014.

34. Wang, S.; Yao, X., "Using Class Imbalance Learning
for Software Defect Prediction," Reliability, IEEE
Transactions, vol.62, no.2, pp.434-443, June 2013.

35. Brun, Y. and D. E. Michael, “Finding Latent Code
Errors via Machine Learning over Program
Executions”, Proceedings of the 26th International
Conference on Software Engineering, May, 2004.

36. F. Xing, P. Guo, M. R. Lyu, “A novel method for early
software quality prediction based on support vector
machine,” Software Reliability Engineering,
International Symposium, pp. 213–222, 2005.

37. Cai K Y, 0n the Neura1 Network Approach in
Software Reliability Modeling, Journal of Systems
and Software, pp 47-62, 2001.

38. S.A. Rojas and D. Fernandez-Reyes, “Adapting
multiple kernel parameters for support vector
machines using genetic algorithms,” The 2005 IEEE
Congress on Evolutionary Computation, vol. 1, pp.
626-631, September, 2005.

39. http://mdp.ivv.nasa.gov/.
40. http://promisedata.googlecode.com/svn/trunk/defec

t/
41. Chun Shan, Boyang Chen, Changzhen Hu, Jingfeng

Xue1, Ning Li, “SOFTWARE DEFECT PREDICTION
MODEL BASED ON LLE AND SVM”
Communications Security Conference; pp 1-5, 22-
24 May 2014.

42. Ye Xia, Guoying Yan, Xingwei Jiang, Yanyan Yang,
"A new metrics selection method for software defect
prediction," Progress in Informatics and Computing
(PIC), International Conference, pp.433-436, 16-18
May 2014.

43. Malhotra, R., Pritam, N., Singh, Y., "On the
applicability of evolutionary computation for
software defect prediction," Advances in
Computing, Communications and Informatics
(ICACCI, 2014 International Conference, pp.2249-
2257, 24-27 Sept. 2014.

44. Chug, A., Dhall, S., "Software defect prediction
using supervised learning algorithm and
unsupervised learning algorithm, "Confluence 2013:
The Next Generation Information Technology
Summit, pp.173-179, 26-27 Sept. 2013.

45. Armah, G.K., Guangchun Luo, Ke Qin, "Multilevel
data preprocessing for software defect prediction,"
Information Management, Innovation Management
and Industrial Engineering (ICIII), 2013 6th
International Conference, vol.2, pp.170-174, 23-24
Nov. 2013.

46. Verma, R., Gupta, A., "Software defect prediction
using two level data pre-processing," Recent
Advances in Computing and Software Systems
(RACSS), International Conference, pp.311-317, 25-
27 April 2012.

47. Malkit Singh, Dalwinder Singh Salaria, “Software
Defect Prediction Tool based on Neural Network”,
International Journal of Computer Applications,
Volume 70– No.22, pp-0975 – 8887, May 2013.

48. Anurag Shrivastava, Vishal Shrivastava, “A Hybrid
Model of Soft Computing Technique for Software

© 2015 Global Journals Inc. (US)

23

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

Fault Prediction”, International Journal of Current
Engineering and Tech. Vol. 4, No. 4, Aug 2014.

49. Riju Kaushal,Sunil Khullar, “PSO based neural
network approaches for prediction of level of
severity of faults in NASAs public domain defect
dataset”, International Journal of Information
Technology and Knowledge Management, Volume
5, No. 2, pp. 453-457, July-December 2012.

50. Mohamad Mahdi Askari, Vahid Khatibi Bardsiri,
“Software Defect Prediction using a High
Performance Neural Network”, International Journal
of Software Engineering and Its Applications, Vol. 8,
No. 12, pp. 177-188, 2014.

© 2015 Global Journals Inc. (US)1

24

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

	Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Problem Definition
	IV. Proposed System
	a) Data normalization
	b) Adaptive Genetic Algorithm(A-GA)

	V. Result and Analysis
	VI. Conclusion
	References Références Referencias

