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Adaptive Genetic Algorithm Based Artificial 
Neural Network for Software Defect Prediction 

Racharla Suresh Kumar α & Bachala Satyanarayana σ 

Abstract- To meet the requirement of an efficient software 
defect prediction,in this paper an evolutionary computing 
based neural network learning scheme has been developed 
that alleviates the existing Artificial Neural Network (ANN) 
limitations such as local minima and convergence issues. To 
achieve optimal software defect prediction, in this paper, 
Adaptive-Genetic Algorithm (A-GA) based ANN learning and 
weightestimation scheme has been developed. Unlike 
conventional GA, in this paper we have used adaptive 
crossover and mutation probability parameter that alleviates 
the issue of disruption towards optimal solution. We have used 
object oriented software metrics, CK metrics for fault 
prediction and the proposed Evolutionary Computing Based 
Hybrid Neural Network (HENN)algorithm has been examined 
for performance in terms of accuracy, precision, recall, F-
measure, completeness etc, where it has performed better as 
compared to major existing schemes. The proposed scheme 
exhibited 97.99% prediction accuracy while ensuring optimal 
precision, F-measure and recall. 
Keywords: software defect prediction, machine learning, 
genetic algorithm, artificial neural network, object 
oriented software metrics. 

I. Introduction 
s per high pace rise in software applications and 
major dependency on it, the fault prediction has 
become one of the inevitable parts of software 

development life cycle (SDLC) that can play significant 
role in reducing the probability of software failure.  

Software defect prediction (SDP) can be 
performed while planning to identify fault-prone modules 
in software product that as a result can provide the 
insight to the need for increased quality of monitoring 
during software development. In addition, it can also 
facilitate necessary approaches to incorporate certain 
proper fault verification schemes leading to enhanced 
software quality [1, 2, 3, 4] and reliability. SDP can be 
functional based on certain software metrics [3, 4, 5], 
such as source code changes, previous defects, etc. In 
fact software metrics are the quantitative data that are 
employed for characterizing the properties of source 
code and can be significant for predicting software 
quality. The efforts made through many generations 
have   facilitated   a   number

   
of

   
schemes  to  mitigate 
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defects, but the continuation of researches still indicates 
towards search for certain optimal SDP solution to 
ensure optimal performance, reliability, cost optimization 
and minimal maintenance. A number of efforts have 
been made for SDP using machine learning and neural 
network [6, 7, 8, 9, 10], clustering techniques, statistical 
method, mining and random forest [44, 45, 50] etc. In 
recent years, majority of software are being developed 
based on Object-Oriented (OO) paradigm. Thus, the 
quality of the software can be optimally assessed by 
employing software metrics, such as Abreu MOOD 
metric suite [11], QMOOD metrics suite [12], Bieman 
and Kang [13], Briand et al. [14], Etzkorn et al. [15], 
Halstead [16], Henderson-sellers [17], Li and Henry 
[18], McCabe [19], Tegarden et al. [20], Lorenz and 
Kidd [21] and CK metric [22] suite. These software 
metrics plays significant role in assessing the quality of 
software such as precision, accuracy, fault-resilience 
and sensitivity etc. The significance of these object 
oriented software metrics lies in their capability to 
predict the software quality in terms of adaptability, 
functionality, usability, portability, supportability, 
reliability and cost effectiveness. Predominantly two data 
driven algorithms, support vector machine (SVM) and 
artificial neural network (ANN) algorithms have been 
employed for fault detection. ANN approach functions 
on the basis of the human brain behaviorand possesses 
neurons and directed edges with certain weights 
existing between input and output layers. ANN employs 
output as the input so as to learn complex non-linear 
input-output relationship and can be stated to be a 
complex nonlinear mapping model between input and 
output layer. The processes in ANN comprise data sets 
to enhance the weight parameters, risk minimization 
scheme for stopping training as soon as the learning 
error enters in expected margin level. In fact, ANN has 
been employed in numerous utilities, but still it 
possesses certain limitations in terms of slow learning 
ability, local minima etc and hence require further 
optimization to achieve certain optimal SDP efficiency 
and performance. Thus, there is the requirement of 
further optimization of ANN approaches to accomplish a 
potential SDP solution. Some researches [23, 24] 
advocate the implementation of evolutionary computing 
techniques for SDP optimization. This paper proposes a 
novel evolutionary computing based enhanced ANN 
algorithmnamed Hybrid Evolutionary Computation 
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based Neural Network (HENN) for defect prediction and 
classification. HENN system employs Adaptive Genetic 
Algorithm (A-GA) for optimal weight estimation so as to 
enhance weight update and learning efficiency of the 
ANN.In this paper, the object oriented software metrics, 
CK metrics [22] have been employed as a fault 
classification data and the respective performance has 
been analyzed using confusion matrix.  

The remaining sections discusses, related work 
in Section II, problem definition is briefed in Section III, 
which has been followed by proposed research 
discussion in Section IV. Section V presents the results 
and analysis and conclusion has been discussed in 
Section VI. 

II. Related Work 

The emergence of software applications and 
associated need of quality and reliability has motivated 
software practitioners as well as academia to develop 
certain novel scheme for defect prediction.With an 
objective to examine the relation between software 
metrics and associated faults some initiatives were 
made in [25, 26, 27, 28, 29, 30] where machine learning 
mechanism were used for fault detection. With an 
enthuse to compare the performance of varied other 
schemes such as decision trees, naïve Bayes, and 1-
rule [31] performed fault detection using NASA MDP 
project. Chug et al [32] performed data mining based 
fault estimation using conventional J48, Random Forest, 
and Naive Bayesian Classifier (NBC) schemes but still 
couldn’t employ the benefits of advanced classification 
schemes. With an objective to enhance conventional 
schemes Pushphavathi et al [33] introduced hybrid 
scheme of random forest (RF) and Fuzzy C Means 
(FCM) clustering. Then while, these systems were found 
limited for unbalanced data sets, which motivated 
author [34] to propose an approach called 
AdaBoost.NC that explored varied kinds of class 
imbalance learning schemes comprising resampling 
techniques, threshold moving, and ensemble 
algorithms. With an objective to explore SVM 
optimization in [35, 36] a dynamic SVM model was 
proposed for fault detection in source code using with 
error data and faulty code execution. Researcher in [37] 
developed an ANN based SDP system. This is the 
matter of fact that SVM refers the functional paradigm of 
single layer perceptron’s NN which on addition with 
kernels behaves like multilayered perceptron’s [38]. Till 
available systems based neural network with 
conventional learning and weight estimation suffers from 
local optima and convergence issue, which has not 
been discussed dominantly. On contrary, these days the 
software are developed and examined for faults using 
object oriented software metrics which even being 
significant has not been explored in depth to ensure 
optimal solution for reliability oriented defect prediction. 

This paper intends to provide an optimal solution for 
software defect prediction using evolutionary computing 
based neural network for efficient fault classification. 

III. Problem Definition 

In software development life cycle the reliability 
assurance is of great significance and to achieve it, the 
defect prediction is an inevitable need. The defect 
prediction can be performed using software metrics 
data, in which either it is predicted whether the code is 
defective or not or the magnitude of the probable defect 
and its severity is examined. In this research work, the 
predominant questions are whether evolutionary 
computing schemes, specifically GA can optimize 
neural network based artificial intelligence (AI) to achieve 
optimal software defect prediction. An another question 
that this research paper considers is that whether the 
conventional Genetic Algorithm can be further enhanced 
to deal with a scenario where multiple chromosomes are 
having similar fitness, and how this enhancement would 
perform classification or fault prediction?. In order to 
explore the answers of this significant question, in this 
paper it has been intended to optimize ANN learning 
and respective optimal weight estimation using GA, 
which has further being optimized to behave as an 
Adaptive GA (A-GA) scheme that ensures adaptive GA 
parameters (Crossover and mutation) estimation. Here, 
considering requirements of object oriented software 
metrics, CK metrics [22] have been considered that 
characterizes overall features of software in terms of 
varied component features.  In this paper, the key 
software metrics considered are WMC, 
NOC,DIT,CBO,RFC,LCOM, which can be considered for 
defect prediction in certain class or data model. Based 
on the proposed model, the defect can be predicted 
which can be useful for ensuring quality and reliability of 
the software product. Given a training data, certain 
learning model can be developed that can classify the 
data for its faulty or non-faulty status. The artificial 
intelligence technique neural network has been used 
extensively so far for classification utilities, but being 
conventional these approaches do suffer from local 
minima and weight update issues. Thus, to enhance the 
systems, certain global optimization schemes like 
evolutionary computing can be considered. Since 
Particle Swarm Optimization suffers due to optimal 
minima and convergence issues, here we proposed an 
adaptive GA (A-GA) for ANN weight estimation where 
the weights are estimated dynamically in each iteration. 
Here, mean square error has been considered as the 
fitness value for A-GA. Further, the GA parameters such 
as crossover probability and mutation probability can be 
adaptively updated to make the overall system more 
robust and efficient. The optimization of ANN with A-GA 
can make it more effective and can be a potential 
candidate for fault detection in SDLC applications. The 
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performance evaluation for these two approaches can 
be done in terms of accuracy, precision, recall, 
specificity etc.  

IV. Proposed System 

This section discusses the proposed 
evolutionary computing based hybrid neural network 
(HENN) for software defect prediction.  
HENN: Evolutionary Computing Based Neural Network 
for Software Defect Prediction 

Neural networks (NN) have seen an explosion 
of interest over the years, and are being successfully 
applied across a range of problem domains. Indeed, 
anywhere dealing with the problem of classification and 
prediction, neural networks are being used. For software 
defect prediction, ANN can be employed with learning 
approaches such as Gradient Descent (GD), Gauss 
Newton, and Levenberg Marquardt (LM) etc. Unlike 
conventional approach, in this paper, we have proposed 
an evolutionary computing technique called Adaptive 
Genetic Algorithm for ANN learning optimization and 
weight estimation, which has been further employed for 
fault prediction. Here, we intend to find relation between 
object oriented software metrics and fault prone classes 
and six CK metrics; WMC, NOC, DIT, RFC, CBO, LCOM 
have been taken as independent variable while fault 
data has been considered as dependent data. To 
design ANN, six inputs have been considered which do 
receive CK metrics individually as input having multiple 
classes, as per benchmark data (here PROMISE data). 
In this paper we have considered 8 hidden layers. Since, 
in the proposed SDP model, only FAULTY and NON-
FAULTY are the results expected for prediction, 
therefore only one output node. The overall design of the 
proposed ANN model can be presented as follows: 

Input Layer

Hidden Layer

Output Layer

WMC

NOC

DIT

CBO

RFC

LCOM

W

Wk

 

Figure 1 : ANN model for Defect prediction 

The above mentioned figure illustrates the 
architecture of ANN containing three layers i.e., input 
layer, hidden layer and output layer. In the considered 
ANN model, the linear activation function has been used 

for input layer i.e., the output of the output layer is 
treated as input of the input layer(𝑂𝑂𝑜𝑜 =  𝐼𝐼𝑖𝑖). Further, the 
sigmoid function has been employed for hidden layer𝑂𝑂ℎ . 
Hence, the result of the hidden nodes 𝑂𝑂ℎ  with the fed 
input of 𝐼𝐼ℎ is estimated mathematically as 𝑂𝑂ℎ =

1
1+𝑒𝑒−𝐼𝐼ℎ

and final outcome of output nodes Oo  is presented 

mathematically by𝑂𝑂𝑜𝑜 = 1
1+𝑒𝑒−𝑂𝑂𝑖𝑖

. 
In general, ANN is represented by a function 

𝑌𝑌′ = 𝑓𝑓(𝑊𝑊,𝑋𝑋) where 𝑌𝑌′   represents the output vector 
and𝑊𝑊 and 𝑋𝑋 are the weight vector and the input vector 
respectively. In process, the weight factor 𝑊𝑊is updated 
in each iterations to reduce Mean Square Error (MSE), 
which is estimated as follows: 

                       𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1                        (1) 

Where 𝑦𝑦 represents the actual output while the expected 
output is given by𝑦𝑦𝑖𝑖′ . 

In order to process the datasets using ANN, at 
first the normalization of data is required. A discussion 
of the proposed data normalization technique in this 
paper is given as follows: 

a) Data normalization 
In the proposed model, initially the 

normalization has been performed before data 
processing that strengthens the system for better 
readability and defect prediction. Here the data 
normalization has been done over the range of [0, 1] for 
adjusting the defined range of input feature value and 
avoid the saturation of neurons. A number of schemes 
such as Min-Max normalization, Z-Score normalization 
and decimal scaling can be employed for the purpose 
of data normalization. In this paper, Min-Max 
normalization approach has been used that performs a 
linear transformation on the original data and maps 
each of the actual data 𝑥𝑥𝑖𝑖  of attribute 𝑋𝑋 to normalized 
value 𝑥𝑥′𝑖𝑖  that exists in the range of [0, 1]. The Min-Max 
based normalized data has been obtained by the 
following expression: 

           𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑒𝑒𝑁𝑁(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖" = 𝑥𝑥𝑖𝑖−𝑁𝑁𝑖𝑖𝑛𝑛 (𝑋𝑋)
𝑁𝑁𝑁𝑁𝑥𝑥 (𝑋𝑋)−𝑁𝑁𝑖𝑖𝑛𝑛 (𝑋𝑋)

               (2) 

Where 𝑁𝑁𝑁𝑁𝑥𝑥(𝑋𝑋)  and 𝑁𝑁𝑖𝑖𝑛𝑛(𝑋𝑋) represent the 
maximum and minimum value of the attribute 𝑋𝑋 
respectively. Performing data normalization the ANN 
model has been employed for fault classification and 
SDP functions.  

In ANN based artificial intelligence systems, the 
efficient weight estimation is of great significance and till 
existing approaches have explored techniques such as 
Gauss Newton, Gradient descent, Levenberg Marquardt 
etc. Unfortunately these approaches couldn’t be 
enhanced by scientific society to make weight 
estimation effective by means of certain global 
optimization techniques such as Genetic Algorithm. 
Efficient weight estimation during ANN learning can 
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make classification optimal. This requirement motivated 
us to employ genetic algorithm for dynamic weight 
estimation during ANN learning. A brief discussion of the 
proposed Adaptive Genetic Algorithm (A-GA) is given in 
the following section. 

b) Adaptive Genetic Algorithm(A-GA) 
Genetic Algorithm (GA) is an adaptive search 

method for finding optimal or near optimal solutions, 
premised on the evolutionary ideas of natural selection. 
The fundamental concept of GA is emphasized on 
simulating processes in the natural system required for 
evolution, distinctively those that consider the Charles 
Darwin principles representing the terms of the survival 
of the fittest. Considering procedural flow, GA at first 
generates the initial population arbitrarily, where 
population refers a set of solutions. These solutions are 
nothing else but a chromosome that possesses a form 
of binary strings where all the comprising parameters 
are supposed to be encoded. Generating the 
population, GA estimates the fitness function of 
individual chromosome. Here the fitness function states 
toward a user-defined function that returns the 
evaluation results of each chromosome, thus a higher 
fitness value means its chromosome is a dominant 
gene. As per retrieved fitness values, offspring are 
generated using genetic operators—crossover and 
mutation. Applying these genetic operators the 
generations of the population are repeated iteratively 
until the stopping criteria are satisfied and an optimal 
solution is achieved. As illustrated in Figure-1, in this 
paper, the proposed HENN model comprises𝑖𝑖 − ℎ − 𝑜𝑜 
network configuration with 𝑖𝑖  input layer, ℎ hidden layer 
and 𝑂𝑂  output layer or neurons. In the proposed ANN 
model, all the six considered CK metrics or feature 
vector are fed as input to the individual input node, 
where each feature vector metrics accompanies the 
number of classes available in datasets. Considering 
Figure-1 and relevant network configuration, there is N 
weight required to be estimated. Mathematically, the 
number of weight vectors is: 

                           𝑁𝑁 =  (𝑖𝑖 + 𝑂𝑂) ∗ ℎ                          (3) 

Here, the individual weight, which is considered 
as gene in the chromosomes of the A-GA, is a real 
number. Considering the gene length or the number of 
digits be𝑁𝑁. Then the length of the chromosome 𝐿𝐿𝐶𝐶ℎ𝑁𝑁𝑜𝑜𝑁𝑁  
can be estimated by the following expression: 

      𝐿𝐿𝐶𝐶ℎ𝑁𝑁𝑜𝑜𝑁𝑁 =  𝑁𝑁 ∗ 𝑁𝑁 =  (𝑖𝑖 +  𝑂𝑂)  ∗ ℎ ∗ 𝑁𝑁      (4)                     

These all chromosomes are considered as the 
population of the genetic algorithm. In the proposed 
model to estimate the fitness value of the individual 
chromosome, the weights are required to be extracted 
from the individual chromosome. In our proposed 
model, the weights (𝑊𝑊𝑘𝑘) are estimated by the following 
expression: 

    𝑊𝑊𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑖𝑖𝑓𝑓 0 ≤ 𝑥𝑥𝑘𝑘𝑁𝑁+1 < 5

−
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2+𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3+⋯+𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

𝑖𝑖𝑓𝑓 5 <= 𝑥𝑥𝑘𝑘𝑁𝑁+𝑁𝑁 <= 9

+
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2+𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3+⋯+𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

�        (5) 

In order to process the Adaptive Genetic 
Algorithm (A-GA), the fitness values for each 
chromosome are required to be estimated. The fitness 
generation algorithm for the proposed A-GA system is 
given in Figure-2. The fitness values of each 
chromosome is estimated on the basis of the derived 
fitness function and the considered algorithm for 
deriving fitness function are 𝐼𝐼�̅�𝑖 = (𝐼𝐼1𝑖𝑖 , 𝐼𝐼2𝑖𝑖 , 𝐼𝐼3𝑖𝑖 ,⋯ , 𝐼𝐼𝑁𝑁𝑖𝑖) 
and 𝑇𝑇�𝑖𝑖 = (𝑇𝑇1𝑖𝑖 ,𝑇𝑇2𝑖𝑖 ,𝑇𝑇3𝑖𝑖 ,⋯ ,𝑇𝑇𝑛𝑛𝑖𝑖 ) . For each 
chromosome 𝐶𝐶𝑖𝑖 , 𝑖𝑖 =  1, 2, 3, … . ,𝑝𝑝 , belonging to the 
current population 𝑃𝑃𝑖𝑖  of size𝑃𝑃.  

Algorithm for Fitness Estimation 

Input:𝐼𝐼�̅�𝑖 = (𝐼𝐼1𝑖𝑖 , 𝐼𝐼2𝑖𝑖 , 𝐼𝐼3𝑖𝑖 ,⋯ , 𝐼𝐼𝑁𝑁𝑖𝑖) 
Output:𝑇𝑇�𝑖𝑖 = (𝑇𝑇1𝑖𝑖 ,𝑇𝑇2𝑖𝑖 ,𝑇𝑇3𝑖𝑖 ,⋯ ,𝑇𝑇𝑛𝑛𝑖𝑖 ) 
Where 𝐼𝐼�̅�𝑖 ,𝑇𝑇�𝑖𝑖 represent the input and output pairs of the 
𝑖𝑖 − ℎ − 𝑜𝑜 configuration of neural network. 

Phase-1 : Weights  𝑊𝑊�𝑖𝑖 from 𝐶𝐶𝑖𝑖 can be estimated by  

𝑊𝑊𝑘𝑘 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑖𝑖𝑓𝑓 0 ≤ 𝑥𝑥𝑘𝑘𝑁𝑁+1 < 5

−
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2 + 𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

𝑖𝑖𝑓𝑓 5 <= 𝑥𝑥𝑘𝑘𝑁𝑁+𝑁𝑁 <= 9

+
𝑥𝑥𝑘𝑘𝑁𝑁+2∗10𝑁𝑁−2 + 𝑥𝑥𝑘𝑘𝑁𝑁+3∗10𝑁𝑁−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑁𝑁

10𝑁𝑁−2

� 

Phase-2: Considering 𝑊𝑊�𝑖𝑖 as a constant weight, train the 
network for 𝑁𝑁 input instances and estimate output 𝑂𝑂𝑖𝑖 
Phase-3: Estimate error 𝑀𝑀𝑗𝑗 for each input instance 𝑗𝑗 

𝑀𝑀𝑗𝑗 = (𝑇𝑇𝑗𝑗𝑖𝑖 − 𝑂𝑂𝑗𝑗𝑖𝑖 ) 

Phase-4: Estimate Root mean square error (RMSE) of 
chromosome𝐶𝐶𝑖𝑖 

𝑀𝑀𝑖𝑖 = �∑ 𝑀𝑀𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1

𝑁𝑁
 

Where 𝑁𝑁 is the total number of training data set 

Phase-5: Estimate the fitnessvalue for chromosome𝐶𝐶𝑖𝑖 

𝐹𝐹𝑖𝑖 =
1
𝑀𝑀𝑖𝑖

=
1

�∑ 𝑀𝑀𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1
𝑁𝑁

 

Figure  2  :  Algorithm for Fitness generation using A-GA 

This is the matter of fact that the evolutionary 
computing scheme named Genetic Algorithm has 
established itself as a potential optimization technique 
for various application scenarios, still this approach 
possess scopes for further optimization that specifically 
depends on the working environment. In this paper, 
there might be the possibility that after every generation 
to achieve optimal fitness, certain new population would 
be generated and thus the processing data might be 
increased after each iterations, thus resulting into certain 
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restraints such as premature convergence caused due 
to local optima and low convergence speed, which is 
common in other evolutionary techniques such as 
Particle Swarm Optimization. In order to alleviate these 
issues, the parameters like cross over probability (𝑃𝑃𝑐𝑐 ) 
and mutation probability (𝑃𝑃𝑁𝑁 ) can be made dynamic and 
weight adaptive. In addition, such novelty can deal with 
a common scenario, where there is the possibility of 
multiple chromosomes having similar fitness value, 
causing degraded classification accuracy. Taking into 
consideration of these all factors and motivations, in this 
paper a weight adaptive genetic algorithm (A-GA) has 
been developed where the genetic parameters 
(Crossover and mutation) are updated dynamically. In 
the proposed approach the parameters 𝑃𝑃𝑐𝑐  and 𝑃𝑃𝑁𝑁have 
been dynamically updated by means of the following 
mathematical model:  

                        (𝑃𝑃𝑐𝑐)𝑘𝑘+1 = (𝑃𝑃𝑐𝑐)𝑘𝑘 −
𝐶𝐶1∗𝑛𝑛

5
                            (6) 

(𝑃𝑃𝑁𝑁)𝑘𝑘+1 = (𝑃𝑃𝑁𝑁)𝑘𝑘 −
𝐶𝐶2 ∗ 𝑛𝑛

5
 

Where (𝑃𝑃𝑐𝑐)𝑘𝑘+1
 and (𝑃𝑃𝑁𝑁)𝑘𝑘+1

 represent the 
updated probability of cross over and mutation, (𝑃𝑃𝑐𝑐)𝑘𝑘  

and (𝑃𝑃𝑁𝑁)𝑘𝑘are the current probability of cross over and 
mutation, 𝐶𝐶1

 and 𝐶𝐶2
 can be the positive constant and𝑛𝑛 is 

the number of chromosome having same fitness value. 
Thus, implementing these discussed approaches, if the 
final output estimated is greater than 0.5, then the class 
is labeled as FAULTY otherwise NON-FAULTY. Figure-3 
represents the overall process of software defect 
prediction using Adaptive Genetic Algorithm (A-GA). 

Generate Random Population of 
‘n=50’ genes or Chrosomes

Extract the Weight of each 
chromosomes

Fed the Weight values for 
training in HENN model

Estimate the Fitness value for 
each chrosomesPerform Crossover

Replace the Minimum Fitness 
value Chromosome by Maximum 

fitness value Chromosome

Is threshold meet? (If 
Stop Criteria is 
accomplished.

Implement the Model for 
Software Defect Prediction

No

Yes

 
Figure 3  :  Proposed HENN Scheme for Software Defect Prediction 

The discussion of Figure-3 for HENN simulation is given 
as follows: 
i. HENN-SDP Simulation 

As illustrated in Figure-1, in the proposed HENN 
model, three layers of neural network has been 
considered comprising six input nodes, eight hidden 

nodes and one output node. The overall process of 
HENN based fault estimation is discussed as follows:  

Chromosome Initialization: Initial chromosome selection 
with population size is 50 has been considered using 
random selection process. 

© 2015   Global Journals Inc.  (US)

19

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
 V

er
sio

n 
I

Ye
ar

  
 (

)
D

20
15

Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction



Weight Estimation: Obtained the weight vector W_kfor 
each chromosome as the input to hiddenlayer and 
hidden layer to output layer and thus the weight of input 
to hidden node and hidden node to output are 
estimated using equation 5.  
Fitness Estimation: On the basis of weights retrieved, the 
fitness value is estimated for each chromosome, where 
the proposed HENN intends to minimize the mean 
square error as defined in Figure 2.  
Ranking of Chromosomes: Perform the ranking of each 
chromosomes based on respective fitness value and 
substitute the chromosomes with minimum fitness value 
by the chromosomes with highest fitness value 
chromosome. 
Crossover: Perform two point crossover 
processdynamically vary the GA parameters Pcand Pm  till 
reaching optimal criteria using equation(6). 

In the simulation model, the initial Pc  and Pm  are 
0.6 and 0.1 respectively and n signifies the number of 
chromosome having similar fitness value. 
Stopping Criteria: The developed system terminates 
once the 95% chromosomes in the gene pool 
accomplishes its unique fitness value and beyond this 
the fitness level of chromosomes gets saturated. 
Classify Faults: If the final weight is greater than 0.5, then 
the class is labeled as FAULTY otherwise NON-FAULTY. 
Confusion Matrix Generate the confusion matrix for each 
classes of OO-SM and classify fault/non-fault 
distribution for performance evaluation. 

Thus, employing the proposed HENN model, 
the fault classification and prediction has been done. 
The simulation, results and discussion is provided in the 
following section.  

V. Result and Analysis 

This section discusses the research variables, 
simulation setups, results obtained and respective 
performance analysis. 

a) Data collection 
In this paper, the CK metric suites have been 

employed which have been defined for varied objectives 
such as software fault detection/prediction, effort 
evaluation, re-usability and maintenance. Considering 
the robustness of CK metric suite [27], it has been used 
as object oriented software metrics which has been 
processed using Chidamber and Kemerer Java Metrics 
tool (CKJM) tool that extracts software metrics by 
executing byte code of compiled Java cases and 
assigns a definite weight of the comprising classes 
having feature vectors. In this paper, PROMISE fault 
benchmark data [39] and NASA MDP datasets [40] and 
PROMISE repository to evaluate the performance of the 
proposed fault prediction scheme. We intended to 
establish the relationship between Object-Oriented 
software metrics (OO-SM) and the fault proneness at the 

class level. In order to perform defect prediction using 
regression analysis paradigm, we have considered fault 
as a dependent variable while the CK metric as the 
independent variable. The predominant OO-SM metrics 
are given in Table-1. 

Table  1  :  Object Oriented Software Metrics (CK Metrics 
[22]) 

WMC Overall complexities of the methods in 
comprising classes 

NOC Number of sub-classes subordinate to a class 
in the class hierarchy 

DIT Maximum height of the class hierarchy 
CBO Number of other classes to which it is allied 

with 
RFC A set of approaches that can be executed in 

response to a message received by an object 
of that class 

LCOM Dissimilarity measurement of varied methods in 
a class using instanced attributes/variables 

NOM Number of methods (in a class) 
NOA Number of attribute (in a class) 
NOAI Number of attributes inherited by subclasses. 
NOMI Number of methods inherited by subclasses. 
Fan-in Total number of local flows in certain process 

and data structures from where it retrieves 
information 

Fan-out Total number of local flows in certain process 
and data structures from where it retrieves 

information 
NOPM Total number of private methods in a class 

NOPA Total number of private attribute in a class 
NOPM Total number of public methods in a class 
NOPA Total number of public attribute in a class 
NLOC Size of program by counting the number of 

lines in the source code. 

In our work, we have developed a function to 
explore the relation between Object-Oriented software 
metrics (OO-SM) (WMC, NOC, DIT, RFC, CBO and 
LCOM) and faults existing in class under consideration. 
The minimization of faults can be of great significance 
towards optimization of software equality, and to ensure 
optimal defect prediction, the fault has been derived as 
the function of software metrics as illustrated as follows: 

𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝐹𝐹 =  𝑓𝑓(𝑊𝑊𝑀𝑀𝐶𝐶,𝑁𝑁𝑂𝑂𝐶𝐶,𝐷𝐷𝐼𝐼𝑇𝑇,𝐶𝐶𝐶𝐶𝑂𝑂,𝑅𝑅𝐹𝐹𝐶𝐶, 𝐿𝐿𝐶𝐶𝑂𝑂𝑀𝑀) 

We used four public domain defect datasets 
from the PROMISE repository [9][39]. The considered 
data sets are JEdit, IVY, Ant and Camel which contain 
static code measures along with varied modules sizes, 
defective modules and defect rates. In our simulation 
model, the respective extracted weights and features of 
the data classes are taken as input. The datasets with 
respective classes or modules are given in Table-2. 

Table 2 : PROMISE Data and modules 

PROMISE JEdit IVY Ant Camel 

Number of 
modules 

492 352 744 965 
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In this paper, HENN algorithm has been 
developed for simulation using MATLAB 2012b software 
tool having artificial intelligence and ANN toolboxes. The 
proposed models examined defect datasets and the 
FAULTY and NON FAULTY data have been classified. 
Here on the basis of FAULT distribution by proposed 
model, a confusion matrix has been generated that 
encompasses two rows and columns comprising true 
negatives, true positive, false negative and false positive 
variables. The respective values of True negatives (TN) 
refer the modules which are NON FAULTY or fault-free 
on the other hand, true positives (TP) represents for 
those modules which are classified as FAULTY. False 
negatives (FN) are those modules which are FAULTY 
and are classified incorrectly as NON FAULTY. Similarly, 
false positives (FP) modules are those modules which 
are faultless but are classified incorrectly as FAULTY. A 
matrix presentation of confusion matrix is given in Table 
3. 

Table  3  :  Confusion Matrix 

 Predicted  
Defective  

Predicted Defect 
Free  FAULTY 

 True Positive  False Negative  NON-FAULTY
 False Positive  True Negative  

Generally, the meanings of the values of the 
binary variables are not needed to be defined, however, 
in our work, especially for performance assessment the 
variables have been labeled as positive and negative. 
The positive levels refer towards the results as FAULTY 
in that specific simulation scenario. In this paper, we 
have measured the performance of the proposed HENN 
SDP in terms of correctness, precision, F-measures, 
accuracy, recall, specification and cost factor analysis. A 
brief mathematical definition of these variables is given 
as follows: 

Table 4 : Performance Parameters 

Construct Mathematical 
Expression 

Description  

Recall TP/(TP+FN) Proportion of 
defective units 
correctly classified  

Precision TP/(TP+FP) Proportion of Units 
correctly predicted 
as defective  

Specification TN/(TN+FP) Proportion of 
correctly classified 
non defective units  

F-measure 2.
𝑅𝑅𝑒𝑒𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁.𝑃𝑃𝑁𝑁𝑒𝑒𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑜𝑜𝑛𝑛
𝑅𝑅𝑒𝑒𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑁𝑁𝑒𝑒𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑜𝑜𝑛𝑛 

 

Defined as harmonic 
mean of precision 
and recall 

Accuracy (𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑃𝑃)/(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
+ 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃) 
 

Proportion of 
correctly defined 
units 

 
 

   

Performance analysis for proposed HENN SDP 
model and other existing models

 SDP 
Techniques

 

Accuracy 
(%)

 

Precision 
(%)

 

F-
Measure 

(%)

 
LLE-SVM[41]

 

81.1

 

82.5

 

80.4

 
SVM [41]

 

69.4

 

68.1

 

69.7

 
SVM [42]

 

55.3

 

88.0

 

83.2

 
Natural Gas [48]

 

94.25

 

-

 

-

 
Symbolic 

Regression [48]

 

89.50

 

-

 

-

 RBP-NN  [48]

 

80.0

 

-

 

-

 
MLP [42]

 

86.6

 

86.6

 

87.4

 
Naive Based [42]

 

85.6

 

83.1

 

83.9

 
CPSO[43]

 

69.2

 

67.6

 

-

 
T-SVM [44]

 

75.8

 

84.1

 

80.91

 
GANN[43]

 

73.4

 

81.6

 

-

 
AdaBoost [43]

 

79.1

 

82.3

 

-

 
Random Forest 

[50]

 

91.4

 

-

 

-

 k-NN [47]

 

91.8

 

-

 

-

 
C4.5 [47]

 

88.39

 

-

 

-

 
J 48 [47]

 

90.90

   
Levenberg-

Marquardt-NN 
[47]

 

88.0

 

-

 

-

 
NNEP-

Evolutionary [43]

 

88.8

 

81.2

 

-

 PSO [46]

 

78.78

 

-

 

-

 
PSO-NN [48]

 

97.75

 

-

 

-

 
    

HENN SDP*

 

97.9*

 

1

 

98.9

 *-

 

The best performance of HENN

 
Thus, the results obtained exhibit that the 

optimization made by means of Adaptive Genetic 
Algorithm has enhanced ANN learning for fault 
detection. The ultimate results obtained for HENN 
represents the most effective and optimal results as 
compared to other existing approaches, especially 
neural network based SDP models. The performance 
analysis for the proposed systems is given in Table-6.

 

Table
 
6

 
:

 
Performance analysis for proposed HENN SDP Model

 

Technique
 

Data
 

Modules
 

Accuracy
 

Precision
 

F-Measure
 

Recall
 

Specification
 

HENN
 

JEdit
 

492
 

0.9799
 

1
 

0.9897
 

1
 

0.9756
 

HENN
 

IVY
 

352
 

0.8835
 

0.9936
 

0.9380
 

0.8883
 

0.3333
 

HENN
 

Ant
 

744
 

0.8145
 

0.9343
 

0.8867
 

0.8438
 

0.6346
 

HENN
 

Camel
 

965
 

0.8114
 

1
 

0.8952
 

0.8102
 

1
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Table 5 :



VI. Conclusion 

Software defect prediction has become an 
inevitable need for organizations to ensure quality and 
reliability of software products. The early defect 
prediction can facilitate managers to rectify and enrich 
reliability of product. Approaches such as machine 
learning and neural network have become eminent 
solution for training and classification of data and can 
be significant for defect prediction. However, these 
approaches need optimization in terms of weight 
update, parametric enhancement while performing 
defect prediction. The local minima and convergence 
issue of ANN can be significantly dealt with employing 
evolutionary computing schemes and the 
implementation of genetic algorithm can be the 
dominant candidate. In this paper, Adaptive Genetic 
Algorithm (A-GA) has been used for ANN optimization, 
where A-GA functions for optimal weight estimation. The 
proposed HENN model has been tested with PROMISE 
data sets, where the average accuracy for HENN was 
retrieved as 87.23 % while the best classification 
performance was observed with JEdit datasets where 
HENN exhibited 97.99% accuracy while ensuring 100% 
precision. Performance in terms of F-measure using 
HENN was obtained as 98.97%. The results also 
depicted that A-GA based ANN can outperform Particle 
Swarm Optimization based defect prediction schemes, 
regression techniques, AdaBoost, and other 
conventional weight estimation based ANN models. In 
future, the efficiency of the proposed HENN model can 
be examined in comparison with optimized machine 
learning such as SVM with varied kernel functions.  
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