
© 2014. Anupama Surendran & Philip Samuel. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 14 Issue 8 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Overview of Recent Trends in Software Testing
 By Anupama Surendran & Philip Samuel

 India

Keywords: program slicing, software testing, forward slicing, genetic algorithms.

GJCST-C Classification: D.2.5

AnOverviewofRecentTrendsinSoftwareTesting

Strictly as per the compliance and regulations of:

Cochin University of Science & Technology

Abstract- In the field of search based software testing, genetic algorithm based testing has received a
major share of attention among researchers during the last few years. Though there are advantages
for this type of testing, there also exist some practical difficulties which can make this technique less
attractive for software testing industry. The potential of program slicing in testing has not been fully
exploited till now and the works that have explicitly demonstrated the application of slicing in testing
field are rare. Our paper aims to analyze existing techniques for software testing and to introduce an
approach for software testing using program slicing technique. A systematic review of genetic
algorithm based works reveals that, fitness function design, population initialization and parameter
settings impact the quality of solution obtained in software testing using genetic algorithm. Based on
the conclusions from the existing literature, we have probed deeper about the issues in these areas.
Making an unbiased review like this may help to solve these unresolved issues in genetic algorithm
based software testing. In this work, we have emphasized and has given clear directions on how
slicing can be used as a potential tool for practical software testing. In addition, a set of research
questions have been framed, which may be answered by reviewing the study made in this work. This
may help future research in this area, leading to major breakthrough in software testing field.

An Overview of Recent Trends in Software
Testing

Anupama Surendran α & Philip Samuel σ

Abstract- In the field of search based software testing, genetic
algorithm based testing has received a major share of
attention among researchers during the last few years. Though
there are advantages for this type of testing, there also exist
some practical difficulties which can make this technique less
attractive for software testing industry. The potential of
program slicing in testing has not been fully exploited till now
and the works that have explicitly demonstrated the
application of slicing in testing field are rare. Our paper aims to
analyze existing techniques for software testing and to
introduce an approach for software testing using program
slicing technique. A systematic review of genetic algorithm
based works reveals that, fitness function design, population
initialization and parameter settings impact the quality of
solution obtained in software testing using genetic algorithm.
Based on the conclusions from the existing literature, we have
probed deeper about the issues in these areas. Making an
unbiased review like this may help to solve these unresolved
issues in genetic algorithm based software testing. In this
work, we have emphasized and has given clear directions on
how slicing can be used as a potential tool for practical
software testing. In addition, a set of research questions have
been framed, which may be answered by reviewing the study
made in this work. This may help future research in this area,
leading to major breakthrough in software testing field.

I. Introduction

n God we trust, everything else we test‖. This famous
quote conveys the idea that almost all the things in
this world are unreliable without testing [6]. Proper
testing makes the software robust and trustworthy

and hence the importance of testing cannot be
overemphasized. From simple home appliances and
common automobiles, to life support devices like
mechanical ventilators and mission critical systems like
nuclear reactors, there is an unending list of
components which depend on some form of software
for their proper functioning [27]. These softwares in turn
depend on testing for their infallibility. Imagine a
pharmaceutical company introducing a new drug in the
market without proper trials and testing. It is not only
illegal, but also extremely unsafe and potentially
deleterious. Similarly, software development without
testing makes it unreliable, unusable and even unsafe.

While one of the main intentions of software
testing is to check for and identify errors in software, a

software tester has a much wider gamut of
responsibilities. For example in our real life activity, in an
automobile where there is a sound due to the loosening
of wheel, the defect may be corrected by tightening it,
but the alignment of the tightened wheel may not be
synchronous with the other wheels. Therefore in the next
step, the wheels are to be aligned for the proper running
of the vehicle. Similarly, finding the root cause or in other
words, finding the dependency during software testing
is one of most challenging aspects of software testing
as rectifying an error may introduce some side effects in
the software. Getting the dependency relations present
in a program serves as the backbone of several other
processes in software development, such as regression
testing, program comprehension, maintenance, reverse
engineering and re-engineering [16, 17]. This implies
that, though software testing can be very challenging, it
has a very significant influence and marked relevance in
software development industry. In the earlier days, most
of the applications used simple software and they were
mostly standalone applications. The nature of modern
day software can make its testing not an easy task.
Many of the software used nowadays is real-time and
embedded software with web interface. This type of
software may have several interconnected modules and
such software needs to be continuously tested until they
get outdated from the world market. Technological
changes, requirement changes and platform changes
raise the need for continuing testing in such systems. In
such software, the software dependency consideration
is an unavoidable factor which decides the reliability of
the software. Even a minor error may cause great
mishap in such software applications. The unrestricted
size of the source code is another problem plaguing the
software testing industry. In the case of large
commercial software, there will be several modules and
lines of code which make software testing process more
difficult. As testing cost increases with source code size,
it should be one of the primary concerns of the software
tester. In the field of software testing, a software tester
cannot leave the scene after finishing the testing
process [31]. During software testing, the test cases
designed for solving the error in some part of the source
code may prove to be insufficient to solve the bugs
occurring some other parts of the source code. This is
similar to the creation of mutant species. For example,
long term use of an insecticide against a particular
species of insect, makes it vulnerable to development of

I

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 7

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Keywords: program slicing, software testing, forward
slicing, genetic algorithms.

Author α σ : Cochin University of Science & Technology, Kochi, Kerala,
India. e-mail: anudeepaknair@gmail.com

resistance by genetic modification and mutation in the
insect. In such a situation, new insecticides have to be
used to kill that insect. Similarly, the test cases designed
for a particular test scenario may fail in some situation.
This may be due to the changes made in the source
code or due to the change in design requirements made
as per user specifications. New test cases are to be
found for solving such problem or the existing test cases
should be updated by the software tester. From the
above discussion it is evident that, a good tester should
be a good software designer, an intuitive code
developer and a reliable maintenance person, all rolled
into one. For example, consider the situation where a
company decides to change its product as per user
requirements. Now, the software designer and code
developer can fulfill their parts just by completing the
work in their respective areas of expertise. On the other
hand, for the testing to be fully reliable, the tester has to
understand the changes made by designer and code
developer and then develop appropriate testing
methods. Truly speaking, a good software tester has to
be a skilled all-rounder.

Several methods were developed with an aim to
address the challenges existing in software testing
industry. Among the different software testing strategies,
search based testing has received immense attention
and especially, genetic algorithm based testing has
made a marked influence in software testing research
[30]. This is due to the adaptability of genetic algorithms
to handle the testing process and the ability to represent
the software testing problem as an optimization problem
[38]. Considering the volume of work done in genetic
algorithm based software testing, it is crucial to identify
the merits and demerits of this approach. Even though
genetic algorithm based testing has made a great
impact in academic research, only very little attention
has been given to understand the complexities of using
genetic algorithms in practical software testing. This
work focuses on this and we have tried to highlight the
challenges involved in genetic algorithm based
approaches for using it as a practical tool in software
testing. The main reason for choosing this problem in
our work is because of the usage of genetic algorithms
in software testing without knowing the ambiguities in
genetic algorithm based testing. In this paper, we have
mentioned some works which utilize genetic algorithm
for testing [38, 39, 40, 44, 51, 52, 54]. We can see that
none of these works have adopted any general operator
setting for testing purpose. The inherent non-
deterministic nature of the genetic operators makes the
program testing process a demanding task. The
strength of using genetic algorithm mainly depends on
setting the genetic parameters to their appropriate
values and this in turn depends on the problem to be
solved. This itself is a major challenge faced by testers.

In this work, we have suggested a program
slicing approach for software testing and have

highlighted the strengths of using program slicing as a
tool in software testing industry. It was Weiser who
introduced slicing in 1979 [15, 53] and his work
encouraged many research works developing slicing
algorithms. According to Weiser, slicing criterion
consists of two parameters and it is represented as (V,

This property of slicing is highly relevant, as source
code size is a major concern is modern day software.
Instead of analyzing the whole program, slicing reduces
the program search space which in turn minimizes the
testing effort. Setting the slicing criterion with respect to
the variable with incorrect value can help to identify the
portion of source code which causes error during
program testing. Here the manual effort of the program
tester is reduced considerably as there is no need to
consider the whole source program [11, 47]. Slicing also
helps to trace program dependencies which are very
crucial in testing. In several works it has been mentioned
that program slicing may be used for testing purpose
[17, 20, 21]. None of these works gave a clear picture of
how to utilize slicing to make testing more meaningful.
Apart from program testing, slicing can be used in
several applications such as program debugging [34,
53], program comprehension [22] and program
maintenance [17]. In this paper, we have demonstrated
a forward slicing approach for testing and have tried to
mark the merits of program slicing based testing
approaches.
Finally, this paper aims to:
− Introduce program slicing as a major research

direction in software testing
− Present an analytical description of program slicing

and to demonstrate how it can be applied in
software testing

− Assess the current research trends in software
testing with a special focus on genetic algorithm
based testing

− Analyze the shortcomings and challenges for
making genetic algorithm based approaches
practical in software testing industry

− Highlight the significance of program dependency in
software testing, and explain how program slicing
can effectively resolve this issue

The remaining section of the paper is organized
as follows. Section 2 gives the basics of program slicing
and genetic algorithm. Section 3 compares program
slicing based testing and genetic algorithm based
testing approaches. Based on the observations made in
section 3, some research questions are framed in
section 4. In section 5, we have given an explanation of
the research questions in section 4. Threats to validity of

n), where ‘V‘ is a set of variables and ‘n‘ is the program
point [53]. In program slicing, source code size is
minimized by converging focus on some specific
program part implied by the ‘slicing criterion‘ [20,49].

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 8

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

this work are given in section 6 and section 7 gives the
conclusion.

II.

Basics

As we are doing a detailed study of genetic

algorithm based and program slicing based software
testing methods, we shall go through the basic
principles of genetic algorithm and program slicing
concepts. Based on the conclusions from the exiting
literature, we will have to probe deeper about the issues
in these areas. Making an unbiased review like this may
help to solve the issues in genetic algorithm based
software testing and at the same time help to
understand the relevance of program slicing in software
testing. This may help the future researchers working in
this area.

a)

Genetic Algorithms

In order to conduct a proper review of genetic
algorithm based software testing, it is essential that one
should be familiar with the basic concepts and terms in
genetic algorithm.

This is dealt with in this section.
Genetic algorithm is a type of evolutionary algorithm and
is considered as the best and the strongest of all
evolutionary algorithms [18, 24]. It is a type of search
technique developed by John Holland and works on
Darwin‘s principle of survival of the fittest. Genetic
algorithm uses the technique of natural genetics,
representing a computer model of biological evolution.
Genetic algorithms have the ability to solve a variety of

optimization and search problems. Several testing
techniques use genetic algorithms believing that testing
may be carried out in a better way using the natural
evolutionary process present in them [39].

Genetic algorithm identifies an optimal solution
for a problem by applying natural evolutionary
techniques to a group of possible solutions referred to
as ―population‖ [18, 40]. After each generation, a new
generation is formed which is better than the previous
generation. The series of steps involved in genetic
algorithm are population initialization, selection,
crossover, mutation and termination. A string of digits
called chromosomes are present and each individual of
the string is called a gene. Each individual in the
population has a fitness value which decides the quality
and performance of that individual. Greater the fitness
value better will be the problem solving capacity of an
individual [25]. Collection of chromosomes makes up a
population. The initial population is created randomly
and the fitness of the individuals in the population is
calculated. This information is used to select the best
candidates for forming the next generation parents. After
selecting parents of the successive generation, the next
step is to combine these candidates to form the
offspring. Crossover operation is used to perform this
[36, 54]. Crossover enables the selection of good
features from parents to form the offspring. Mutation is
applied to the offspring to create better quality
individuals. Mutation is defined as the process of
altering the genes in the chromosome [43]. A new
generation is chosen from the offspring based on the
fitness of the individuals. These individuals are
considered as parents of the next generation. This cycle
is repeated until a global solution for the problem is
obtained. The basic steps of genetic algorithm are given
in algorithm 1.

ALGORITHM 1
 procedure Genetic Algorithm

 begin
 GET (Initial Population);

 CALCULATE FITNESS (Initial Population)
 loop

 FINALZE POPULATION FOR CROSSOVER (Parent population)
 PERFORM CROSSOVER (Parent population, child)

 APPLY MUTATION (Child)
 CALCULATE FITNESS (Child)

 GET NEXT GENERATION (Parent population, Child)
 stop process when TERMINATION CRITERA

 exit loop
 end

b) Program Slicing
This section deals with some of the common

terms in program slicing. Slicing is defined as the
process of deleting all those statements from a program
which cannot affect the values of a variable of interest. In
other words, a slice is a subset of source program
statements. Slicing is performed based on slicing
criteria. A slicing criterion comprises a program location
and a set of variables known as slice set. If P is a
program, x is a statement in P and y is a variable in P,

then the slicing criterion (C) is given as C= (x, y).
Program slicing can be divided into various types.
Based on slicing criteria, the two main types are static
and dynamic slicing [32, 35], while based on direction of
slicing the two main types are forward and backward
slicing [22, 49].

i.

Static Slicing

A slice constructed by ignoring those parts of
the program that are not relevant to the values stored in

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 9

Y
e
a
r

20
14

(
DDDD DDDD

)
C

the chosen set of variables at the chosen point is known
as static slice [8, 34]. As mentioned above slicing
criterion C= (x, y), where x is a statement in the P
(program) and y is a variable in P. Given a variable y‘
and a point of interest x‘, slice will be constructed for y
at x. An example program is given in table 1, where the
static slice criterion is given as <11, a>. The result will

be the set of statements <4, 5, 6, 8, 9>. Backward
slicing gives all the program statements which affect the
value of a particular variable at a particular point [TIP
1995]. Forward slicing gives all the program statements
which are affected by declaring a variable at a given
point in the program [22, 29].

Table 1 : Static slicing

Program Statements Static slice for criterion <11, a>
1 main()
2 {
3 int a,b;
4 cin>> b;
5 a = 0;
6 while (b <= 10)
7 {
8 a=a+b;
9 ++ b;
10}
11 cout<< a;
12 cout<< b;
13 }

4 cin>> b;
5 a = 0;
6 while (b <= 10)
8 a=a+b;
9 ++ b;

ii. Dynamic Slicing
The concept of dynamic slicing was given by

Korel [33]. The set of statements that affect the value of
a variable for one specific input is known as dynamic
slice. In dynamic slicing we have to consider three
parameters. First one is the point of interest within the
program, second one is the variable and the third one is
the sequence of input values for which the program was

executed. Dynamic slicing criterion is defined as C= (x,
y, i). Here x is the statement in the program, y is the
subset of variables in the program and i is the input
value [11]. A sample program to be sliced is given
below in table 2. The variable with respect to which
slicing is to be done is p, slicing point is the end of the
program and input given is n=0.

Table 2 : Dynamic slicing

Program Statements Dynamic Slicing
Criterion :-(10, p, n=0,)

1 scanf("%d",&n);
2 s=0;
3 p=0;
4 while (n>0)
5 {
6 s=s+n;
7 p=p*n;
8 n=n−1;
9 }
10 printf ("%d%d", p, s);

p=0

In static slicing though the size of the slices
obtained will be large, all possible executions will be
considered. On the other hand, in dynamic slicing the
down side of small size of slices is that the result will be
focused only for a specific input [32].

III. Evaluation of Testing Approaches

This section analyses the testing approach
based on genetic algorithm and introduces our
approach based on program slicing. Here we have
identified some points to justify our analysis and these
are used to frame the research questions in section 4.
We have divided this section into three parts. In the first
part the purpose of software testing is explained. The

second part deals with genetic algorithm based
software testing. Some relevant works in that field and
our observations regarding genetic algorithm based
testing are given in this section. In the third part we have
introduced our program slicing based testing approach
and have described its benefits and importance.

a)

Software testing

The section gives an insight into the basics of
software testing. In software testing the target program
is executed to identify the errors. This is followed by

debugging to rectify the identified errors [21]. Before
starting the testing process,

the objectives or the goals

should be properly set and the tester should be aware of

‘
‘

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 10

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

the strategy to be followed to achieve the set goals [10].
It is very essential that the tester should have an idea of
user requirements and should also be able to identify
the conditions which will have an adverse effect on the
selected testing strategy. The main objectives of testing
are [4, 41]
− To affirm that the software developed is error free
− To check whether the developed software is

functioning correctly according to the program
developer and program tester

− To confirm that the developed software works
correctly without causing any data loss.

Therefore developing an effective method for
testing is an inevitable part of all software systems

b) Genetic algorithm based testing
In the past few years, search based software

testing, especially evolutionary algorithm, has gained
immense popularity [2, 9]. A graph is shown in figure 1,
which shows an increase in rate of publications and
research works in search based software testing during
the period 1975 to 2010[37]. Among evolutionary
algorithms, genetic algorithm is one of the widely
researched techniques for software testing. They are
included in dynamic testing techniques [26]. In dynamic
testing, the program is executed based on given input
data to obtain the corresponding output, while in static
testing, the program has to be analyzed line by line to
check for the errors in the program. Thus in static
testing, the ability to find errors depends on the tester‘s
experience.

Figure 1 :

Research works in search based software testing during the period 1975

to 2013

Genetic algorithms are used to perform
automated software testing due to their

ability to
represent the testing problem as an optimization
function. Finding a

solution for this optimization problem
gives a solution for the testing process also.

There were
several attempts to generate test data using single
population, multiobjective,

master-slave, fine-grained
and coarse-grained genetic algorithms [1, 9].

We have
limited our literature review to some of the most relevant
works which

have used the concepts of genetic
algorithm and single objective fitness function in testing.
A detailed study of these works is done to

make an
assessment of genetic algorithm based software testing
approach. In the next paragraph, we discuss some of
the most relevant works in genetic algorithm based
software testing.

A path wise test data generation using genetic
algorithms was introduced by Pei et al. [45]. A control
flow graph was constructed and the paths were

individuals. A branch coverage criterion was used by
Jones et al. [30] in their work for generating test data
using genetic algorithms. Hamming distance approach
was used to design the fitness function and their
approach could cover programs which contain up to
three loops. Pargas et al. [44] developed a tool called
TGen which uses genetic algorithm for program testing.
A parallel processing approach was used in TGen to
improve the testing process. A path coverage and
branch coverage approach was used in TGen. The
performance of TGen was compared with a tool called

0
20
40
60
80
100

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

2
0
01

2
0
03

2
0
0 5

2
0
07

2
0
09

2
0
11

2
0
13

R
es

ea
rc

hW
or

ks

Years

Graph showing the rate of publication and research work in search
based(eg. Evolutionary algorithms) software testing

manually selected from the graph. Only two loops were
covered at a time. They designed the fitness function
based on the paths selected from the graph. Genetic
algorithm based testing was used by Roper et al. [46]
for testing C program. They used the branch coverage
criteria. In their approach, a random method for
population selection was used and this population was
subjected to crossover and mutation to generate better

Random which is a tool based on random method. Test
cases which covered the largest number of predicates
were given the highest fitness values. Bueno et al. [7]
developed a method for software testing using genetic
algorithms. They used the path coverage criteria and
introduced the path similarity metric as fitness function.
The population initialization was made by checking the
previous nature of the population. This helps to create
better individuals in the successive generations.
Wegener et al. [52] used a statement coverage criterion
during testing and they introduced a fitness function
which is decided based on the approximation level and
normalized predicate level distance. Michael et al.
[2001] developed a tool called GADGET which uses
genetic algorithms for generating test data for C
programs. They designed the fitness function based on

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 11

Y
e
a
r

20
14

(
DDDD DDDD

)
C

some predicate function. Their tool had many limitations
like the inability to handle Boolean variables. Doungsa-
ard

et al. [12] used a genetic algorithm based approach
to generate test data for UML state diagrams. They used
the transition coverage approach and the fitness
function was designed based on the number of
transitions fired by the input sequence. The population
initialization was made based on the nature of the
previous generation individuals. Hermadi et al. [1] used
a path coverage criterion to genetic test cases using
genetic algorithm. The overall fitness function was a

i.

Population generation

This includes initialization and representation of
the population, strategies for population selection and
the determination of population size. The population
which is initialized may itself be the set of initial potential
solution. The representation of population is another
issue. Population can be represented as a group of 0‘s
and 1‘s, as a group of integers, as decimal numbers or
as characters. In some problems a tree representation is
also possible. Based on the problem, appropriate
method of representation is applied. Improper
representation of the individual in genetic algorithms
may cause unexpected variations in the final result [24,
25].

Table 5 :

Summary of GA based works on software testing

WORK

COVERAGE

FITNESS
FUNCTION

GA TYPE &

POPULATION
REPRESENTA
TION

POPULATIO
N SIZE &
SELECTION
STRATEGY

CROSS
OVER
TYPE

MUTATION
TYPE

DOUNGSA-ARD
et al. [2002]

Transition

Number of
transitions fired
by input
sequence

Simple GA &

Sequence of
triggers

10 & Previous
knowledge

Two point

Random
mutation &
0.5

HERMADI et al.
[2001]

Path

Fitness=
Number of
violations
+Distance

Simple GA &

30 & Roulette
wheel
selection

Single
point

0.1 0r 0.3

WEGENER et al.
[2001]

Statement

Approximation
level and
normalized
predicate level
distance

Simple & multi

population GA

& Integer
representation

Stochastic
universal
sampling

Single
point

Discrete
recombinati
on, 1 &
multiple
strategies

BUENO et al.
[2002]

Path

FT=NC-
EP/MEP

Simple GA&
Binary string

80 and
Selection
based on
Previous
knowledge

Single
point

Simple &
0.03

MICHAEL et al.
[2001]

Branch

Predicate
function

Simple GA &
Binary String

24, 100 and
Random
selection

Single
point

Simple &
0.001

PRAGAS et al.
[1999]

Statement &
Branch

Common
predicates

Simple GA &
Input data list

100 &
Random
selection

Single
point

Simple &
0.10

JONES et al.
[1996]

Branch(
Maximum 3

Hamming
distance

Simple GA &
Binary plus sign

45 &

Random
selection

Uniform

Reciprocal
&Weighted.

measure of aggregation of individual‘s fitness function.
Table 5 gives a list of some of the works which is uses
genetic algorithms for software testing.

A review of these works, throws up some of the
pertinent issues in genetic algorithm based software
testing. These factors, which play a major role in genetic
algorithm based testing and influence its outcome to a
significant degree, are given below:

− Response time prediction
− Setting of parameters

loops) & gray code Reciprocal
& five least

ROPER et al.
[1995]

Branch Coverage
percentage

Simple GA &
Character string

User input &
Random
selection

Single
point

Simple
mutation.
Mutation
rate decide
by user

− Population generation
− Design of fitness function

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 12

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

The next major concerns related to population
are the population selection strategy and population
size. Either a random method or a heuristic based
method

is used to initialize the population. In the
random method, population is selected randomly. In the
heuristic based approach, instead of setting the
population randomly, some tests are performed and the
individuals are selected based on the test results. This
shows that, population selection strategy can be based
on several methods to select the appropriate
population. The population size can also be a

confounding factor because if the population size is too
small the genetic algorithm will not search all the
possible solution areas to procure an optimal solution
[9, 12]. In this case, the individuals may reproduce
abundantly and the resulting diversity

in population may
cause the individuals to converge to a point which
appears to be better than the neighboring points. In
such a situation, even though there is a chance that a
better solution exists, it is missed as the population size
is already declared to be very small. This is known as
the premature convergence problem [40]. Hence
declaring the correct population size still remains a
problem in genetic algorithm and research is still
ongoing in this area. Before using genetic algorithm for
software testing, these inherent issues have to be
addressed. Due to the shortcomings of single
population genetic algorithm, parallel genetic algorithm
has been tried in many applications [30]. Parallel
genetic algorithms are similar to single population
genetic algorithms running in different machines. The
performance of parallel genetic algorithms is affected by
the way in which the computers are networked. In effect,
even though parallel genetic algorithms may speed up
the computation process compared to single population
genetic algorithm, several issues in the network
implementation topology needs to be dealt with.

Genetic algorithm parameter settings

Minimize Objective Function (f) = 10-x

Population type: Double vector

Fitness Scaling: Rank

All the parameters except the population size
are kept constant. The result obtained for various
population sizes is given in Table 6. The objective
function value and the value of the best individual
present in all iterations are also displayed. From Table 6,
it can be inferred that as the population size increases,
the result obtained becomes better. Another illustration
is given below in figures 2 to 6. These show that, as the
population size increases beyond a certain size, the
time taken for fitness function optimization increases.

Table 6 :

Function values and final point values

Populatio n
Size

Best Individual
final point value

Objective
function value

20

24.76

-14.76

20

24.88

-14.85

30

27.30

-17.30

30

28.37

-18.37

70

44.51

-34.51

70

39.95

-29.95

1000

67.99

-57.99

Figure 2 :

Stopping criteria for population size =20

Crossover type: Scattered
Migration rate: 0.2
Stopping Criteria: 100 generations
Time limit: 10 second

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

Figure 3 : Stopping criteria for population size =30

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 13

Y
e
a
r

20
14

(
DDDD DDDD

)
C

PIE et al. [1999] Path(
Maximum 2
loops)

F= C-
[10*n+5*n(n-
1)/2

Simple GA &
Binary string

Program‘s s
size &
Random
selection

Single
point

Simple
mutation &
0.001

We have used the Genetic algorithm solver tool
in Matlab 7.8 to give an idea of the population
initialization issues presented above. The initial
parameter settings for the Genetic algorithm tool are
given below.

Figure 4

:

Stopping criteria for population size =70

Figure 5

:

Stopping criteria for population size =1000

Figure 6

:

Stopping criteria for population size =10000

In figures 2 to 6, the time taken to compute the
fitness function optimization

process for population
sizes 20, 30, 70, 1000 and 10000 is showed. Some of
the

terms related to the fields in these figures are
explained below.

•

Stopping criteria: Decides the

cause of algorithm
termination

•

Generations: Gives the maximum number of
iteration the genetic

algorithm runs before
termination

•

Stall time limit: Genetic algorithm terminates when
there is no

improvement in the fitness value which is
the best in a specified time

interval

•

Function tolerance: The algorithm stops if the
weighted average relative

change in the best fitness
function value over Stall generations is less than

or
equal to Function tolerance.

When the population size is defined as 20, 30
and 70 respectively, the

corresponding fitness values
are obtained and the genetic algorithm terminates

when
the maximum number of generations are exceeded. The
time taken for these

three processes is almost the same.
These can be inferred from the results given in figure 2,
3 and 4. In figure 5 when the population size is 1000, the
time taken for fitness function optimization is greater
compared to the time taken for population size 20, 30
and 70 and here also the genetic algorithm terminates
when the maximum number of generations exceeded
the limit specified. In figure 6, it

can be seen that only 44
iterations were able to run within the time limit specified
as the time limit exceeded the maximum value. Here, an
increase population size caused an overrun in time limit.
These results point out that population initialization can
influence the final result and the population initialization
process is problem dependent. For small non-

critical
optimization problems, the size of the population may
not be a critical factor. In critical problems, the
population size is very crucial [50].

ii.

Setting of parameters

In genetic algorithm based program testing, the
parameter setting needs special attention. For example
in the case of crossover and mutation, their rates should
be not be set at either high or low levels. According to
the problem‘s nature the parameter settings should be
adjusted. The following section gives a description of
some of the operator settings used in genetic algorithm
based testing.

a.

Selection

In selection, individuals are selected from the
parent population for crossover and mutation to
produce next generation individuals [28, 45, 51]. There
are different types of selections like roulette wheel,
tournament selection, random selection, best selection
etc. In roulette wheel selection individuals are selected
according to their fitness. Each individual will be
assigned a fitness value and the normalized fitness
value is calculated. After calculating the normalized
fitness value, accumulated fitness value is calculated by
adding the fitness value of the concerned individual and

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

• Time limit: Gives the maximum time limit in seconds
the genetic algorithm should function before
termination

• Stall generations: Genetic algorithm terminates
when the weighted average change in the fitness
function value over stall generations is less than
function tolerance

the sum of the fitness value of all other individuals. A
random number is selected between 0 and 1 and the
selected individual will have an accumulated fitness
value greater than all other previous individuals but less

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 14

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

than the remaining individuals. Tournament selection is
a refinement of roulette wheel selection. Here roulette
wheel selection is repeatedly applied to produce a
group of population and the best individual is selected
from this group. In random selection method, the
chromosome is selected randomly from the given
population whereas in best selection method the
individual with the highest fitness value is selected.
There are many other types of selection methods, but
we have mentioned only a few. There is no specific rule
which implies the usage of a particular type of selection
method during software testing process. This is one of
the greatest difficulties in genetic algorithm based
software testing, as the final outcome of testing differs
according to the type of selection method used.

b.

Crossover

Crossover is the process of combination of
parent chromosomes to produce offspring [HOLLAND
1979]. The process of crossover affects the process of
test data generation using single population genetic
algorithm. The most commonly used types of crossover
are one point crossover, two point crossover and
uniform crossover. For example consider two parent
individuals where the chromosomes are represented as
bit strings:

Parent 1:1010101010

Parent 2:1000110000

If the crossover occurs after the sixth bit in the
parents, then two children will be formed and the last
four bits of both the parents are interchanged. The result
can be represented as follows:

Child 1:1010100000

Child 2:1000111010

In uniform crossover, the crossover points are
not selected. The parent bits are swapped randomly
with 50% probability. If the third, sixth, seventh and tenth
bit positions of the parent individuals are swapped, then
two children will be produced and they can be
represented as follows:

Child 1:1000110010

Child 2:1010101000

By using uniform crossover the diversity in the
individuals produced is more compared to single and
two point crossover and a better result is obtained. A
better result for a given problem may be obtained, even
if the testing process is done with the most suitable type
of crossover. Solving this uncertainty in genetic
algorithm crossover selection still remains as a
challenge.

c.

Mutation

Mutation is the process of altering the value of
genes present in the chromosome for creating genetic

mutation rates can be set to specific values. If the rate of
mutation is set to high value, the search will become
similar to a random search and if the mutation rate is
very low then there will be no diversity in the population.
Therefore generally the value of mutation is set between
0.01 and 0.05 [40]. From table 5, we can notice that the
mutation rate is

set to different values in the listed works.
The main problem faced here is that, varying the
mutation rate results in a change in the final result and
this issue still remains unresolved in genetic algorithm
based testing process.

d.

Uncertainty in Parameter Settings

Even after testing a program using the best
available genetic parameters, a better solution or the
same solution can be obtained even if we use less
competing methods of crossover, selection and
mutation for solving the same problem. This shows the
uncertain nature of genetic algorithms [38]. We have
some examples to illustrate the uncertainty of genetic
algorithms. Our aim is to use genetic algorithms to
minimize the SchafferF6 function, which is a published
benchmark function. SchafferF6 function is a complex
optimization problem whose solution can be obtained
by applying genetic algorithm based optimization
methods. We have considered SchafferF6 function in
our optimization test because this function is a
multidimensional function. It is having

non-linear and
oscillatory nature around the optimal solution [18]. This
means that SchafferF6 function is having more than
single local optima where the genetic algorithm may get
halted.

The SchafferF6 function is defined as:

Here function minimization is done using two-
point crossover and uniform crossover. Initially the
objective function or the fitness function minimization is
done using two-point crossover. Then the experiment is
repeated again using the same parameter settings. The
resultant values are noted in each case. Then the
objective function minimization is done using uniform
crossover. Here also the experiment is repeated using
uniform crossover and the values are noted. The results
are shown in the table 7, table 8 and table 9.

It has been said that when uniform crossover is
used for solving a problem, not only the result will be
better compared to two point crossover, but also the
convergence happens faster [30]. From the illustrations diversity [18]. Diversity in the population will create

better individuals compared to a population without
genetic diversity. According to the problem to be solved,

given below in tables 7, 8, 9, we can see that this is not
true in all the cases. In the first trial, the value of the

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 15

Y
e
a
r

20
14

(
DDDD DDDD

)
C

SchafferF6 function obtained using uniform crossover is
better than two point crossover. Further in this case, the
time taken is more compared to two-point crossover. In
the second trial, the time taken for minimizing the
objective function using uniform crossover is less
compared to two-point crossover. Here we can see that
the fitness function has lower value when two-point
crossover is used. Even though there is a little bit
difference in time taken to minimize the function, the
quality of the result is better in two-

point crossover. In
the third trial also the value of the fitness function is
better when two-point crossover is used. Here the time
take is more when two point crossover is used. When
uniform crossover is used in the third trial it can be
noticed that the value of the fitness function is greater
than the value of the fitness function got when two point
crossover is used and this indicates that the quality of
test data got using two point crossover is better than the
quality of test data obtained using uniform crossover.
We can see that the time taken for two-point crossover
is more compared to time taken when

uniform crossover
is used. Even though the convergence takes place
faster in uniform crossover, it is not mandatory to get
minimal value of the fitness function in all the trials.

Table 7 :

Trial 1 values

Parameters

Two-Point
Crossover

Uniform
crossover

Number of Generations

1070

3184

Time taken in seconds

7.657

26.649

Score

0.001982

0.001758

Fitness function Value

0.265497

0.198465

Table 8 :

Trial 2 values

Parameters

Two-Point
Crossover

Uniform
crossover

Number of Generations

949

749

Time taken in seconds

7.336

6.258

Score

0.003094

0.000808

Fitness function Value

0.257263

0.362636

Table 9 :

Trial 1 values

Parameters

Two-Point
Crossover

Uniform
crossover

Number of Generations

499

145

Time taken in seconds

4.543

1.010

Score

0.001609

0.001124

Fitness function Value

0.167003

0.332225

Form these observations we can conclude that,

even though there are some general assumptions about
the best methods of crossover, selection and mutation,
which are to be used for solving a problem, it may not
be possible to decide the best combination of these
genetic factors as parameter setting in all the cases
[26]. Therefore while using genetic algorithms for

about the problem which is to be solved. All these make
the use of genetic algorithm for effective program testing
highly complex and impractical.

iii.

Design of fitness function

 Applying genetic algorithm in program testing
requires optimizing the specified fitness function. A
fitness function should be designed in such a way that it
gives

optimal solution for a given problem. Defining the

fitness function imprecisely may lead to a wrong solution
or may cause the problem to be stuck in the local
optima [18, 40]. The misleading nature of fitness
function creates several problems. For example, the
individuals with lower fitness values may be finalized as
the optimal solution even when better individuals exist.
This mainly occurs when the population size is smaller,
because with a small sized population, the result may
get converged at a faster rate than normal. Thus, in a
limited population, if one of the individuals surpasses
the neighbouring individuals, then that point or individual
will be considered as the best solution even when better
solutions exist. Considering these local points as the
candidate solutions and assigning higher fitness values
to them will result in a diversion from the original
solution. This results from the inherent weakness of
genetic algorithms [40]. A group of researchers used an
evolutionary algorithm along with a reprogrammable
hardware array and the fitness function was designed to
output an oscillating signal. At the final stage of the
experiment, the researchers found that the circuit had
become a radio receiver which was able to pick up and
relay an oscillating signal from the nearby electronic
device. Here, there was a deviation from the main goal
itself and this was due to the fault in the design of the
fitness function [19]. Each one of the many works which
use genetic algorithm for software testing has designed
their own

fitness function [37]. Referring the works given

in table 5, we can see that none of the works have used
similar type of fitness function. For example, Bueno et al.
[7] have used a path similarity metric as fitness function
and Michael et al. [40] have used the fitness function
based on some predicate function. Even though there
are some good methods for fitness function calculation,
none of them is universally accepted as the gold
standard. The fitness function is designed based on the
analysis of a problem [24]. In other words, fitness
function is problem dependent and this is one of the
hurdles to be surmounted while using a genetic
approach in software testing.

iv. Response time prediction

 Fitness function optimization is a heuristic
process and the optimization time and effort varies
according to the nature of the problem [2]. Therefore,
the exact time required for testing a program cannot be
accurately predicted. The time varies as the parameter
settings are changed. These can be inferred from the program testing; we can make only a few assumptions

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 16

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

graphical figures 2 to 6. From these figures, it is clear
that solving a problem with a lower population size will
take less time compared to solving the same problem
with a higher population size. Even though this is not a
major concern in most of the testing applications, some
care has to be taken while using genetic algorithm
based testing in safety critical applications. In today‘s
world, the workings of all applications are based on real
time software. In real-time system the response time
plays a critical role and due to the long computation
time and uncertainty in the duration of computation time,
genetic algorithms cannot ensure constant response
time in all the executions [50]. Therefore before
implementing the genetic algorithm based system in the
original system, a prototype model checking has to be
carried out. As stated above, since the performance of
genetic algorithm changes according to the change in
the parameter values, using genetic algorithms to solve
such real time problems should be done with utmost
care.

c) Software Testing using Program Slicing
In the previous section we saw an overview of

genetic algorithm based software testing. We have also
explained some issues which can make genetic
algorithm based software testing less practical in testing
industry. This section looks into the possibilities of
program slicing for software testing.

As mentioned in section 2, the concept of
slicing was introduced by Weiser and his works
encouraged the application of slicing in several fields
like program comprehension [22], testing [20, 21, 47],
debugging [33, 34], software maintenance [16],
program cohesion [43], refactoring [35], reverse
engineering [8] etc. We shall see how it can be used for
software testing. In software testing, locating the
erroneous statements is the key part. As program slicing
deletes all those statements from a program which
cannot affect the values of a variable of interest, slicing
can make the whole software testing process more
manageable. Even though some works have mentioned
the use of slicing in testing [3, 5, 20, 21, 47], work that
has explicitly shown how program slicing may be
applied in software testing is extremely rare to the best
of our knowledge. We have mentioned some
fundamental works in table 10 which apply slicing for
identifying test cases during the various phases of

software development life cycle. In these works we can
notice that they have either mentioned the need of
slicing during regression testing process or during the
design phase for identifying test cases before the
coding phase. Our work illustrates how test cases may
be obtained from slices during the testing phase itself.

Table 10 :

Works on Program slicing based software
testing

Work

Description

Gupta et. al[1992]

Regression testing using slicing

Binkley[1998]

Incremental regression testing using
slicing

Harman et al. [1994]

Mentioned that slicing may be
applied during the testing phase by
checking whether the program is
robust or not

Bates et al.[1993]

Slicing applied to identify statements

modified in a program dependence
graph during the regression testing
phase

Samuel et. al[2009]

Using dynamic slicing to generate
test cases form UML activity
diagrams

i.

Testing Approach

We have used a forward slicing approach for
program testing. Forward slicing is recommended to
locate the parts of the program affected by some
modification and the sizes of the forward slices are
smaller than that of backward slices in some scenarios
[22]. In other words, when testing is done with an aim of
identifying the errors caused by wrong input variable
declaration, forward slicing is more meaningful than
static slicing [22]. If the user is supposed to find errors
in the output variable then static slicing is more useful
than dynamic slicing. In such scenarios it will be more
meaningful to apply forward slicing rather than
backward slicing. In forward slicing, if a particular
statement is affected by the value of the slice variable
which is declared at a particular point, then that
statement can be added to the list of slice statements.
Otherwise there is no need to update the slice list. The
whole process will be continued until slicing is
performed for all the required variables. The result of the
whole process will be a set of statements. These
statements are known as forward slice of a particular
variable. The forward slicing algorithm suggested in this
work is given in algorithm 2

ALGORITHM 2
 Input: -

Program to be sliced (P)

 Slicing Criterion (C)
 Output: -

Forward Slices (F)

 begin
 1. while p ≠ Ø, source program not empty

 2. get C= (n, V)
 // where n is statement number, V is the slicing variable

 3. while (n ≠ 0 && n < EOP)

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 17

Y
e
a
r

20
14

(
DDDD DDDD

)
C

//where EOP is the end of program
{
4. Store V‘ in L‘
// slicing variable V‘ stored in list L‘
5. if (VAR (L) Є n)
// check whether slice variable V‘ stored in list L‘ is present in statement n‘
{
5.1. if (n is an element of output statement)
F= F U n
//Store n
// include the statement as a slice
5.2. if (n is an element expression)
{
5.2.1. if (VAR (L) Є RHS (EXPR))
{

F=F U n
// Store n
VAR (L) = VAR (L) U VAR (LHS (EXPR))
}
// include the statement as a slice
// VAR (L) is the slice variable V‘ stored in list L‘ and RHS (EXPR) denotes the right side of the expression and LHS (EXPR)
denotes the left side of the expression and VAR (RHS (EXPR)) denotes variables in the right side of the expression and VAR (LHS
(EXPR)) denote the variables in the left side of the expression.
5.2.2. else
do not include the statement as a slice
5.3. if (n is an element of a conditional statement)
{
5.3.1. if ((VAR (L) Є LHS (EXPR) ¦ ¦ (VAR (L) Є RHS (EXPR))
{
F= F U n //Store n
F= F U Loop body statements // Include all statements inside the conditional loop in F
}
}
5.4. if (n is an element of input statement)
F= F U n // include statement as a slice
5.5. if (n is an element of initialization or declaration statement)
F= F U n // include statement as a partial slice
}
6. else
n= n + 1
7. Repeat steps 5…6 until all the program statements are covered or till the EOP is reached
end

In the algorithm 2 given above, the user selects
the program for which the test sequence is to be
generated. The slicing criterion is verified initially. Slicing
criterion contains the variable and statement number.
Here, we have to check for the program statements that
are affected by the value of a particular variable at a
particular point. The slice variable ‘V‘ is stored in a list
‘L‘. The statement number is denoted by ‘n‘. The
process starts from the (nth) line till the end the program
is reached. In the (nth) line, it is checked whether the
variable ‘V‘ is present or not. If the variable ‘V‘ is not
present, then (n+1) th line is checked. If the variable ‘V‘
is present in the (n) the line, a series of steps are to be
performed. If ‘V‘ is present in an expression, it is
checked whether ‘V‘ is present on the right side or left
side of the expression. If ‘V‘ is on the left side of the
expression, that statement is considered as a slice and

all the variables in the right side of the expression are
also added to the list. In ‘V‘ is in the right side then it is
not included as a slice. While checking the next line, we
have to check not only for ‘V‘, but also all the all the
variables present in the list. This is because; the other
variables added to the list are the dependent variables
of ‘V‘. Similarly, it is checked whether the slice variable is
an element of conditional statement, declaration
statement, input statement and output statement. If
these conditions are true, the statements are considered
as a slice. The statements inside the conditional body
loop are also included as slice because the executions
of these statements are dependent on the conditional
clause. The process is repeated unit the end of the
program and the result will be the forward slice for the
corresponding

‘ ‘L‘ ‘
‘

‘

‘

‘ ‘

‘ ‘

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 18

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

ii. System Description
An overview of our system model is given

below. Our system is implemented using Java and
Netbeans IDE. Netbeans is having extensible plug-in
system and Java is having object-oriented features. This
is why they have been used. The main modules of the
implemented system consist of the following parts,
given in figure 7.
1. Input unit
2. Slicer
3. Analyzer and tester

Figure 7:

Main modules of slicing based system

a.

Input unit

The input unit has the facility to select the
software program which is to be tested. After selecting
the program, the variables in the program are listed.
From the listed variables, the user can select the
variables for slicing criterion.

b.

Forward Slicer

This is the main part of the system. In this unit,
slicing is performed for the

program which is to be
tested. After getting the program and the list of variables
from the input unit, forward slicing is performed to
identify the relevant statements in the selected program
with respect to the slicing criterion. Forward slicing is
performed according to algorithm 2 given in section
3.3.1. A sample program code is given in Sample 1 and
the working of forward slicing algorithm is explained
below. In the program code given above in Sample 1,
forward slicing

is applied with respect to the input
variable basic‘. The slicing criterion given is C= (3,
basic). The result of forward slicing is given in Result 1.

Sample 1

1. main()

2. {

3. float basic, total, da, rent;

4. if (basic < 1000)

5. {

6. rent= basic * 12 /100;

7. da= basic * 60 / 100;

8.}

9. else

10. {

11. rent= 700;

12. da= basic * 80 / 100;

13.}

14. total =basic + rent + da;

15. System .out. println (―total = ―+ total);

16.}

Result 1

4. if (basic < 1000)

6. rent= basic * 12 /100;

7. da= basic * 60 / 100;

9. else

11. rent= 700;

12. da=

basic * 80 / 100;

14. total =basic + rent + da;

15. System .out. println (―total = ―+ total);

The slicer will analyze the statements 4-

16 in
Sample 1. Here statements 4, 6, 7, 9, 11, 12, 14, 15 will
execute based on the value substituted for the variable

‘basic‘. We can notice that the dependencies are
checked in a forward direction. The final value of
variables rent‘, da‘ and total‘ are dependent on
‘basic‘. Thus forward slices obtained can find if any
errors are present in the dependent statements also.
The resultant statements from forward slicing are given
in Result 1.

c.

Analyzer & Tester

In this unit the forward slices obtained are
verified to find out whether they are significant in testing
or not. Among the forward slices given above in Result
1, these statements are relevant in testing.

Testing using Slicing

4. if (basic < 1000)

6. rent= basic * 12 /100;

7. da= basic * 60 / 100;

9. else

11. rent= 700;

12. da= basic * 80 / 100;

14. total =basic + rent + da;

15. System .out. println (―total = ―+ total);

The execution of the rest of the program
statements is dependent on the value of the variable
‘basic‘. Here the tester identifies the test sequence
statements which are relevant for generating the
required test data values from the forward slices. In
order to find the possible value of ‘basic‘ present in the
conditional statement of the static slice, an equivalence
partition method is applied. Equivalence partition is
considered as the basis of all testing data generation
methods and in this method, when a program works for
a particular value in a partition, it may work for the other
values in the same partition and this in turn helps to
avoid duplicate testing [31]. Moreover, equivalence
partition method is comparatively easy and reliable [31].
In equivalence partition, the input domain is divided into
a number of sub domains. The sub domains make up
the equivalence class. If a test data value in a class or
partition is considered as a right value, then all the
values under that particular class is considered as good
values. We have to generate a value for the variable
‘basic‘ using equivalence partition. From the slice given
in this section, conditional constraint is given is ‘if

Input Unit Analyzer &
Tester

Forward
Slicer

(basic<1000)‘. Here the possible partitions are (basic
>1000)‘. and (basic >1000)‘. Using these partitions
values are generated, which are given in table 11.

‘

‘ ‘ ‘

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 19

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Table 11 :

Valid and invalid test data values

Partition

Test Values

Result

> 1000

1500

1010

2000

Invalid

< 1000

800

900

700

Valid

From table 11, some of the valid and invalid test

data values for the clause ‘if (basic < 1000)‘ is obtained.
The invalid test values is applicable to the ‘else‘ part of
the conditional clause ‘if (basic < 1000)‘. Substituting
some of the test data values of ‘basic‘ in the
expressions will give the value of ‘da‘ and ‘rent‘ and
finally the value of ‘total‘ may be calculated from these
data.

IV.

Research

Approach

In the previous sections, we have analysed

program testing using genetic algorithm and program
slicing methods. Some issues related to genetic
algorithm based testing have also been pointed out.
Based on these observations, we have framed some
research questions (Q) in the coming section. The aims

of the research questions are also mentioned and this
may help future research work in this area.

a)

Research Questions

Q1.

What is the future of genetic algorithm based
software testing?

The aim of this research question is to analyze
the effectiveness of genetic algorithm based software
testing. This question also intends to deal with the
practical difficulties of this type of testing.

Q2.

In the software testing context, why is program
slicing considered a better approach?

This question aims to analyze the strengths of
program slicing in testing and to study how program
slicing makes testing more effective and reliable.

b)

Review Method

obtaining the slices. As our focus in on program slicing
based software testing, we have selected some leading
works which have mentioned the term ‘testing‘ along
with program slicing which is listed in table 10. Also, we
have considered some of the fundamental works which
use genetic algorithms for test case generation. We
have not considered test selection, prioritisation etc. A
summary of the referred works are given in table 5. The
study made in section 3.2 answers the research
questions.

V.

Results

In this section we have tried to give an

explanation to the

research questions based on the
studies mentioned in the previous sections.

Q1.

What is the future of genetic algorithm based
software testing?

We have provided only the most relevant points
as solution to the research question. For this, the
question Q1 has been split into some secondary
questions (SQ). Providing appropriate answers to the
secondary questions leads to an unbiased review of
genetic algorithm based testing.

SQ1.

What is the role of genetic operators in genetic
algorithm based testing?

All the reviewed works use only single point
crossover, except Jones et al. [30] work. In Jones‘s et
al. [30] work, uniform crossover is used. Also, while
others use simple mutation and Jones‘s work uses
reciprocal and weighted mutation. Even though several
works which explain the different types of operators and
their relevance in different contexts exist, none of them
have exploited these operators. They have used only the
direct type of operators in their work. All these show that,
the result obtained by using these common types of
operators may be improved by substituting the testing
process with a general operator selection strategy. This
has not been decided till now in genetic algorithm
based testing.

SQ2.

Does population initialization and
representation

affect software testing?

From section 3.2, we can see that the
population is selected randomly in most of the works.
Selecting the population based on some heuristics
improves the software testing process. Apart from this,
we can see that only single population is used in most
of these works. Only Wegner‘s et al. [52] work use multi-
population along with single population. Even though a
lot of research works are conducted continuously to
decide the best type of population initialization, selection
etc., some of the most common works which used
genetic algorithm for software testing have
experimented very little with population initialization

concepts, various types of slicing, slicing algorithms,
applications of slicing etc. None of them have
mentioned how to proceed to the testing phase after initialization and the lack of a general strategy for

methods. Again this shows that the quality of genetic
algorithm based testing is dependent on population

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 20

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

We have referred to some relevant works in the
field of genetic algorithm and program slicing based
testing. A lot of works use genetic algorithms for test
selection, test prioritisation, hardware testing etc. Apart
from this, several works use a combined approach
which uses genetic algorithm and other search
algorithms for software testing [9]. Here we have
mentioned only those works that describe software
testing and test data generation using single population
genetic algorithm. We have not considered other
variations of genetic algorithms like parallel genetic
algorithm as they are not employed in testing literature.
We have reviewed several papers which describe slicing

population setting makes the whole testing process
unpredictable.

SQ3.

What are the problems related with fitness
function design during software testing?

Applying genetic algorithm in program testing
requires optimizing the specified fitness function. A
fitness function should be designed in such a way that it
gives optimal solution for a given problem. Defining the
fitness function imprecisely will lead to a wrong solution
or in some cases the problem may get stuck in local
optima [18, 25] suggested a method to remove
variables which can lead to local optima. Even though,
they were able to alleviate the problem of local optima,
their approach didn‘t work for inner loop variables.
Another problem faced during the fitness function
design process is the dependency problem. While
designing

the fitness function for a target node, the
dependent nodes which affect the target node should
be considered. Since most of the works, which use
genetic algorithm based approach for testing, do not
use data flow criteria, the fitness value may not be
correct. Some works were done on this area to minimize
this problem, but they could not explain the best
strategy for fitness function design in the context of
testing [26, 50].

SQ4.

Program dependency

In most of the genetic algorithm based software
testing, program dependency is not correctly followed
[37, 24]. In genetic algorithm based program testing,
initially all the statements in the program should be
analyzed to identify the relevant statements or we have
to get the list of statements that will have a potential role
in software testing. From the testing point of view,
checking the whole program line by line is an
unnecessary waste of effort. Instead of that, if we are
able to find the program statements which help in
program testing, such as those that assist in finding the
test data values during testing, the whole testing effort
will be reduced considerably. In addition, the testing can
be made more methodical. Identifying the relevant
statements which contribute to program testing, and
analyzing those statements can give the dependence
relation present in the program. Utilizing this
dependence relation helps to trace out the errors in a
program. For example, consider the sample control flow
graph given below in Figure 8. All the program
statements will be checked line by line from the starting
point of the program. The statement basic<1000‘
assist in test data generation and suitable test data
values should be generated for the variable basic‘. The
value of basic‘ is found out by optimizing the function

 proceeds in

this approach. In order to get a full
satisfactory explanation for SQ4, we have to see the
result research question Q2. The explanation given in
Q2 provides a justification for SQ4.

Q2.

In the software testing context, why is program
slicing considered a better approach?

In the above section we saw some of the
shortcomings of genetic algorithm based testing
approach. An example given below gives an explanation
to research question Q2. Consider the same example
given in figure 8. In the control flow graph, the
statements which correspond to each node are marked.
From the control flow graph we are taking the forward
slicing criterion as (2, basic). This means that all the
statements which are affected by declaring the variable
basic‘ in statement 2 is to be identified. The resultant

nodes in the CFG are given below in Figure 9.

f(x) = 1000 – basic. After finding out suitable values for
the variable basic‘, the successive statements in the
program is checked for errors. This is how the testing

‘

‘

‘

‘

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 21

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Figure 8 : Sample Control flow graph

It can be observed that all nodes displayed
above will be affected by the variable basic‘ in
statement 2. Node 3 is given as (basic<1000). When
this program is to be tested, the test data which satisfies
the condition in node 3 is to be generated. Similarly,
nodes 4 and 6 are dependent on node 3 and this can be
clearly traced form the slices obtained. Nodes 5 and 7
are also dependent on the variable basic‘. If the value
of basic‘ is greater than 1000, then these nodes get
executed. From this we can conclude that the
statements which are relevant in testing and in the
successive stages of testing like test case generation
can be identified easily by the process of slicing.
Moreover, as slicing gives the dependence information
present in a program, it will be easy to dig up the
mistakes in the dependent statements.

Entry

float basic ,total ,da ,rent,

basic < 1000

 T F

rent = 700
rent = basic* 12/100

da = basic * 60/100
da = basic* 80/100

total = basic + rent + da

print ‗total‘

Exit

3

2

5

7

4

6

8

9

10

1

‘

‘
‘

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 22

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

Figure 9 :

Control flow graph obtained for slicing criterion (2, basic)

 We saw that, for testing the same program
given in figure 8, if genetic algorithm is used instead of
program slicing, the program statements will be
checked line by line from the starting point of the
program. The main difficulty in this approach is that all
the statements which contain relevant and irrelevant
variables should be analyzed to trace the errors in the
program code. On the other hand, as program slicing is
done based on some slicing criterion, an overview of the
dependence in the program code is revealed and error
detection will be much easier. Here we can notice that
every input variable present in a program will not be
responsible for the execution of branches present in the
program. Moreover, removing the irrelevant variables
from a program and focusing only on the relevant
variables which are significant in the execution of a
target branch can improve the performance of genetic
algorithm based testing. Relevant variables are those
which can influence certain statements in a program,

while irrelevant variables are those that cannot affect the
program statements. This points out the fact that,
genetic algorithm may not perform up to the mark in a
practical program testing scenario [39], which
underscores the superiority of program slicing in
program testing. A graph is given in Figure 10 which
gives an analysis of the performance of evolutionary
algorithms with and without irrelevant variable removal.
Here in y-axis the success rate is plotted and in x-axis
the program names with branches are plotted. Here P1
denotes the program name, F1 denotes the function
and B1, B2 and B3 denote different branches. Success
rate is a measure of optimal test cases found out for the
program branches. It can be noticed that the
performance is better when irrelevant variables are
removed from a program, compared to the performance
without irrelevant variable removal. This establishes the
weakness of genetic algorithm when there are a large
number of irrelevant variables.

Figure 10 :

Performance of evolutionary algorithms with and without irrelevant

variable removal

 Our observations, which are listed below, add
more weight to the research

question Q2. We have done
an analysis of the number of program statements

which
have a significant role in program testing identified by

have been considered as a metric for analyzing both
these approaches to

program testing. For a given

basic < 1000
 T F

rent = 700
rent = basic* 12/100

da = basic * 60/100
da = basic* 80/100

total = basic + rent + da

print ‗total‘

3

5

7

4

6

8

9

0

50

100

P1, F1,

B1

P1, F1,

B2

P1, F1,

B3

Program-Function-Branch

name

%
 o

f
su

cc
e

ss

Afer removing

unwanted

variables

Standard

approach

both program slicing based testing and genetic
algorithm based testing. The statements in a program

program which is to be tested, the forward slicing covers
more number of program statements compared to
genetic algorithm in the same time span with respect to
a particular variable. As the probability of error

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 23

Y
e
a
r

20
14

(
DDDD DDDD

)
C

distribution in a program is uniform throughout the code,
an increase in the

number of executable statements with
respect to a particular program variable

increases the
chance of discovering the number of faults related

to
that variable

[33]. This means that, rather than
concentrating on a particular area for a long

time to
attain high coverage for that particular branch or

 statements due to which

program malfunctioning is
caused, using minimal testing. This re-affirms the fact

that program slicing can be more effective in program
testing compared to genetic

algorithm.

An assessment of testing productivity obtained

in genetic algorithm and program

slicing based testing
approach is given in figure 11.

Figure 11 :

Productivity graph

1. Relevant branch indicates the statements of a

program which may play a critical role in program
testing.

2. Testing productivity indicates the measure of the
number of relevant statements that can be covered
in a specific time interval [31, 4].

3. High testing productivity means that more errors
can be detected with less ‘effort‘, while low testing
productivity means that the number of relevant
statements covered in a specific time interval will be
very few [31,4].

4. ‘Effort‘ means the time taken to detect the potential
statements which contribute in program test data
generation, run the program with the generated test
cases and add the test cases to the test suit.

In program testing, the main objective is to find
the maximum number of errors in the minimum time
duration. Program slicing identifies more number of
errors in less amount of time during the initial program
execution stage. The relevant statements identified by
program slicing provide an overview of dependency
present in the program, making the error detection more
practical. From this it is clear that, in program slicing
based testing, although it is not possible to cover all the
potential statements useful for testing, a reasonable
number of statements can be analyzed when compared
to genetic algorithm based program testing.

VI. Threats To Validity
The main threat to the validity of our work may

be due to the limitation in the number and scope of the
works which we have referred. We have limited our
analysis to only those works which have mentioned the
application of genetic algorithm in software testing and
the use of program slicing in software testing.

The downside of such restriction in the selection
of works was that, all the possible variants of genetic
algorithm based testing have not been analysed. Also,
we have not studied all the existing algorithms in
program slicing which may have some relevance in the
field of software testing. Our study has been limited to
only those works which have explicitly mentioned the
use of program slicing in testing. We feel that such a
narrowing in the field of our study has sharpened its
focus and enabled us to do an in depth analysis of our
chosen study objectives; which being the identification
of shortcomings of genetic algorithm and establishing
the usefulness of program slicing in practical software
testing.

VII.

Conclusions

The unresolved issues in practical software
testing constitute the Achilles‘ heel

of software industry.

As genetic algorithm is one of the most widely used and
highly regarded approaches for software testing among
researchers, it is high time that we explore its critical
shortcomings in practical software testing. We have
made an attempt to reveal some of the difficulties due to
the inherent uncertain nature of genetic algorithm based
software testing. A systematic review of the works made
in this study reveals that, genetic algorithm factors like

program code, program slicing tries to analyze more
number of potential statements in a given program.

0

50

100

150

200

s1 s2 s3 s4 s5 s6

Program Execution Stages

R
e

le
va

n
t

B
ra

n
ch

e
s Program

slicing (High
productivity)

Genetic
algorithms(Lo
w
productivity)

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 24

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

The graph shows that, when program testing is
done using program slicing, there will be high testing
productivity and when program testing is implemented
using genetic algorithms, the testing productivity will be
low. Some of the terms related to the graph in Figure 11
are given below.

Here the main principle is to identify possible program

fitness function, population initialization and parameter
settings impact the quality of solution obtained by
genetic algorithm based testing. Apart from this, we
have highlighted the significance of program slicing in
software testing. For a given problem, program slicing
has a higher ‘testing productivity‘ with lesser ‘effort‘. We
have used this principle as the nidus for developing our
idea. We have put forth a forward slicing based method
in this work. Checking of conditional constraints in the
forward slices will help to pick out the rules which are to
be fulfilled when testing is carried out. We have also
discussed how the dependent statements in the slices
are used to trace errors during testing. Certain analytical
results are also provided in our work to substantiate
these facts. With this work, we intend to provide a guide
to future researchers and to make software industry
aware of the scope and potential of using program
slicing as an effective tool in software testing. In future,
we plan to elaborate upon the issues brought forth by
our work which may lead to promising developments in
testing field.

1. AHMED, M. A. AND HERMADI, I. 2001. GA based
Test Data Generator. In the Proceedings of
Congress on Evolutionary Computation (CEC’03). 1,
85-91.

2. AHMED, M. A. AND HERMADI I. 2007. GA based
Multiple Paths Test Data Generator. Computer and
operations research. 35, 3107-3124.

3. BATES, S. AND HORWITZ, S.1993. Incremental
Program Testing using Program Dependence
Graphs. In the Proceedings of the 20th ACM
Symposium on Principles of Programming
Languages.384-396.

4. BEIZER, B. 1990. Software Testing Techniques,

Second Edition, International Thomson Computer
Press, ISBN 1-85032-880-3.

5. BINKELY, D.1998. The Application of Program
Slicing to Regression Testing. Loyola College in
Maryland.1-24.

6. BLACK, R. 2007. Pragmatic Software Testing:
Become an Effective & Efficient Test Professional.
John Wiley& Sons Publishers.

7. BUENO, P. M. AND JINO, S. 2002. Automatic Test
Data Generation for Program Paths Using Genetic
Algorithms. International Journal of Software
Engineering and Knowledge Engineering, 12, 6, 691-
709.

8. CANFORA, G., CIMITILE, A. AND DE LUCIA, A.
1998. Conditioned Program Slicing. Information and
Software Technology, 40, 11, 595–607.

9. CHEN, Y. AND ZHONG, Y. 2008. Automatic Path-
oriented Test Data Generation Using a Multi-
population Genetic Algorithm. In the Proceedings of
the Fourth International Conference on Natural
Computation, China, 566-570.

10. DEMILLI, R. A. AND OFFUTT, A. J. 1991. Constraint-
Based Automatic Test Data Generation. IEEE
Transactions on Software Engineering, 17,9, 900-910

11. DE LUCIA, A. 2001. Program Slicing: Methods and
Applications. In Proceedings of the 1st IEEE
Workshop on Source code Analysis and
Manipulation, 142-149.

12. DOUNGSA-ARD, C., DAHA, K., HOSSAI, A., AND
SUWANNASART, T. 2002. Test Data Generation
from UML State Machine Diagrams using GAs. In
Proceedings of International Conference on Software
Engineering Advances.

13. FOX, C., DANICIC, S., HARMAN, M., AND
HIERONS, R. M. 2004. Con SIT: a fully automated
conditioned program slicer. Software Practice and
Experience, 34, 15–46.

14. FOX, C., HARMAN, M., HIERONS, R. M., AND
DANICIC, S. 2001. Backward Conditioning: A New
Program Special is ation Technique and its
Application to Program Comprehension. In 9th IEEE
International Workshop on Program Comprehension,
Los Alamitos, California, USA, 89–97.

15. GALLAGHER, K. B. AND BINKLEY, D. 2008.
Program Slicing. In the Proceedings of Frontier of
Software Maintenance, 58-67.

16. GALLAGHER, K. B. AND LYLE, J. R. 1991. Using
Program Slicing in Software Maintenance. IEEE
Transactions on Software Engineering, 17, 8 (Aug.),
751–761.

17. GALLAGHER, K. B. 1990. Using Program Slicing in
Software Maintenance. Ph.D. Thesis, University of
Maryland Baltimore County.

18. GOLDBERG, D. E. 1989. Genetic Algorithms in
Search, Optimization and Machine Learning.
Addison Wesley

19. GRAHAM-ROWE, D. 2002. Radio Emerges from the
Electronic Soup. New Scientist, 175, 2358 (Aug), 19.

20. GUPTA, R., HARROLD, M.J., AND SOFFA, M. L.
1992. An Approach to Regression Testing using
Slicing. In the Proceedings of the IEEE Conference
on Software Maintenance, Orlando, Florida, 299-
308.

21. HARMAN, M. AND DANICIC, S. 1994. Using Slicing
to Simplify Testing. In the Proceedings of Eurostar.

22. HARMAN, M. AND BINKLEY, D. 2005. Forward
Slices are Smaller than Backward Slices. In the
Proceedings of the fifth International Workshop on
Source code Analysis and Manipulation, 15-24.

23. HARMAN, M. AND DANICIC, S. 1998. A New
Algorithm for Slicing Unstructured Programs.
Journal of Software Maintenance and Evolution 10,
6, 415–441.

24. HARMAN, M., HASSOUN, Y., LAKHOTIA, K.,
MCMINN, P. AND J. WEGENER, J. 2007. The
Impact of Input Domain Reduction on Search-based
Test Data Generation. In ESEC-FSE '07:
Proceedings of the the 6th Joint Meeting of the

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 25

Y
e
a
r

20
14

(
DDDD DDDD

)
C

References Références Referencias

European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, New York, USA,155-164.

25. HARMAN, M., HU, L., ZHANG, X. AND MUNRO M.
Side-effect Removal Transformation. 2001. In the
Proceedings of the 9th IEEE International Workshop
on Program Comprehension, Toronto, Canada, 310-
319,

26. HARMAN, M., HU, L., HIERONS, R., BARESEL, A.
AND STHAMER, H. 2002. Improving Evolutionary
Testing by Flag Removal. In Proceedings of the
Genetic and Evolutionary Computation Conference,
New York, USA, 1359-1366.

27. Hill, T.A. 2002. Importance of Performance Stress
Testing on Embedded Software Applications. In the
Proceedings of QA & Test Conference, Spain

28. HOLLAND, J., H. 1975. Adaptation in Natural and
Artificial Systems, University of Michigan Press, Ann
Arbor.

29. HORWITZ, S., REPS, T. AND BINKLEY,D. 1988. Inter
procedural Slicing using Dependence Graphs,
SIGPLAN Notices, 23,7, 35–46.

30. JONES, B.F., STHAMER, H. H. AND EYRES, D. E.
1996. Automatic Structural Testing Using Genetic
Algorithms. Software Engineering Research Journal,
299-306.

31. JORGENSEN, P.C.2008. Software Testing: A
Craftsman’s Approach. Auerbach Publications
(Taylor and Francis group)

32. KOREL, B. 1990. Automated Software Test Data
Generation, IEEE Transactions on Software
Engineering, 16, 8,870-879.

33. KOREL, B. AND LASKI, J. 1988. Dynamic Program
Slicing. Information Processing Letters 29, 3 (Oct.),
155–163.

34. KOREL, B. AND RILLING, J. 1998. Program Slicing
in Understanding of Large Programs, In the
Proceedings of the. 6th International Workshop on
Program Comprehension, 145-152.

35. KOMONDOOR, R. AND HORWITZ, S. 2000.
Semantics-preserving Procedure Extraction. In
Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages. ACM Press, N.Y., 155–169.

36. MANTERE, T. AND ALANDER, J. T. 2005.
Evolutionary Software Engineering, A Review.
Journal of Applied Soft Computing, 5,315-331.

37. MCMINN, P. 2004. Search-based Software Test
Data Generation: A Survey. Journal of Software
Testing Verification and Reliability, 14, 2, 105-156.

38. MCMINN, P., HARMAN, M., BINKLEY, D. AND
TONELLA, P. 2006. The Species per Path Approach
to Search-based Test Data Generation. In the
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 06), Portland,
Maine, USA, 13-24.

39. MCMINN, P., HARMAN, M., HASSOUN, Y.,
LAKHOTIA, K. AND WEGENER, J. 2012. Input
Domain Reduction through Irrelevant Variable
Removal and its Effect on Local, Global and Hybrid
Search-Based Structural Test Data Generation, IEEE
transactions on Software Engineering, 38, 2, 453-
477.

40. MICHAEL, C. C., MCGRAW, G. E. AND SCHATZ M.
A. 2001. Generating Software Test Data by
Evolution. IEEE Transactions on Software
Engineering, 27, 12 (Dec), 1085-1110.

41. MYERS, G. J. 1979. The Art of Software Testing,
Wiley, New York.

42. OTT, L. M. AND BIEMAN, J. M. 1998. Program
Slices as an Abstraction for Cohesion
Measurement. Information and Software
Technology-Special issue on Program Slicing,
40,691−700.

43. OUTT, A.J., Z. JIN, Z. AND PAN, J.1999. The
Dynamic Domain Reduction approach to Test Data
Generation. Software Practice and Experience, 29, 2,
167-193.

44. PARGAS, R. P, HARROLD, M. J. AND PECK, R. R.
1999. Test Data Generation Using Genetic
Algorithms. Journal of Software Testing, Verifications,
and Reliability, 9, 263-282.

45. PEI, M., GOODMAN, E. D, GAO, Z. AND ZHONG, K.
1994. Automated Software Test Data Generation
Using A Genetic Algorithm. Technical Report ,
GARAG e of Michigan State University.

46. ROPER, M., MACLEAN, I., BROOKS, A., MILLER, J.
AND WOOD, M. 1995. Genetic Algorithms and the
Automatic Generation of Test Data. Technical report
RR/95/195[EFoCS-19-95], Department of Computer
Science, University of Strathclyde.

47. SAMUEL, P. AND MALL, R. 2009. Slicing based
Test Case Generation from UML Activity Diagrams,
ACM SIGSOFT Software Engineering notices, 34, 6,
1-14.

48. STHAMER, H. H. 1996. Automatic generation of
Software Test Data using Genetic Algorithms, Ph.D.
Thesis, University of Glamorgan, Pontyprid, Wales,
Great Britain.

49. TIP, F. 1995. A Survey of Program Slicing
Techniques, Journal of Programming Languages, 3,
3, 121-189.

50. TRACEY, N. 2000. A Search-Based Automated Test
Data Generation Framework for Safety Critical
Software. Ph. D. thesis, University of York.

51. WATKINS, A. 1995. A Tool for the Automatic
Generation of Test Data using Genetic Algorithms.
In Proceedings of the fourth Software Quality
Conference, Dundee, Great Britain, 300-309.

52. WEGENER, J., BARESEL, A. AND STHAMER, H.
2001. Evolutionary Test Environment for Automatic
Structural Testing. Journal of Information and
Software Technology, 43, 841-854.

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

 26

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

53. WEISER, M. Program Slicing. 1984. IEEE
Transactions on Software Engineering. 10,4,352-357.

54. XANTHAKIS, S., ELLIS, C., SKOURLAS, C., LE
GALL, A., KASTISKAS, S. AND KARAPOULIOS, K.
1992. Application of Genetic Algorithms to Software
Testing. In Proceedings of the 5th International
Conference on Software Engineering and its
Applications.France,625-636.

An Overview of Recent Trends in Software Testing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

 27

Y
e
a
r

20
14

(
DDDD DDDD

)
C

This page is intentionally left blank

© 2014 Global Journals Inc. (US)

 28

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
III

 V
er
sio

n
I

(
DDD D DDDD

)
C

An Overview of Recent Trends in Software Testing

	An Overview of Recent Trends in Software Testing
	Author
	Keywords
	I. Introduction
	II. Basics
	a) Genetic Algorithms
	b) Program Slicing
	i. Static Slicing
	ii. Dynamic Slicing

	III. Evaluation of Testing Approaches
	a) Software testing
	b) Genetic algorithm based testing
	i. Population generation
	ii. Setting of parameters
	iii. Design of fitness function
	iv. Response time prediction

	c) Software Testing using Program Slicing
	i.Testing Approach
	ii. System Description

	IV.ResearchApproach
	a)Research Questions
	b)Review Method

	V.Results
	VI. Threats To Validity
	VII.Conclusions
	References Références Referencias

