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Abstract- In the field of search based software testing, genetic algorithm based testing has received a 
major share of attention among researchers during the last few years. Though there are advantages 
for this type of testing, there also exist some practical difficulties which can make this technique less 
attractive for software testing industry. The potential of program slicing in testing has not been fully 
exploited till now and the works that have explicitly demonstrated the application of slicing in testing 
field are rare. Our paper aims to analyze existing techniques for software testing and to introduce an 
approach for software testing using program slicing technique. A systematic review of genetic 
algorithm based works reveals that, fitness function design, population initialization and parameter 
settings impact the quality of solution obtained in software testing using genetic algorithm. Based on 
the conclusions from the existing literature, we have probed deeper about the issues in these areas. 
Making an unbiased review like this may help to solve these unresolved issues in genetic algorithm 
based software testing. In this work, we have emphasized and has given clear directions on how 
slicing can be used as a potential tool for practical software testing. In addition, a set of research 
questions have been framed, which may be answered by reviewing the study made in this work. This 
may help future research in this area, leading to major breakthrough in software testing field.
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Abstract-  In the field of search based software testing, genetic 
algorithm based testing has received a major share of 
attention among researchers during the last few years. Though 
there are advantages for this type of testing, there also exist 
some practical difficulties which can make this technique less 
attractive for software testing industry. The potential of 
program slicing in testing has not been fully exploited till now 
and the works that have explicitly demonstrated the 
application of slicing in testing field are rare. Our paper aims to 
analyze existing techniques for software testing and to 
introduce an approach for software testing using program 
slicing technique. A systematic review of genetic algorithm 
based works reveals that, fitness function design, population 
initialization and parameter settings impact the quality of 
solution obtained in software testing using genetic algorithm. 
Based on the conclusions from the existing literature, we have 
probed deeper about the issues in these areas. Making an 
unbiased review like this may help to solve these unresolved 
issues in genetic algorithm based software testing. In this 
work, we have emphasized and has given clear directions on 
how slicing can be used as a potential tool for practical 
software testing. In addition, a set of research questions have 
been framed, which may be answered by reviewing the study 
made in this work. This may help future research in this area, 
leading to major breakthrough in software testing field. 

 

I. Introduction 

n God we trust, everything else we test‖. This famous 
quote conveys the idea that almost all the things in 
this world are unreliable without testing [6]. Proper 
testing makes the software robust and trustworthy 

and hence the importance of testing cannot be 
overemphasized. From simple home appliances and 
common automobiles, to life support devices like 
mechanical ventilators and mission critical systems like 
nuclear reactors, there is an unending list of 
components which depend on some form of software 
for their proper functioning [27]. These softwares in turn 
depend on testing for their infallibility. Imagine a 
pharmaceutical company introducing a new drug in the 
market without proper trials and testing. It is not only 
illegal, but also extremely unsafe and potentially 
deleterious. Similarly, software development without 
testing makes it unreliable, unusable and even unsafe. 

While one of the main intentions of software 
testing is to check for and identify errors in  software, a  
 

    

software tester has a much wider gamut of 
responsibilities. For example in our real life activity, in an 
automobile where there is a sound due to the loosening 
of wheel, the defect may be corrected by tightening it, 
but the alignment of the tightened wheel may not be 
synchronous with the other wheels. Therefore in the next 
step, the wheels are to be aligned for the proper running 
of the vehicle. Similarly, finding the root cause or in other 
words, finding the dependency during software testing 
is one of most challenging aspects of software testing 
as rectifying an error may introduce some side effects in 
the software. Getting the dependency relations present 
in a program serves as the backbone of several other 
processes in software development, such as regression 
testing, program comprehension, maintenance, reverse 
engineering and re-engineering [16, 17]. This implies 
that, though software testing can be very challenging, it 
has a very significant influence and marked relevance in 
software development industry. In the earlier days, most 
of the applications used simple software and they were 
mostly standalone applications. The nature of modern 
day software can make its testing not an easy task. 
Many of the software used nowadays is real-time and 
embedded software with web interface. This type of 
software may have several interconnected modules and 
such software needs to be continuously tested until they 
get outdated from the world market. Technological 
changes, requirement changes and platform changes 
raise the need for continuing testing in such systems. In 
such software, the software dependency consideration 
is an unavoidable factor which decides the reliability of 
the software. Even a minor error may cause great 
mishap in such software applications. The unrestricted 
size of the source code is another problem plaguing the 
software testing industry. In the case of large 
commercial software, there will be several modules and 
lines of code which make software testing process more 
difficult. As testing cost increases with source code size, 
it should be one of the primary concerns of the software 
tester. In the field of software testing, a software tester 
cannot leave the scene after finishing the testing 
process [31]. During software testing, the test cases 
designed for solving the error in some part of the source 
code may prove to be insufficient to solve the bugs 
occurring some other parts of the source code. This is 
similar to the creation of mutant species. For example, 
long term use of an insecticide against a particular 
species of insect, makes it vulnerable to development of 
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resistance by genetic modification and mutation in the 
insect. In such a situation, new insecticides have to be 
used to kill that insect. Similarly, the test cases designed 
for a particular test scenario may fail in some situation. 
This may be due to the changes made in the source 
code or due to the change in design requirements made 
as per user specifications. New test cases are to be 
found for solving such problem or the existing test cases 
should be updated by the software tester. From the 
above discussion it is evident that, a good tester should 
be a good software designer, an intuitive code 
developer and a reliable maintenance person, all rolled 
into one. For example, consider the situation where a 
company decides to change its product as per user 
requirements. Now, the software designer and code 
developer can fulfill their parts just by completing the 
work in their respective areas of expertise. On the other 
hand, for the testing to be fully reliable, the tester has to 
understand the changes made by designer and code 
developer and then develop appropriate testing 
methods. Truly speaking, a good software tester has to 
be a skilled all-rounder. 

Several methods were developed with an aim to 
address the challenges existing in software testing 
industry. Among the different software testing strategies, 
search based testing has received immense attention 
and especially, genetic algorithm based testing has 
made a marked influence in software testing research 
[30]. This is due to the adaptability of genetic algorithms 
to handle the testing process and the ability to represent 
the software testing problem as an optimization problem 
[38]. Considering the volume of work done in genetic 
algorithm based software testing, it is crucial to identify 
the merits and demerits of this approach. Even though 
genetic algorithm based testing has made a great 
impact in academic research, only very little attention 
has been given to understand the complexities of using 
genetic algorithms in practical software testing. This 
work focuses on this and we have tried to highlight the 
challenges involved in genetic algorithm based 
approaches for using it as a practical tool in software 
testing. The main reason for choosing this problem in 
our work is because of the usage of genetic algorithms 
in software testing without knowing the ambiguities in 
genetic algorithm based testing. In this paper, we have 
mentioned some works which utilize genetic algorithm 
for testing [38, 39, 40, 44, 51, 52, 54]. We can see that 
none of these works have adopted any general operator 
setting for testing purpose. The inherent non-
deterministic nature of the genetic operators makes the 
program testing process a demanding task. The 
strength of using genetic algorithm mainly depends on 
setting the genetic parameters to their appropriate 
values and this in turn depends on the problem to be 
solved. This itself is a major challenge faced by testers. 

In this work, we have suggested a program 
slicing approach for software testing and have 

highlighted the strengths of using program slicing as a 
tool in software testing industry. It was Weiser who 
introduced slicing in 1979 [15, 53] and his work 
encouraged many research works developing slicing 
algorithms. According to Weiser, slicing criterion 
consists of two parameters and it is represented as (V, 

This property of slicing is highly relevant, as source 
code size is a major concern is modern day software. 
Instead of analyzing the whole program, slicing reduces 
the program search space which in turn minimizes the 
testing effort. Setting the slicing criterion with respect to 
the variable with incorrect value can help to identify the 
portion of source code which causes error during 
program testing. Here the manual effort of the program 
tester is reduced considerably as there is no need to 
consider the whole source program [11, 47]. Slicing also 
helps to trace program dependencies which are very 
crucial in testing. In several works it has been mentioned 
that program slicing may be used for testing purpose 
[17, 20, 21]. None of these works gave a clear picture of 
how to utilize slicing to make testing more meaningful. 
Apart from program testing, slicing can be used in 
several applications such as program debugging [34, 
53], program comprehension [22] and program 
maintenance [17]. In this paper, we have demonstrated 
a forward slicing approach for testing and have tried to 
mark the merits of program slicing based testing 
approaches. 
Finally, this paper aims to: 
− Introduce program slicing as a major research 

direction in software testing 
− Present an analytical description of program slicing 

and to demonstrate how it can be applied in 
software testing 

− Assess the current research trends in software 
testing with a special focus on genetic algorithm 
based testing 

− Analyze the shortcomings and challenges for 
making genetic algorithm based approaches 
practical in software testing industry 

− Highlight the significance of program dependency in 
software testing, and explain how program slicing 
can effectively resolve this issue 

The remaining section of the paper is organized 
as follows. Section 2 gives the basics of program slicing 
and genetic algorithm. Section 3 compares program 
slicing based testing and genetic algorithm based 
testing approaches. Based on the observations made in 
section 3, some research questions are framed in 
section 4. In section 5, we have given an explanation of 
the research questions in section 4. Threats to validity of 

n), where ‘V‘ is a set of variables and ‘n‘ is the program 
point [53]. In program slicing, source code size is 
minimized by converging focus on some specific 
program part implied by the ‘slicing criterion‘ [20,49]. 
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this work are given in section 6 and section 7 gives the 
conclusion.



 

 

 
II.

  

Basics

 
As we are doing a detailed study of genetic 

algorithm based and program slicing based software 
testing methods, we shall go through the basic 
principles of genetic algorithm and program slicing 
concepts. Based on the conclusions from the exiting 
literature, we will have to probe deeper about the issues 
in these areas. Making an unbiased review like this may 
help to solve the issues in genetic algorithm based 
software testing and at the same time help to 
understand the relevance of program slicing in software 
testing. This may help the future researchers working in 
this area.

 
a)

 

Genetic Algorithms

 

In order to conduct a proper review of genetic 
algorithm based software testing, it is essential that one 
should be familiar with the basic concepts and terms in 
genetic algorithm.

 

This is dealt with in this section. 
Genetic algorithm is a type of evolutionary algorithm and 
is considered as the best and the strongest of all 
evolutionary algorithms [18, 24]. It is a type of search 
technique developed by John Holland and works on 
Darwin‘s principle of survival of the fittest. Genetic 
algorithm uses the technique of natural genetics, 
representing a computer model of biological evolution. 
Genetic algorithms have the ability to solve a variety of

 

optimization and search problems. Several testing 
techniques use genetic algorithms believing that testing 
may be carried out in a better way using the natural 
evolutionary process present in them [39].

 

Genetic algorithm identifies an optimal solution 
for a problem by applying natural evolutionary 
techniques to a group of possible solutions referred to 
as ―population‖ [18, 40]. After each generation, a new 
generation is formed which is better than the previous 
generation. The series of steps involved in genetic 
algorithm are population initialization, selection, 
crossover, mutation and termination. A string of digits 
called chromosomes are present and each individual of 
the string is called a gene. Each individual in the 
population has a fitness value which decides the quality 
and performance of that individual. Greater the fitness 
value better will be the problem solving capacity of an 
individual [25]. Collection of chromosomes makes up a 
population. The initial population is created randomly 
and the fitness of the individuals in the population is 
calculated. This information is used to select the best 
candidates for forming the next generation parents. After 
selecting parents of the successive generation, the next 
step is to combine these candidates to form the 
offspring. Crossover operation is used to perform this 
[36, 54]. Crossover enables the selection of good 
features from parents to form the offspring. Mutation is 
applied to the offspring to create better quality 
individuals. Mutation is defined as the process of 
altering the genes in the chromosome [43]. A new 
generation is chosen from the offspring based on the 
fitness of the individuals. These individuals are 
considered as parents of the next generation. This cycle 
is repeated until a global solution for the problem is 
obtained. The basic steps of genetic algorithm are given 
in algorithm 1. 

ALGORITHM 1 
 procedure Genetic Algorithm 

 begin 
 GET (Initial Population); 

 CALCULATE FITNESS (Initial Population) 
 loop 

 FINALZE POPULATION FOR CROSSOVER (Parent population) 
 PERFORM CROSSOVER (Parent population, child) 

 APPLY MUTATION (Child) 
 CALCULATE FITNESS (Child) 

 GET NEXT GENERATION (Parent population, Child) 
 stop process when TERMINATION CRITERA 

 exit loop 
 end 

 

b) Program Slicing 
This section deals with some of the common 

terms in program slicing. Slicing is defined as the 
process of deleting all those statements from a program 
which cannot affect the values of a variable of interest. In 
other words, a slice is a subset of source program 
statements. Slicing is performed based on slicing 
criteria. A slicing criterion comprises a program location 
and a set of variables known as slice set. If P is a 
program, x is a statement in P and y is a variable in P, 

then the slicing criterion (C) is given as C= (x, y). 
Program slicing can be divided into various types. 
Based on slicing criteria, the two main types are static 
and dynamic slicing [32, 35], while based on direction of 
slicing the two main types are forward and backward 
slicing [22, 49]. 

i.
 

Static Slicing
 

A slice constructed by ignoring those parts of 
the program that are not relevant to the values stored in 
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the chosen set of variables at the chosen point is known 
as static slice [8, 34]. As mentioned above slicing 
criterion C= (x, y), where x is a statement in the P 
(program) and y is a variable in P. Given a variable y‘ 
and a point of interest x‘, slice will be constructed for y 
at x. An example program is given in table 1, where the 
static slice criterion is given as <11, a>. The result will 

be the set of statements <4, 5, 6, 8, 9>. Backward 
slicing gives all the program statements which affect the 
value of a particular variable at a particular point [TIP 
1995]. Forward slicing gives all the program statements 
which are affected by declaring a variable at a given 
point in the program [22, 29]. 

Table 1 :  Static slicing 

Program Statements Static slice for criterion <11, a> 
1 main()  
2 {  
3 int a,b;  
4 cin>> b;  
5 a = 0;  
6 while (b <= 10)  
7 {  
8 a=a+b;  
9 ++ b;  
10}  
11 cout<< a;  
12 cout<< b;  
13 }  

4 cin>> b;  
5 a = 0;  
6 while (b <= 10)  
8 a=a+b;  
9 ++ b;  

ii. Dynamic Slicing 
The concept of dynamic slicing was given by 

Korel [33]. The set of statements that affect the value of 
a variable for one specific input is known as dynamic 
slice. In dynamic slicing we have to consider three 
parameters. First one is the point of interest within the 
program, second one is the variable and the third one is 
the sequence of input values for which the program was 

executed. Dynamic slicing criterion is defined as C= (x, 
y, i). Here x is the statement in the program, y is the 
subset of variables in the program and i is the input 
value [11]. A sample program to be sliced is given 
below in table 2. The variable with respect to which 
slicing is to be done is p, slicing point is the end of the 
program and input given is n=0. 

Table 2 : Dynamic slicing 

Program Statements  Dynamic Slicing 
Criterion :-( 10, p, n=0,)  

1 scanf("%d",&n);  
2 s=0;  
3 p=0;  
4 while (n>0)  
5 {  
6 s=s+n;  
7 p=p*n;  
8 n=n−1;  
9 }  
10 printf ("%d%d", p, s);  

p=0  

In static slicing though the size of the slices 
obtained will be large, all possible executions will be 
considered. On the other hand, in dynamic slicing the 
down side of small size of slices is that the result will be 
focused only for a specific input [32]. 

III.  Evaluation of Testing Approaches 

This section analyses the testing approach 
based on genetic algorithm and introduces our 
approach based on program slicing. Here we have 
identified some points to justify our analysis and these 
are used to frame the research questions in section 4. 
We have divided this section into three parts. In the first 
part the purpose of software testing is explained. The 

second part deals with genetic algorithm based 
software testing. Some relevant works in that field and 
our observations regarding genetic algorithm based 
testing are given in this section. In the third part we have 
introduced our program slicing based testing approach 
and have described its benefits and importance. 

a)
 

Software testing
 

The section gives an insight into the basics of 
software testing. In software testing the target program 
is executed to identify the errors. This is followed by

 

debugging to rectify the identified errors [21]. Before 
starting the testing process,

 
the objectives or the goals 

should be properly set and the tester should be aware of
 

‘
‘
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the strategy to be followed to achieve the set goals [10]. 
It is very essential that the tester should have an idea of 
user requirements and should also be able to identify 
the conditions which will have an adverse effect on the 
selected testing strategy. The main objectives of testing 
are [4, 41] 
− To affirm that the software developed is error free 
− To check whether the developed software is 

functioning correctly according to the program 
developer and program tester 

− To confirm that the developed software works 
correctly without causing any data loss. 

Therefore developing an effective method for 
testing is an inevitable part of all software systems 

 
 
 

b) Genetic algorithm based testing 
In the past few years, search based software 

testing, especially evolutionary algorithm, has gained 
immense popularity [2, 9]. A graph is shown in figure 1, 
which shows an increase in rate of publications and 
research works in search based software testing during 
the period 1975 to 2010[37]. Among evolutionary 
algorithms, genetic algorithm is one of the widely 
researched techniques for software testing. They are 
included in dynamic testing techniques [26]. In dynamic 
testing, the program is executed based on given input 
data to obtain the corresponding output, while in static 
testing, the program has to be analyzed line by line to 
check for the errors in the program. Thus in static 
testing, the ability to find errors depends on the tester‘s 
experience. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 :

 

Research works in search based software testing during the period 1975

 

to 2013

 

Genetic algorithms are used to perform 
automated software testing due to their

 

ability to 
represent the testing problem as an optimization 
function. Finding a

 

solution for this optimization problem 
gives a solution for the testing process also.

 

There were 
several attempts to generate test data using single 
population, multiobjective,

 

master-slave, fine-grained 
and coarse-grained genetic algorithms [1, 9].

 

We have 
limited our literature review to some of the most relevant 
works which

 

have used the concepts of genetic 
algorithm and single objective fitness function in testing. 
A detailed study of these works is done to

 

make an 
assessment of genetic algorithm based software testing 
approach. In the next paragraph, we discuss some of 
the most relevant works in genetic algorithm based 
software testing.

 

A path wise test data generation using genetic 
algorithms was introduced by Pei et al. [45]. A control 
flow graph was constructed and the paths were 

individuals. A branch coverage criterion was used by 
Jones et al. [30] in their work for generating test data 
using genetic algorithms. Hamming distance approach 
was used to design the fitness function and their 
approach could cover programs which contain up to 
three loops. Pargas et al. [44] developed a tool called 
TGen which uses genetic algorithm for program testing. 
A parallel processing approach was used in TGen to 
improve the testing process. A path coverage and 
branch coverage approach was used in TGen. The 
performance of TGen was compared with a tool called 
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manually selected from the graph. Only two loops were 
covered at a time. They designed the fitness function 
based on the paths selected from the graph. Genetic 
algorithm based testing was used by Roper et al. [46] 
for testing C program. They used the branch coverage 
criteria. In their approach, a random method for 
population selection was used and this population was 
subjected to crossover and mutation to generate better 

Random which is a tool based on random method. Test 
cases which covered the largest number of predicates 
were given the highest fitness values. Bueno et al. [7] 
developed a method for software testing using genetic 
algorithms. They used the path coverage criteria and 
introduced the path similarity metric as fitness function. 
The population initialization was made by checking the 
previous nature of the population. This helps to create 
better individuals in the successive generations. 
Wegener et al. [52] used a statement coverage criterion 
during testing and they introduced a fitness function 
which is decided based on the approximation level and 
normalized predicate level distance. Michael et al. 
[2001] developed a tool called GADGET which uses 
genetic algorithms for generating test data for C 
programs. They designed the fitness function based on 
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some predicate function. Their tool had many limitations 
like the inability to handle Boolean variables. Doungsa-
ard

 

et al. [12] used a genetic algorithm based approach 
to generate test data for UML state diagrams. They used 
the transition coverage approach and the fitness 
function was designed based on the number of 
transitions fired by the input sequence. The population 
initialization was made based on the nature of the 
previous generation individuals. Hermadi et al. [1] used 
a path coverage criterion to genetic test cases using 
genetic algorithm. The overall fitness function was a 

 

 
  
  
  
  

i.

 

Population generation

 

This includes initialization and representation of 
the population, strategies for population selection and 
the determination of population size. The population 
which is initialized may itself be the set of initial potential 
solution. The representation of population is another 
issue. Population can be represented as a group of 0‘s 
and 1‘s, as a group of integers, as decimal numbers or 
as characters. In some problems a tree representation is 
also possible. Based on the problem, appropriate 
method of representation is applied. Improper 
representation of the individual in genetic algorithms 
may cause unexpected variations in the final result [24, 
25].

 

Table 5 :

 

Summary of GA based works on software testing

 

WORK

 

COVERAGE 

 

FITNESS 
FUNCTION 

 

GA TYPE &

 

POPULATION 
REPRESENTA
TION 

 

POPULATIO
N SIZE & 
SELECTION 
STRATEGY 

 

CROSS 
OVER 
TYPE 

 

MUTATION 
TYPE 

 

DOUNGSA-ARD 
et al. [2002] 

 

Transition 

 

Number of 
transitions fired 
by input 
sequence 

 

Simple GA & 

 

Sequence of 
triggers 

 

10 & Previous 
knowledge 

 

Two point 

 

Random 
mutation & 
0.5 

 

HERMADI et al. 
[2001] 

 

Path 

 

Fitness= 
Number of 
violations 
+Distance 

 

Simple GA & 

 

30 & Roulette 
wheel 
selection 

 

Single 
point 

 

0.1 0r 0.3 

 

WEGENER et al. 
[2001] 

 

Statement 

 

Approximation 
level and 
normalized 
predicate level 
distance 

 

Simple & multi

 

population GA 

 

& Integer 
representation 

 

Stochastic 
universal 
sampling 

 

Single 
point 

 

Discrete 
recombinati
on, 1 & 
multiple 
strategies 

 

BUENO et al. 
[2002] 

 

Path 

 

FT=NC-
EP/MEP 

 

Simple GA& 
Binary string 

 

80 and 
Selection 
based on 
Previous 
knowledge 

 

Single 
point 

 

Simple & 
0.03 

 

MICHAEL et al. 
[2001] 

 

Branch 

 

Predicate 
function 

 

Simple GA & 
Binary String 

 

24, 100 and 
Random 
selection 

 

Single 
point 

 

Simple & 
0.001 

 

PRAGAS et al. 
[1999] 

 

Statement & 
Branch 

 

Common 
predicates 

 

Simple GA & 
Input data list 

 

100 & 
Random 
selection 

 

Single 
point 

 

Simple & 
0.10 

 

JONES et al. 
[1996] 

 

Branch( 
Maximum 3 

Hamming 
distance 

 

Simple GA & 
Binary plus sign 

45 &

 

Random 
selection 

 

Uniform 

 

Reciprocal 
&Weighted. 

measure of aggregation of individual‘s fitness function. 
Table 5 gives a list of some of the works which is uses 
genetic algorithms for software testing.

A review of these works, throws up some of the 
pertinent issues in genetic algorithm based software 
testing. These factors, which play a major role in genetic 
algorithm based testing and influence its outcome to a 
significant degree, are given below:

− Response time prediction
− Setting of parameters

loops) & gray code Reciprocal 
& five least 

ROPER et al. 
[1995] 

Branch Coverage 
percentage 

Simple GA & 
Character string 

User input & 
Random 
selection 

Single 
point 

Simple 
mutation. 
Mutation 
rate decide 
by user 

− Population generation
− Design of fitness function
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The next major concerns related to population 
are the population selection strategy and population 
size. Either a random method or a heuristic based 
method

 

is used to initialize the population. In the 
random method, population is selected randomly. In the 
heuristic based approach, instead of setting the 
population randomly, some tests are performed and the 
individuals are selected based on the test results. This 
shows that, population selection strategy can be based 
on several methods to select the appropriate 
population. The population size can also be a

 

confounding factor because if the population size is too 
small the genetic algorithm will not search all the 
possible solution areas to procure an optimal solution 
[9, 12]. In this case, the individuals may reproduce 
abundantly and the resulting diversity

 

in population may 
cause the individuals to converge to a point which 
appears to be better than the neighboring points. In 
such a situation, even though there is a chance that a 
better solution exists, it is missed as the population size 
is already declared to be very small. This is known as 
the premature convergence problem [40]. Hence 
declaring the correct population size still remains a 
problem in genetic algorithm and research is still 
ongoing in this area. Before using genetic algorithm for 
software testing, these inherent issues have to be 
addressed. Due to the shortcomings of single 
population genetic algorithm, parallel genetic algorithm 
has been tried in many applications [30]. Parallel 
genetic algorithms are similar to single population 
genetic algorithms running in different machines. The 
performance of parallel genetic algorithms is affected by 
the way in which the computers are networked. In effect, 
even though parallel genetic algorithms may speed up 
the computation process compared to single population 
genetic algorithm, several issues in the network 
implementation topology needs to be dealt with.

 

 

Genetic algorithm parameter settings

 

Minimize Objective Function (f) = 10-x

 

Population type: Double vector

 

Fitness Scaling: Rank

 

 
 
  

 

All the parameters except the population size 
are kept constant. The result obtained for various 
population sizes is given in Table 6. The objective 
function value and the value of the best individual 
present in all iterations are also displayed. From Table 6, 
it can be inferred that as the population size increases, 
the result obtained becomes better. Another illustration 
is given below in figures 2 to 6. These show that, as the 
population size increases beyond a certain size, the 
time taken for fitness function optimization increases.

 

Table 6 :

 

Function values and final point values

 

Populatio n 
Size

 

Best Individual 
final point value

 

Objective 
function value

 

20

 

24.76

 

-14.76

 

20

 

24.88

 

-14.85

 

30

 

27.30

 

-17.30

 

30

 

28.37

 

-18.37

 

70

 

44.51

 

-34.51

 

70

 

39.95

 

-29.95

 

1000

 

67.99

 

-57.99

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 :

 

Stopping criteria for population size =20

 
 
 
 
 
 
 
 

Crossover type: Scattered
Migration rate: 0.2
Stopping Criteria: 100 generations
Time limit: 10 second

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

Figure 3 : Stopping criteria for population size =30

An Overview of Recent Trends in Software Testing

© 2014   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
V
III

 V
er
sio

n 
I 

  
  
 

  13

Y
e
a
r

20
14

  
 

(
DDDD DDDD

)
C

PIE et al. [1999] Path( 
Maximum 2 
loops) 

F= C-
[10*n+5*n(n-
1)/2 

Simple GA & 
Binary string 

Program‘s s 
size & 
Random 
selection 

Single 
point 

Simple 
mutation & 
0.001 

We have used the Genetic algorithm solver tool 
in Matlab 7.8 to give an idea of the population 
initialization issues presented above. The initial 
parameter settings for the Genetic algorithm tool are 
given below.



 

 

 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 

Figure 4

 

:

 

Stopping criteria for population size =70

 
 
 
 
 
 
 
 
 
 

Figure 5

 

:

 

Stopping criteria for population size =1000

 
 
 
 
 
 
 
 
 
 

Figure 6

 

:

 

Stopping criteria for population size =10000

 

In figures 2 to 6, the time taken to compute the 
fitness function optimization

 

process for population 
sizes 20, 30, 70, 1000 and 10000 is showed. Some of 
the

 

terms related to the fields in these figures are 
explained below.

 

•

 

Stopping criteria: Decides the

 

cause of algorithm 
termination

 

•

 

Generations: Gives the maximum number of 
iteration the genetic

 

algorithm runs before 
termination

 

 
 

 
 

 
 

 

•

 

Stall time limit: Genetic algorithm terminates when 
there is no

 

improvement in the fitness value which is 
the best in a specified time

 

interval

 

•

 

Function tolerance: The algorithm stops if the 
weighted average relative

 

change in the best fitness 
function value over Stall generations is less than

 

or 
equal to Function tolerance.

 

When the population size is defined as 20, 30 
and 70 respectively, the

 

corresponding fitness values 
are obtained and the genetic algorithm terminates

 

when 
the maximum number of generations are exceeded. The 
time taken for these

 

three processes is almost the same. 
These can be inferred from the results given in figure 2, 
3 and 4. In figure 5 when the population size is 1000, the 
time taken for fitness function optimization is greater 
compared to the time taken for population size 20, 30 
and 70 and here also the genetic algorithm terminates 
when the maximum number of generations exceeded 
the limit specified. In figure 6, it

 

can be seen that only 44 
iterations were able to run within the time limit specified 
as the time limit exceeded the maximum value. Here, an 
increase population size caused an overrun in time limit. 
These results point out that population initialization can 
influence the final result and the population initialization 
process is problem dependent. For small non-

 

critical 
optimization problems, the size of the population may 
not be a critical factor. In critical problems, the 
population size is very crucial [50].

 

ii.

 

Setting of parameters

 

In genetic algorithm based program testing, the 
parameter setting needs special attention. For example 
in the case of crossover and mutation, their rates should 
be not be set at either high or low levels. According to 
the problem‘s nature the parameter settings should be 
adjusted. The following section gives a description of 
some of the operator settings used in genetic algorithm 
based testing.

 

a.

 

Selection

 

In selection, individuals are selected from the 
parent population for crossover and mutation to 
produce next generation individuals [28, 45, 51]. There 
are different types of selections like roulette wheel, 
tournament selection, random selection, best selection 
etc. In roulette wheel selection individuals are selected 
according to their fitness. Each individual will be 
assigned a fitness value and the normalized fitness 
value is calculated. After calculating the normalized 
fitness value, accumulated fitness value is calculated by 
adding the fitness value of the concerned individual and 

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

0 10 20 30 40 50 60 70 80 90 100

Generation

Time

Stall (G)

Stall (T)

% of criteria met

Stopping Criteria

• Time limit: Gives the maximum time limit in seconds 
the genetic algorithm should function before 
termination

• Stall generations: Genetic algorithm terminates 
when the weighted average change in the fitness 
function value over stall generations is less than 
function tolerance

the sum of the fitness value of all other individuals. A 
random number is selected between 0 and 1 and the 
selected individual will have an accumulated fitness 
value greater than all other previous individuals but less 
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than the remaining individuals. Tournament selection is 
a refinement of roulette wheel selection. Here roulette 
wheel selection is repeatedly applied to produce a 
group of population and the best individual is selected 
from this group. In random selection method, the 
chromosome is selected randomly from the given 
population whereas in best selection method the 
individual with the highest fitness value is selected. 
There are many other types of selection methods, but 
we have mentioned only a few. There is no specific rule 
which implies the usage of a particular type of selection 
method during software testing process. This is one of 
the greatest difficulties in genetic algorithm based 
software testing, as the final outcome of testing differs 
according to the type of selection method used.

 

b.

 

Crossover

 

Crossover is the process of combination of 
parent chromosomes to produce offspring [HOLLAND 
1979]. The process of crossover affects the process of 
test data generation using single population genetic 
algorithm. The most commonly used types of crossover 
are one point crossover, two point crossover and 
uniform crossover. For example consider two parent 
individuals where the chromosomes are represented as 
bit strings:

 

Parent 1:1010101010

 

Parent 2:1000110000

 

If the crossover occurs after the sixth bit in the 
parents, then two children will be formed and the last 
four bits of both the parents are interchanged. The result 
can be represented as follows:

 

Child 1:1010100000

 

Child 2:1000111010

 

In uniform crossover, the crossover points are 
not selected. The parent bits are swapped randomly 
with 50% probability. If the third, sixth, seventh and tenth 
bit positions of the parent individuals are swapped, then 
two children will be produced and they can be 
represented as follows:

 

Child 1:1000110010

 

Child 2:1010101000

 

By using uniform crossover the diversity in the 
individuals produced is more compared to single and 
two point crossover and a better result is obtained. A 
better result for a given problem may be obtained, even 
if the testing process is done with the most suitable type 
of crossover. Solving this uncertainty in genetic 
algorithm crossover selection still remains as a 
challenge.

 

c.

 

Mutation

 

Mutation is the process of altering the value of 
genes present in the chromosome for creating genetic 

mutation rates can be set to specific values. If the rate of 
mutation is set to high value, the search will become 
similar to a random search and if the mutation rate is 
very low then there will be no diversity in the population. 
Therefore generally the value of mutation is set between 
0.01 and 0.05 [40]. From table 5, we can notice that the 
mutation rate is

 

set to different values in the listed works. 
The main problem faced here is that, varying the 
mutation rate results in a change in the final result and 
this issue still remains unresolved in genetic algorithm 
based testing process.

 

d.

 

Uncertainty in Parameter Settings

 

Even after testing a program using the best 
available genetic parameters, a better solution or the 
same solution can be obtained even if we use less 
competing methods of crossover, selection and 
mutation for solving the same problem. This shows the 
uncertain nature of genetic algorithms [38]. We have 
some examples to illustrate the uncertainty of genetic 
algorithms. Our aim is to use genetic algorithms to 
minimize the SchafferF6 function, which is a published 
benchmark function. SchafferF6 function is a complex 
optimization problem whose solution can be obtained 
by applying genetic algorithm based optimization 
methods. We have considered SchafferF6 function in 
our optimization test because this function is a 
multidimensional function. It is having

 

non-linear and 
oscillatory nature around the optimal solution [18]. This 
means that SchafferF6 function is having more than 
single local optima where the genetic algorithm may get 
halted.

 
 

The SchafferF6 function is defined as:

 
 
 
 
 
 
 

Here function minimization is done using two-
point crossover and uniform crossover. Initially the 
objective function or the fitness function minimization is 
done using two-point crossover. Then the experiment is 
repeated again using the same parameter settings. The 
resultant values are noted in each case. Then the 
objective function minimization is done using uniform 
crossover. Here also the experiment is repeated using 
uniform crossover and the values are noted. The results 
are shown in the table 7, table 8 and table 9.

 

It has been said that when uniform crossover is 
used for solving a problem, not only the result will be 
better compared to two point crossover, but also the 
convergence happens faster [30]. From the illustrations diversity [18]. Diversity in the population will create 

better individuals compared to a population without 
genetic diversity. According to the problem to be solved, 

given below in tables 7, 8, 9, we can see that this is not 
true in all the cases. In the first trial, the value of the 
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SchafferF6 function obtained using uniform crossover is 
better than two point crossover. Further in this case, the 
time taken is more compared to two-point crossover. In 
the second trial, the time taken for minimizing the 
objective function using uniform crossover is less 
compared to two-point crossover. Here we can see that 
the fitness function has lower value when two-point 
crossover is used. Even though there is a little bit 
difference in time taken to minimize the function, the 
quality of the result is better in two-

 

point crossover. In 
the third trial also the value of the fitness function is 
better when two-point crossover is used. Here the time 
take is more when two point crossover is used. When 
uniform crossover is used in the third trial it can be 
noticed that the value of the fitness function is greater 
than the value of the fitness function got when two point 
crossover is used and this indicates that the quality of 
test data got using two point crossover is better than the 
quality of test data obtained using uniform crossover. 
We can see that the time taken for two-point crossover 
is more compared to time taken when

 

uniform crossover 
is used. Even though the convergence takes place 
faster in uniform crossover, it is not mandatory to get 
minimal value of the fitness function in all the trials.

 
Table 7 :

 

Trial 1 values

 
Parameters 

 

Two-Point 
Crossover 

 

Uniform 
crossover 

 

Number of Generations 

 

1070 

 

3184 

 

Time taken in seconds 

 

7.657 

 

26.649 

 

Score 

 

0.001982 

 

0.001758 

 

Fitness function Value 

 

0.265497 

 

0.198465 

 
Table 8 :

 

Trial 2 values

 
Parameters 

 

Two-Point 
Crossover 

 

Uniform 
crossover 

 

Number of Generations 

 

949 

 

749 

 

Time taken in seconds 

 

7.336 

 

6.258 

 

Score 

 

0.003094 

 

0.000808 

 

Fitness function Value 

 

0.257263 

 

0.362636 

 
Table 9 :

 

Trial 1 values

 
Parameters 

 

Two-Point 
Crossover 

 

Uniform 
crossover 

 

Number of Generations

 

499

 

145

 

Time taken in seconds

 

4.543

 

1.010

 

Score

 

0.001609

 

0.001124

 

Fitness function Value

 

0.167003

 

0.332225

 
Form these observations we can conclude that, 

even though there are some general assumptions about 
the best methods of crossover, selection and mutation, 
which are to be used for solving a problem, it may not 
be possible to decide the best combination of these 
genetic factors as parameter setting in all the cases 
[26]. Therefore while using genetic algorithms for 

about the problem which is to be solved. All these make 
the use of genetic algorithm for effective program testing 
highly complex and impractical.

 
iii.

 
Design of fitness function

 Applying genetic algorithm in program testing 
requires optimizing the specified fitness function. A 
fitness function should be designed in such a way that it 
gives

 
optimal solution for a given problem. Defining the 

fitness function imprecisely may lead to a wrong solution 
or may cause the problem to be stuck in the local 
optima [18, 40]. The misleading nature of fitness 
function creates several problems. For example, the 
individuals with lower fitness values may be finalized as 
the optimal solution even when better individuals exist. 
This mainly occurs when the population size is smaller, 
because with a small sized population, the result may 
get converged at a faster rate than normal. Thus, in a 
limited population, if one of the individuals surpasses 
the neighbouring individuals, then that point or individual 
will be considered as the best solution even when better 
solutions exist. Considering these local points as the 
candidate solutions and assigning higher fitness values 
to them will result in a diversion from the original 
solution. This results from the inherent weakness of 
genetic algorithms [40]. A group of researchers used an 
evolutionary algorithm along with a reprogrammable 
hardware array and the fitness function was designed to 
output an oscillating signal. At the final stage of the 
experiment, the researchers found that the circuit had 
become a radio receiver which was able to pick up and 
relay an oscillating signal from the nearby electronic 
device. Here, there was a deviation from the main goal 
itself and this was due to the fault in the design of the 
fitness function [19]. Each one of the many works which 
use genetic algorithm for software testing has designed 
their own

 
fitness function [37]. Referring the works given 

in table 5, we can see that none of the works have used 
similar type of fitness function. For example, Bueno et al. 
[7] have used a path similarity metric as fitness function 
and Michael et al. [40] have used the fitness function 
based on some predicate function. Even though there 
are some good methods for fitness function calculation, 
none of them is universally accepted as the gold 
standard. The fitness function is designed based on the 
analysis of a problem [24]. In other words, fitness 
function is problem dependent and this is one of the 
hurdles to be surmounted while using a genetic 
approach in software testing.

 
iv. Response time prediction

 Fitness function optimization is a heuristic 
process and the optimization time and effort varies 
according to the nature of the problem [2]. Therefore, 
the exact time required for testing a program cannot be 
accurately predicted. The time varies as the parameter 
settings are changed. These can be inferred from the program testing; we can make only a few assumptions 
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graphical figures 2 to 6. From these figures, it is clear 
that solving a problem with a lower population size will 
take less time compared to solving the same problem 
with a higher population size. Even though this is not a 
major concern in most of the testing applications, some 
care has to be taken while using genetic algorithm 
based testing in safety critical applications. In today‘s 
world, the workings of all applications are based on real 
time software. In real-time system the response time 
plays a critical role and due to the long computation 
time and uncertainty in the duration of computation time, 
genetic algorithms cannot ensure constant response 
time in all the executions [50]. Therefore before 
implementing the genetic algorithm based system in the 
original system, a prototype model checking has to be 
carried out. As stated above, since the performance of 
genetic algorithm changes according to the change in 
the parameter values, using genetic algorithms to solve 
such real time problems should be done with utmost 
care. 

c) Software Testing using Program Slicing 
In the previous section we saw an overview of 

genetic algorithm based software testing. We have also 
explained some issues which can make genetic 
algorithm based software testing less practical in testing 
industry. This section looks into the possibilities of 
program slicing for software testing. 

As mentioned in section 2, the concept of 
slicing was introduced by Weiser and his works 
encouraged the application of slicing in several fields 
like program comprehension [22], testing [20, 21, 47], 
debugging [33, 34], software maintenance [16], 
program cohesion [43], refactoring [35], reverse 
engineering [8] etc. We shall see how it can be used for 
software testing. In software testing, locating the 
erroneous statements is the key part. As program slicing 
deletes all those statements from a program which 
cannot affect the values of a variable of interest, slicing 
can make the whole software testing process more 
manageable. Even though some works have mentioned 
the use of slicing in testing [3, 5, 20, 21, 47], work that 
has explicitly shown how program slicing may be 
applied in software testing is extremely rare to the best 
of our knowledge. We have mentioned some 
fundamental works in table 10 which apply slicing for 
identifying test cases during the various phases of 

software development life cycle. In these works we can 
notice that they have either mentioned the need of 
slicing during regression testing process or during the 
design phase for identifying test cases before the 
coding phase. Our work illustrates how test cases may 
be obtained from slices during the testing phase itself.

 

Table 10 :

 

Works on Program slicing based software 
testing 

 

Work 

 

Description 

 

Gupta et. al[1992] 

 

Regression testing using slicing 

 

Binkley[1998] 

 

Incremental regression testing using 
slicing 

 

Harman et al. [1994] 

 

Mentioned that slicing may be 
applied during the testing phase by 
checking whether the program is 
robust or not 

 

Bates et al.[1993] 

 

Slicing applied to identify statements

 

modified in a program dependence 
graph during the regression testing 
phase 

 

Samuel et. al[2009] 

 

Using dynamic slicing to generate 
test cases form UML activity 
diagrams 

 

i.

 

Testing Approach

 

We have used a forward slicing approach for 
program testing. Forward slicing is recommended to 
locate the parts of the program affected by some 
modification and the sizes of the forward slices are 
smaller than that of backward slices in some scenarios 
[22]. In other words, when testing is done with an aim of 
identifying the errors caused by wrong input variable 
declaration, forward slicing is more meaningful than 
static slicing [22]. If the user is supposed to find errors 
in the output variable then static slicing is more useful 
than dynamic slicing. In such scenarios it will be more 
meaningful to apply forward slicing rather than 
backward slicing. In forward slicing, if a particular 
statement is affected by the value of the slice variable 
which is declared at a particular point, then that 
statement can be added to the list of slice statements. 
Otherwise there is no need to update the slice list. The 
whole process will be continued until slicing is 
performed for all the required variables. The result of the 
whole process will be a set of statements. These 
statements are known as forward slice of a particular 
variable. The forward slicing algorithm suggested in this 
work is given in algorithm 2

 
 
 
 

ALGORITHM 2 
 Input: -

 
Program to be sliced (P) 

 Slicing Criterion (C) 
 Output: -

 
Forward Slices (F) 

 begin 
 1. while p ≠ Ø, source program not empty 

 2. get C= (n, V) 
 // where n is statement number, V is the slicing variable 

 3. while (n ≠ 0 && n < EOP) 
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//where EOP is the end of program  
{  
4. Store V‘ in L‘  
// slicing variable V‘ stored in list L‘  
5. if ( VAR (L) Є n)  
// check whether slice variable V‘ stored in list L‘ is present in statement n‘  
{  
5.1. if ( n is an element of output statement)  
F= F U n  
//Store n  
// include the statement as a slice  
5.2. if (n is an element expression)  
{  
5.2.1. if (VAR (L) Є RHS (EXPR))  
{  
 
 
F=F U n  
// Store n  
VAR (L) = VAR (L) U VAR (LHS (EXPR))  
}  
// include the statement as a slice  
// VAR (L) is the slice variable V‘ stored in list L‘ and RHS (EXPR) denotes the right side of the expression and LHS (EXPR) 
denotes the left side of the expression and VAR (RHS (EXPR)) denotes variables in the right side of the expression and VAR (LHS 
(EXPR)) denote the variables in the left side of the expression.  
5.2.2. else  
do not include the statement as a slice  
5.3. if (n is an element of a conditional statement)  
{  
5.3.1. if ((VAR (L) Є LHS (EXPR) ¦ ¦ (VAR (L) Є RHS (EXPR))  
{  
F= F U n //Store n  
F= F U Loop body statements // Include all statements inside the conditional loop in F  
}  
}  
5.4. if (n is an element of input statement)  
F= F U n // include statement as a slice  
5.5. if (n is an element of initialization or declaration statement)  
F= F U n // include statement as a partial slice  
}  
6. else  
n= n + 1  
7. Repeat steps 5…6 until all the program statements are covered or till the EOP is reached  
end

In the algorithm 2 given above, the user selects 
the program for which the test sequence is to be 
generated. The slicing criterion is verified initially. Slicing 
criterion contains the variable and statement number. 
Here, we have to check for the program statements that 
are affected by the value of a particular variable at a 
particular point. The slice variable ‘V‘ is stored in a list 
‘L‘. The statement number is denoted by ‘n‘. The 
process starts from the (nth) line till the end the program 
is reached. In the (nth) line, it is checked whether the 
variable ‘V‘ is present or not. If the variable ‘V‘ is not 
present, then (n+1) th line is checked. If the variable ‘V‘ 
is present in the (n) the line, a series of steps are to be 
performed. If ‘V‘ is present in an expression, it is 
checked whether ‘V‘ is present on the right side or left 
side of the expression. If ‘V‘ is on the left side of the 
expression, that statement is considered as a slice and 

all the variables in the right side of the expression are 
also added to the list. In ‘V‘ is in the right side then it is 
not included as a slice. While checking the next line, we 
have to check not only for ‘V‘, but also all the all the 
variables present in the list. This is because; the other 
variables added to the list are the dependent variables 
of ‘V‘. Similarly, it is checked whether the slice variable is 
an element of conditional statement, declaration 
statement, input statement and output statement. If 
these conditions are true, the statements are considered 
as a slice. The statements inside the conditional body 
loop are also included as slice because the executions 
of these statements are dependent on the conditional 
clause. The process is repeated unit the end of the 
program and the result will be the forward slice for the 
corresponding 

‘ ‘L‘ ‘
‘

‘

‘

‘ ‘

‘ ‘
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ii. System Description 
An overview of our system model is given 

below. Our system is implemented using Java and 
Netbeans IDE. Netbeans is having extensible plug-in 
system and Java is having object-oriented features. This 
is why they have been used. The main modules of the 
implemented system consist of the following parts, 
given in figure 7. 
1. Input unit 
2. Slicer 
3. Analyzer and tester 
 
 
 
 
 
 
 

Figure 7:

 

Main modules of slicing based system

 
 

a.

 

Input unit

 

The input unit has the facility to select the 
software program which is to be tested. After selecting 
the program, the variables in the program are listed. 
From the listed variables, the user can select the 
variables for slicing criterion.

 

b.

 

Forward Slicer

 

This is the main part of the system. In this unit, 
slicing is performed for the

 

program which is to be 
tested. After getting the program and the list of variables 
from the input unit, forward slicing is performed to 
identify the relevant statements in the selected program 
with respect to the slicing criterion. Forward slicing is 
performed according to algorithm 2 given in section 
3.3.1. A sample program code is given in Sample 1 and 
the working of forward slicing algorithm is explained 
below. In the program code given above in Sample 1, 
forward slicing

 

is applied with respect to the input 
variable basic‘. The slicing criterion given is C= (3, 
basic). The result of forward slicing is given in Result 1.

 

Sample 1

 

1. main( )

 

2. {

 

3. float basic, total, da, rent;

 

4. if (basic < 1000)

 

5. {

 

6. rent= basic * 12 /100;

 

7. da= basic * 60 / 100;

 

8.}

 

9. else

 

10. {

 

11. rent= 700;

 

12. da= basic * 80 / 100;

 

13.}

 

14. total =basic + rent + da;

 

15. System .out. println (―total = ―+ total);

 

16.}

 

Result 1

 

4. if (basic < 1000)

 

6. rent= basic * 12 /100;

 

7. da= basic * 60 / 100;

 

9. else

 

11. rent= 700;

 

12. da=

 

basic * 80 / 100;

 

14. total =basic + rent + da;

 

15. System .out. println (―total = ―+ total);

 

The slicer will analyze the statements 4-

 

16 in 
Sample 1. Here statements 4, 6, 7, 9, 11, 12, 14, 15 will 
execute based on the value substituted for the variable

 

‘basic‘. We can notice that the dependencies are 
checked in a forward direction. The final value of 
variables rent‘, da‘ and total‘ are dependent on 
‘basic‘. Thus forward slices obtained can find if any 
errors are present in the dependent statements also. 
The resultant statements from forward slicing are given 
in Result 1.

 

c.

 

Analyzer & Tester

 

In this unit the forward slices obtained are 
verified to find out whether they are significant in testing 
or not. Among the forward slices given above in Result 
1, these statements are relevant in testing.

 

Testing using Slicing

 

4. if (basic < 1000)

 

6. rent= basic * 12 /100;

 

7. da= basic * 60 / 100;

 

9. else

 

11. rent= 700;

 

12. da= basic * 80 / 100;

 

14. total =basic + rent + da;

 

15. System .out. println (―total = ―+ total);

 

The execution of the rest of the program 
statements is dependent on the value of the variable 
‘basic‘. Here the tester identifies the test sequence 
statements which are relevant for generating the 
required test data values from the forward slices. In 
order to find the possible value of ‘basic‘ present in the 
conditional statement of the static slice, an equivalence 
partition method is applied. Equivalence partition is 
considered as the basis of all testing data generation 
methods and in this method, when a program works for 
a particular value in a partition, it may work for the other 
values in the same partition and this in turn helps to 
avoid duplicate testing [31]. Moreover, equivalence 
partition method is comparatively easy and reliable [31]. 
In equivalence partition, the input domain is divided into 
a number of sub domains. The sub domains make up 
the equivalence class. If a test data value in a class or 
partition is considered as a right value, then all the 
values under that particular class is considered as good 
values. We have to generate a value for the variable 
‘basic‘ using equivalence partition. From the slice given 
in this section, conditional constraint is given is ‘if 

Input Unit Analyzer &
Tester

Forward
Slicer 

(basic<1000)‘. Here the possible partitions are (basic 
>1000)‘. and (basic >1000)‘. Using these partitions 
values are generated, which are given in table 11.

‘

‘ ‘ ‘
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Table 11 :

 

Valid and invalid test data values

 

Partition 

 

Test Values 

 

Result 

 

> 1000 

 

1500 

 

1010 

 

2000 

 

Invalid 

 
< 1000 

 

800 

 

900 

 

700 

 

Valid 

 
From table 11, some of the valid and invalid test 

data values for the clause ‘if (basic < 1000)‘ is obtained. 
The invalid test values is applicable to the ‘else‘ part of 
the conditional clause ‘if (basic < 1000)‘. Substituting 
some of the test data values of ‘basic‘ in the 
expressions will give the value of ‘da‘ and ‘rent‘ and 
finally the value of ‘total‘ may be calculated from these 
data.

 

IV.

 

Research

 

Approach

 

In the previous sections, we have analysed

 

program testing using genetic algorithm and program 
slicing methods. Some issues related to genetic 
algorithm based testing have also been pointed out. 
Based on these observations, we have framed some 
research questions (Q) in the coming section. The aims

 

of the research questions are also mentioned and this 
may help future research work in this area.

 

a)

 

Research Questions

 

Q1.

 

What is the future of genetic algorithm based 
software testing?

 

The aim of this research question is to analyze 
the effectiveness of genetic algorithm based software 
testing. This question also intends to deal with the 
practical difficulties of this type of testing.

 

Q2.

 

In the software testing context, why is program 
slicing considered a better approach?

 

This question aims to analyze the strengths of 
program slicing in testing and to study how program 
slicing makes testing more effective and reliable.

 

b)

 

Review Method

 

 

obtaining the slices. As our focus in on program slicing 
based software testing, we have selected some leading 
works which have mentioned the term ‘testing‘ along 
with program slicing which is listed in table 10. Also, we 
have considered some of the fundamental works which 
use genetic algorithms for test case generation. We 
have not considered test selection, prioritisation etc. A 
summary of the referred works are given in table 5. The 
study made in section 3.2 answers the research 
questions.

 

V.

 

Results

 
In this section we have tried to give an 

explanation to the

 

research questions based on the 
studies mentioned in the previous sections.

 

Q1.

 

What is the future of genetic algorithm based 
software testing?

 

We have provided only the most relevant points 
as solution to the research question. For this, the 
question Q1 has been split into some secondary 
questions (SQ). Providing appropriate answers to the 
secondary questions leads to an unbiased review of 
genetic algorithm based testing.

 

SQ1.

 

What is the role of genetic operators in genetic 
algorithm based testing?

 

All the reviewed works use only single point 
crossover, except Jones et al. [30] work. In Jones‘s et 
al. [30] work, uniform crossover is used. Also, while 
others use simple mutation and Jones‘s work uses 
reciprocal and weighted mutation. Even though several 
works which explain the different types of operators and 
their relevance in different contexts exist, none of them 
have exploited these operators. They have used only the 
direct type of operators in their work. All these show that, 
the result obtained by using these common types of 
operators may be improved by substituting the testing 
process with a general operator selection strategy. This 
has not been decided till now in genetic algorithm 
based testing.

 

SQ2.

 

Does population initialization and 
representation

 

affect software testing?

 

From section 3.2, we can see that the 
population is selected randomly in most of the works. 
Selecting the population based on some heuristics 
improves the software testing process. Apart from this, 
we can see that only single population is used in most 
of these works. Only Wegner‘s et al. [52] work use multi-
population along with single population. Even though a 
lot of research works are conducted continuously to 
decide the best type of population initialization, selection 
etc., some of the most common works which used 
genetic algorithm for software testing have 
experimented very little with population initialization 

concepts, various types of slicing, slicing algorithms, 
applications of slicing etc. None of them have 
mentioned how to proceed to the testing phase after initialization and the lack of a general strategy for 

methods. Again this shows that the quality of genetic 
algorithm based testing is dependent on population 
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We have referred to some relevant works in the 
field of genetic algorithm and program slicing based 
testing. A lot of works use genetic algorithms for test 
selection, test prioritisation, hardware testing etc. Apart 
from this, several works use a combined approach 
which uses genetic algorithm and other search 
algorithms for software testing [9]. Here we have 
mentioned only those works that describe software 
testing and test data generation using single population 
genetic algorithm. We have not considered other 
variations of genetic algorithms like parallel genetic 
algorithm as they are not employed in testing literature. 
We have reviewed several papers which describe slicing 



 

 

population setting makes the whole testing process 
unpredictable.

 

SQ3.

 

What are the problems related with fitness 
function design during software testing?

 

Applying genetic algorithm in program testing 
requires optimizing the specified fitness function. A 
fitness function should be designed in such a way that it 
gives optimal solution for a given problem. Defining the 
fitness function imprecisely will lead to a wrong solution 
or in some cases the problem may get stuck in local 
optima [18, 25] suggested a method to remove 
variables which can lead to local optima. Even though, 
they were able to alleviate the problem of local optima, 
their approach didn‘t work for inner loop variables. 
Another problem faced during the fitness function 
design process is the dependency problem. While 
designing

 

the fitness function for a target node, the 
dependent nodes which affect the target node should 
be considered. Since most of the works, which use 
genetic algorithm based approach for testing, do not 
use data flow criteria, the fitness value may not be 
correct. Some works were done on this area to minimize 
this problem, but they could not explain the best 
strategy for fitness function design in the context of 
testing [26, 50].

 

SQ4.

 

Program dependency

 

In most of the genetic algorithm based software 
testing, program dependency is not correctly followed 
[37, 24]. In genetic algorithm based program testing, 
initially all the statements in the program should be 
analyzed to identify the relevant statements or we have 
to get the list of statements that will have a potential role 
in software testing. From the testing point of view, 
checking the whole program line by line is an 
unnecessary waste of effort. Instead of that, if we are 
able to find the program statements which help in 
program testing, such as those that assist in finding the 
test data values during testing, the whole testing effort 
will be reduced considerably. In addition, the testing can 
be made more methodical. Identifying the relevant 
statements which contribute to program testing, and 
analyzing those statements can give the dependence 
relation present in the program. Utilizing this 
dependence relation helps to trace out the errors in a 
program. For example, consider the sample control flow 
graph given below in Figure 8. All the program 
statements will be checked line by line from the starting 
point of the program. The statement basic<1000‘ 
assist in test data generation and suitable test data 
values should be generated for the variable basic‘. The 
value of basic‘ is found out by optimizing the function 

 proceeds in

 

this approach. In order to get a full 
satisfactory explanation for SQ4, we have to see the 
result research question Q2. The explanation given in 
Q2 provides a justification for SQ4.

 

Q2.

 

In the software testing context, why is program 
slicing considered a better approach?

 

In the above section we saw some of the 
shortcomings of genetic algorithm based testing 
approach. An example given below gives an explanation 
to research question Q2. Consider the same example 
given in figure 8. In the control flow graph, the 
statements which correspond to each node are marked. 
From the control flow graph we are taking the forward 
slicing criterion as (2, basic). This means that all the 
statements which are affected by declaring the variable 
basic‘ in statement 2 is to be identified. The resultant 

nodes in the CFG are given below in Figure 9.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

f(x) = 1000 – basic. After finding out suitable values for 
the variable basic‘, the successive statements in the 
program is checked for errors. This is how the testing 

‘

‘

‘

‘
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Figure 8 : Sample Control flow graph 

It can be observed that all nodes displayed 
above will be affected by the variable basic‘ in 
statement 2. Node 3 is given as (basic<1000). When 
this program is to be tested, the test data which satisfies 
the condition in node 3 is to be generated. Similarly, 
nodes 4 and 6 are dependent on node 3 and this can be 
clearly traced form the slices obtained. Nodes 5 and 7 
are also dependent on the variable basic‘. If the value 
of basic‘ is greater than 1000, then these nodes get 
executed. From this we can conclude that the 
statements which are relevant in testing and in the 
successive stages of testing like test case generation 
can be identified easily by the process of slicing. 
Moreover, as slicing gives the dependence information 
present in a program, it will be easy to dig up the 
mistakes in the dependent statements. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Entry                                                                                   

float basic ,total ,da ,rent,

basic < 1000

                                         T                        F    

rent = 700
rent = basic* 12/100

da = basic * 60/100
da = basic* 80/100

total = basic + rent + da

print ‗total‘

Exit

3

2

5

7

4

6

8

9

10

1

‘

‘
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Figure 9 :

 

Control flow graph obtained for slicing criterion (2, basic)

 We saw that, for testing the same program 
given in figure 8, if genetic algorithm is used instead of 
program slicing, the program statements will be 
checked line by line from the starting point of the 
program. The main difficulty in this approach is that all 
the statements which contain relevant and irrelevant 
variables should be analyzed to trace the errors in the 
program code. On the other hand, as program slicing is 
done based on some slicing criterion, an overview of the 
dependence in the program code is revealed and error 
detection will be much easier. Here we can notice that 
every input variable present in a program will not be 
responsible for the execution of branches present in the 
program. Moreover, removing the irrelevant variables 
from a program and focusing only on the relevant 
variables which are significant in the execution of a 
target branch can improve the performance of genetic 
algorithm based testing. Relevant variables are those 
which can influence certain statements in a program, 

while irrelevant variables are those that cannot affect the 
program statements. This points out the fact that, 
genetic algorithm may not perform up to the mark in a 
practical program testing scenario [39], which 
underscores the superiority of program slicing in 
program testing. A graph is given in Figure 10 which 
gives an analysis of the performance of evolutionary 
algorithms with and without irrelevant variable removal. 
Here in y-axis the success rate is plotted and in x-axis 
the program names with branches are plotted. Here P1 
denotes the program name, F1 denotes the function 
and B1, B2 and B3 denote different branches. Success 
rate is a measure of optimal test cases found out for the 
program branches. It can be noticed that the 
performance is better when irrelevant variables are 
removed from a program, compared to the performance 
without irrelevant variable removal. This establishes the 
weakness of genetic algorithm when there are a large 
number of irrelevant variables. 
 

 
 
 
 
 
 
 
 
 
 

Figure 10 :

 

Performance of evolutionary algorithms with and without irrelevant

 

variable removal

 Our observations, which are listed below, add 
more weight to the research

 

question Q2. We have done 
an analysis of the number of program statements

 

which 
have a significant role in program testing identified by 

 
 

have been considered as a metric for analyzing both 
these approaches to

 

program testing. For a given 

basic < 1000
                                     T                        F    

rent = 700
rent = basic* 12/100

da = basic * 60/100
da = basic* 80/100

total = basic + rent + da

print ‗total‘

3

5

7
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8

9

0

50

100

P1, F1,

B1

P1, F1,

B2

P1, F1,

B3

Program-Function-Branch 

name

%
 o

f 
su
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e
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Afer removing

unwanted

variables

Standard

approach

both program slicing based testing and genetic 
algorithm based testing. The statements in a program 

program which is to be tested, the forward slicing covers 
more number of program statements compared to 
genetic algorithm in the same time span with respect to 
a particular variable. As the probability of error
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distribution in a program is uniform throughout the code, 
an increase in the

 

number of executable statements with 
respect to a particular program variable

 

increases the 
chance of discovering the number of faults related

 

to 
that variable

 

[33]. This means that, rather than 
concentrating on a particular area for a long

 

time to 
attain high coverage for that particular branch or 

 
 statements due to which

 

program malfunctioning is 
caused, using minimal testing. This re-affirms the fact

 
that program slicing can be more effective in program 
testing compared to genetic

 

algorithm.

 
An assessment of testing productivity obtained 

in genetic algorithm and program

 

slicing based testing 
approach is given in figure 11.

 
 

 

 

 

 

 

 

 
Figure 11 :

  
Productivity graph

 

 

 
 

 
1. Relevant branch indicates the statements of a 

program which may play a critical role in program 
testing. 

2. Testing productivity indicates the measure of the 
number of relevant statements that can be covered 
in a specific time interval [31, 4]. 

3. High testing productivity means that more errors 
can be detected with less ‘effort‘, while low testing 
productivity means that the number of relevant 
statements covered in a specific time interval will be 
very few [31,4]. 

4. ‘Effort‘ means the time taken to detect the potential 
statements which contribute in program test data 
generation, run the program with the generated test 
cases and add the test cases to the test suit. 

In program testing, the main objective is to find 
the maximum number of errors in the minimum time 
duration. Program slicing identifies more number of 
errors in less amount of time during the initial program 
execution stage. The relevant statements identified by 
program slicing provide an overview of dependency 
present in the program, making the error detection more 
practical. From this it is clear that, in program slicing 
based testing, although it is not possible to cover all the 
potential statements useful for testing, a reasonable 
number of statements can be analyzed when compared 
to genetic algorithm based program testing. 

VI. Threats To Validity 
The main threat to the validity of our work may 

be due to the limitation in the number and scope of the 
works which we have referred. We have limited our 
analysis to only those works which have mentioned the 
application of genetic algorithm in software testing and 
the use of program slicing in software testing. 

The downside of such restriction in the selection 
of works was that, all the possible variants of genetic 
algorithm based testing have not been analysed. Also, 
we have not studied all the existing algorithms in 
program slicing which may have some relevance in the 
field of software testing. Our study has been limited to 
only those works which have explicitly mentioned the 
use of program slicing in testing. We feel that such a 
narrowing in the field of our study has sharpened its 
focus and enabled us to do an in depth analysis of our 
chosen study objectives; which being the identification 
of shortcomings of genetic algorithm and establishing 
the usefulness of program slicing in practical software 
testing. 

VII.
 

Conclusions
 

The unresolved issues in practical software 
testing constitute the Achilles‘ heel

 
of software industry. 

As genetic algorithm is one of the most widely used and 
highly regarded approaches for software testing among 
researchers, it is high time that we explore its critical 
shortcomings in practical software testing. We have 
made an attempt to reveal some of the difficulties due to 
the inherent uncertain nature of genetic algorithm based 
software testing. A systematic review of the works made 
in this study reveals that, genetic algorithm factors like 

program code, program slicing tries to analyze more 
number of potential statements in a given program.
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The graph shows that, when program testing is 
done using program slicing, there will be high testing 
productivity and when program testing is implemented 
using genetic algorithms, the testing productivity will be 
low. Some of the terms related to the graph in Figure 11 
are given below.

Here the main principle is to identify possible program 



 

 

fitness function, population initialization and parameter 
settings impact the quality of solution obtained by 
genetic algorithm based testing. Apart from this, we 
have highlighted the significance of program slicing in 
software testing. For a given problem, program slicing 
has a higher ‘testing productivity‘ with lesser ‘effort‘. We 
have used this principle as the nidus for developing our 
idea. We have put forth a forward slicing based method 
in this work. Checking of conditional constraints in the 
forward slices will help to pick out the rules which are to 
be fulfilled when testing is carried out. We have also 
discussed how the dependent statements in the slices 
are used to trace errors during testing. Certain analytical 
results are also provided in our work to substantiate 
these facts. With this work, we intend to provide a guide 
to future researchers and to make software industry 
aware of the scope and potential of using program 
slicing as an effective tool in software testing. In future, 
we plan to elaborate upon the issues brought forth by 
our work which may lead to promising developments in 
testing field. 
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