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Cyclosparsity: A New Concept for Sparse 
Deconvolution 

Khalid Sabri 

Abstract-  Periodic random impulse signals are appropriate 
tools for several situations of interest and are a natural way for 
modeling highly localized events occurring randomly at given 
times. Nevertheless, the impulses are generally hidden and 
swallowed up in noise because of unwanted convolution. 
Thus, the resulting signal is not legible and may lead to 
erroneous analysis, and hence, the need of deconvolution to 
restore the random periodic impulses. The main purpose of 
this study is to introduce the concept of cyclic sparsity or 
cyclosparsity in deconvolution framework for signals that are 
jointly sparse and cyclostationary like periodic random 
impulses. Indeed, all related works in this area exploit only one 
property, either sparsity or cyclostationarity and never both 
properties together. Although, the key feature of the 
cyclosparsity concept is that it gathers both properties to 
better characterize this kind of signals. We show that 
deconvolution based on cyclic sparsity hypothesis increases 
the performances and reduces significantly the computation 
cost as well. Finally, we use computer simulations to 
investigate the behavior in deconvolution framework of the 
algorithms Matching Pursuit (MP) [13], Orthogonal Matching 
Pursuit (OMP) [14], Orthogonal Least Square (OLS) [15], 
Single Best Replacement (SBR), [19, 20, 21] and the 
proposed extensions to cyclic sparsity context: Cyclo-MP, 
Cyclo-OMP, Cyclo-OLS and Cyclo-SBR. 
Keywords: cyclosparsity, sparsity, cyclostationary, 
periodic random impulses, deconvolution, greedy. 

I. Introduction 

yclostationarity is very useful tool for studying 
periodically correlated signals by means of cyclic 
statistics [1].  
As cyclostationary signals often encountered in 

practice, cyclostationary modeling being used in various 
domains such as mechanics [2], telecommunications 
[3], biomechanics [5] and allows good performances.  

In this study we focus on particular case of 
cyclostationary signals which are wide sense second 
order cyclostationary i.e. first order and second order 
cyclostationary. Also, the signals are assumed to be 
made of periodic impulses with random amplitudes 
namely few nonzero impulses per period. Given the 
Impulse Response (IR), the aim is to retrieve the original 
object which has been distorted by passage through a 
known linear and time-invariant system in presence of 
noise. Indeed, enhancing the resolution of the signal 
and the Signal to Noise Ratio (SNR) from the knowledge 
of the IR corresponds to a deconvolution problem. 

 
Author : STIC Laboratory, Faculty of sciences, University Chouaïb 
Doukkali, El Jadida, Morocco; (email: sabri.k@ucd.ac.ma)  

The deconvolution of cyclostationary signals 
has been addressed by several authors with different 
approaches. In [6], a bayesian deconvolution algorithm 
based on Markov chain Monte Carlo is presented. 
Cyclic statistics are often used for deconvolution, in [7, 
8] the deconvolution is based on cyclic cepstrum, 
whereas, in [9, 10] the deconvolution is based on cyclic 
correlation. The main drawback of these methods is 
their inability to detect and restore impulses drowned in 
noise. 

Actually, signal deconvolution belongs to 
inverse problems and is particularly well-known to be an 
ill-posed problem since the IR acts as a low-pass filter 
and the convolved signal is always noisy. Fortunately, 
regularization methods lead to acceptable solutions 
accounting for a priori information on the original object 
[38]. 

Analyzing periodic random impulse signals in 
details uncover another a priori information which is 
sparsity, this is because only few impulses are nonzero. 
Thus, data are sparse on the direct domain.  

In this study, we will not exploit cyclic statistics 
but only the periodic character jointly with sparsity of 
periodic random impulses. This is possible thanks to the 
new concept of cyclosparsity that gathers both 
properties to better characterize these signals. Thus, 
cyclosparse deconvolution can be performed taking 
benefit of the correlation between the signal at different 
cycles (or periods). 

Lately, in a different framework, sparse 
approximation of signals has drawn significant interest in 
many areas. The key idea is that a signal can be very 
well approximated with only few elementary signals 
(hereinafter referred to as atoms) taken from a 
redundant family (often referred to as dictionary), while 
its projection onto a basis of elementary signals may 
lead to a larger number of nonzero coefficients. Such a 
basic idea is the origin of recent theoretical development 
and many practical applications in denoising, 
compression, blind source separation and inverse 
problems [35, 11, 12]. 

Contrarily to orthogonal transforms, a redundant 
dictionary leads to non-unique representations of a 
given signal and several methods and algorithms have 
been developed to find the sparse approximations, i.e. 
the approximation with the smaller number of nonzero 
coefficients. In other words, minimizing the number of 
nonzero coefficients in a linear combination 

C 
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
IV

 V
er
sio

n 
I 

  
  
 

  

19

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

F

© 2014   Global Journals Inc.  (US)



 

 

approximating the data leads to an exhaustive search 
which is a NP-hard problem. Various methods and 
algorithms have been proposed to attempt to solve this 
problem and some sufficient conditions for these 
algorithms to reach the sparse solution have been 
established. Algorithms can be roughly classified in two 
approaches: greedy pursuit algorithms and convex 
relaxation. Greedy pursuit algorithms iteratively improve 
the approximation selecting at each iteration an 
additional elementary signal and many algorithms have 
been proposed based on such a scheme [13, 14, 15]. 

The principle of convex relaxation methods is to 
replace the minimization of the number of elements by 
the minimization of another functional which can be 
minimized more easily and still guarantee the solution to 
have a large number of zero coefficients. A ℓ1-norm is 
mainly used to this end [16, 17, 18].  

Our work consists on extending sparse 
approximation to cyclostationary signals with periodic 
random impulses, where the aim is to find jointly a 
sparse approximation of each cyclic period (or cycle), 
accounting for the same elementary signals in each 
approximation, but shifted with a multiple of the cyclic 
period and with different coefficients. However, we insist 
on the application of cyclosparse approximation to 
deconvolution i.e. the dictionary is given by the Toeplitz 
matrix formed by the IR.  

The paper is organized as follows; section 2 
defines the problem statement and motivations of the 
study. The main contribution of this paper is described 
in sections 3, 4 and 5. The concept of cyclosparsity is 
introduced in section 3. In section 4, we summarize the 
statement of sparse and cyclosparse approximation 
problems. We also point-out the link with cyclosparse 
deconvolution and we insist on the differences with joint 
sparsity. At the end of this section, we came to the 
conclusion that none of the usual algorithms ensure to 
reach the actual solution or even to reach the same 
solution. Thus some numerical experiments have to be 
performed to compare these algorithms. Such a 

cyclosparse model is taken into account in the sparse 
deconvolution by greedy algorithms in section 5, which 
fortunately reduces significantly the computation cost. In 
this paper, we focus on greedy algorithms namely  

Matching Pursuit (MP) [13], Orthogonal 
Matching Pursuit (OMP) [14], Orthogonal Least Square 
(OLS) [15] and Single Best Replacement (SBR), [19, 20, 
21] (which, despite a different aim, has a structure very 
similar to greedy algorithms). And we propose to 
generalize these algorithms to the cyclosparse context: 
Cyclo-MP, Cyclo-OMP, Cyclo-OLS and Cyclo-SBR. We 
propose furthermore to test all the algorithms on the 
same statistical basis, i.e. with the same stopping rule 
deduced from statistical properties of the noise. Also it 
seems to be necessary to obtain satisfactory 
deconvolution results, as shown in the simulation results 
section 6. 

II. Background 

a) Problem Formulation 
Consider the situation where a known system 

ℋ(t) is excited by a cyclostationary signal 𝑥𝑥(𝑡𝑡) 
consisting of periodic random impulses. By periodic, we 
mean that the signal can be divided into portions of 
length 𝑇𝑇 (which is known as the cyclic period of the 
signal) with 𝑑𝑑 impulses in each portion. Moreover, the 
delay factor 𝜏𝜏𝑖𝑖  of the ith impulse 𝑥𝑥𝑖𝑖  is constant for all 
portions. Note that in general 𝜏𝜏𝑖𝑖  will be different for 
different 𝑖𝑖 although in most of the cases they may be 
integral multiples of a constant 𝜏𝜏. An example of  𝑥𝑥(𝑡𝑡) is 
shown in Fig. 1 with  𝑑𝑑 = 5.  

Reconsider the system as described above. 
Since the impulses are periodic, we can consider a 
period of time 𝑇𝑇 and write that portion of the output as 

    
 

  

 

𝑦𝑦(𝑡𝑡) = ��𝑥𝑥𝑖𝑖 ,𝑘𝑘  ℋ(𝑡𝑡 − (𝜏𝜏𝑘𝑘 + 𝑖𝑖𝑇𝑇)) + 𝑛𝑛(𝑡𝑡),
𝑑𝑑

𝑘𝑘=1

𝐾𝐾−1

𝑖𝑖=0

(1) 
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∑ 𝑥𝑥𝑘𝑘 ℋ(𝑡𝑡 − 𝜏𝜏𝑘𝑘) + 𝑛𝑛(𝑡𝑡), 0 ≤ 𝑡𝑡 < 𝑇𝑇𝑑𝑑
𝑘𝑘=1 . This relation-

ship can be generalized to cover the whole signal as,



 

 

 

Figure 1:  Example of cyclosparse signal 𝑥𝑥(t) 

Where 𝑑𝑑 is the number of effective impulses in 
the period 𝑇𝑇 with 𝑥𝑥𝑖𝑖 ,𝑘𝑘  and 𝜏𝜏𝑘𝑘  being their amplitude and 
delay factors respectively. 𝐾𝐾 denotes the number of 
period per signal and the sub-index 𝑖𝑖 stands for the 
period index, so 𝑥𝑥𝑖𝑖 ,𝑘𝑘  represents the impulse with 𝜏𝜏𝑘𝑘  as 
delay factor in the ith-period.  𝑛𝑛(𝑡𝑡) represents the 
random noise of the system. 

b) Motivation of the study 
The choice of the signal modeling 1 is not 

arbitrary but can be justified in practice. Periodic 
random impulse processes are suitable tools that allow 
physicists to model many situations of interest, indeed 
they are a natural way for modeling highly localized 
events occurring randomly at given times or points of 
the state space [7, 8, 10, 6]. 

Another additional property of cyclostationary 
signals with periodic random impulses is sparsity, as 
only few impulses are nonzero i.e. K × d nonzero 
impulses. Hence, these signals are sparse on the direct 
domain. Unfortunately, all related works in this area 
exploit only one property, either sparsity or 
cyclostationarity and never both properties jointly. 
Convinced that combining simultaneously sparsity and 
cyclostationarity may lead to an enhancement of 
performances. So we wondered whether it is possible to 
build up an approach based on this idea. These were 
our motivations for introducing the new concept of 
cyclosparsity that gathers both properties to better 
characterize this kind of signals. The contributions of this 
article with respect to the short one [4], lie in: 
• studying and generalizing the cyclosparsity 

concept to the algorithms OLS and SBR, which 
gives rise to  Cyclo-OLS and Cyclo-SBR. 

• providing insights into how the cyclosparsity works, 
and reviewing its implications in improving the 
selection step and reducing the computational cost 
of the four generalized greedy algorithms. 

• jointly comparing the performances of all 
algorithms by varying the SNR for different number 
of cycles (K=2, 4, 8 and 16). 

III. Concept of Cyclosparsity 

The signal object of this study is assumed to be 
cyclostationary with random impulses i.e. consists of d 
periodic random impulses with d represents the number 
of impulses by cycle. On the one hand, only few 
elements are nonzero by cycle, so the signal is 
considered to be sparse. Furthermore, the positions of 
these nonzero elements (impulses) are cyclic/periodic 
i.e. they keep the same positions whatever the cycle. 
Hence, the ℓ0-norms of the signal for each cycle are 
equal. On the other hand, the amplitudes of these 
nonzero elements are different and assumed to be 
random (see Fig. 1). Thus, the way to better characterize 
cyclostationary random impulses is to combine both 
properties i.e. cyclostationarity and sparsity. This 
hypothesis is the key idea of the cyclosparsity concept 
and is often satisfied in practice. 

Before announcing the theorem defining 
cyclosparse process, we first introduce the following 
notations: 
• 𝒙𝒙 =  [𝑥𝑥1, . . . , 𝑥𝑥𝐿𝐿𝑥𝑥  ]T   being the column vector of 

length Lx constructed from the signal 𝑥𝑥(𝑡𝑡). 
• 𝒙𝒙𝑖𝑖  =  𝒙𝒙(𝑖𝑖, 𝑖𝑖 + 𝑇𝑇, 𝑖𝑖 + 2𝑇𝑇, … , 𝑖𝑖 + (𝐾𝐾 − 1)𝑇𝑇) being a 

column vector with 1 ≤ 𝑖𝑖 ≤ 𝑇𝑇 sweeps all ith 
elements of each period (a total of 𝐾𝐾 elements). 

• 𝒙𝒙𝑖𝑖 ,:  =  𝒙𝒙((𝑖𝑖 − 1)𝑇𝑇 + 1, : 𝑖𝑖𝑇𝑇) being a column vector 
with 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾 sweeps all elements of the ith 
period (a total of T elements). 

• 𝑿𝑿 =  [𝒙𝒙1, . . . , 𝒙𝒙𝑇𝑇]  =  [𝒙𝒙1,:, . . . ,𝒙𝒙𝐾𝐾,: ]T   being a 𝐾𝐾 ×  𝑇𝑇 
matrix where the elements are 𝑥𝑥𝑖𝑖 ,𝑗𝑗  with i and j stand 
respectively for the period/cycle index and the 
position on each period. 

The superscript T stands for the transpose of a 
vector or a matrix. 

Theorem. A periodic random impulse signal 
𝑥𝑥(𝑡𝑡) of period T is cyclosparse if the cardinal of nonzero 
elements of the whole signal is equal to the cardinal of 
nonzero elements of the signal over any period 
multiplied by the number of cycles K. This can be 
formulated into the following mathematical relationship: 

‖𝒙𝒙‖0 ≤ 𝐾𝐾‖𝑿𝑿‖∞ ,0
                          (2) 

the ℓ∞,0-norm is applied to the column vector x after 
being reshaped as K× T matrix. 

Proof. The ℓ0-norm of x is defined as follows 

‖𝒙𝒙‖0

 
= �|𝑥𝑥𝑘𝑘 |0

𝐾𝐾𝑇𝑇

𝑘𝑘=1

                          
(3)
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As is standard, |𝑥𝑥𝑘𝑘 |0 = 1 if 𝑥𝑥𝑘𝑘 ≠ 0 and |𝑥𝑥𝑘𝑘 |0 = 0
if 𝑥𝑥𝑘𝑘 = 0. Thus, ‖𝒙𝒙‖0 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑{𝑘𝑘, 𝑥𝑥𝑘𝑘 ≠ 0} which indicates



 

 

the number of nonzero components of the column 
vector 𝒙𝒙. Using these notations, Eq. 3 can be written as, 

‖𝒙𝒙‖0  =  �𝒙𝒙1,:�0
+ �𝒙𝒙2,:�0

+ ⋯+ �𝒙𝒙𝐾𝐾,:�0
               

= ��𝑥𝑥1,𝑘𝑘 �
0

𝑇𝑇

𝑘𝑘=1

+  ��𝑥𝑥2,𝑘𝑘 �
0

𝑇𝑇

𝑘𝑘=1

+ ⋯+ ��𝑥𝑥𝐾𝐾,𝑘𝑘 �
0

𝑇𝑇

𝑘𝑘=1

 

Reorganizing the previous sum leads to, 

‖𝒙𝒙‖0  =  �𝑥𝑥1,1�
0

+ �𝑥𝑥1,2�
0

+ ⋯+ �𝑥𝑥1,𝑇𝑇�
0
 

+   �𝑥𝑥2,1�
0

+ �𝑥𝑥2,2�
0

+⋯+ �𝑥𝑥2,𝑇𝑇�
0
 

      +       ⋮       +      ⋮       +⋯+      ⋮                 

+  �𝑥𝑥𝐾𝐾,1�
0

+ �𝑥𝑥𝐾𝐾,2�
0

+⋯+ �𝑥𝑥𝐾𝐾,𝑇𝑇�
0
 

It is easy to see that each vertical sum 
corresponds to a ℓ∞-norm along the dimension of its 
corresponding column multiplied by the scalar K. 

‖𝒙𝒙‖0 ≤ 𝐾𝐾 ��max
𝑖𝑖

 |𝒙𝒙1| �
0

+ �max
𝑖𝑖

 |𝒙𝒙2| �
0

+⋯+ �max
𝑖𝑖

 |𝒙𝒙𝑇𝑇| �
0
� 

≤ 𝐾𝐾 �max
𝑖𝑖

 |𝒙𝒙𝑖𝑖| �
0
 

≤ ‖𝑿𝑿‖∞ ,0 

Where max𝑖𝑖  |𝒙𝒙𝑖𝑖| stands for ℓ∞-norm of 𝒙𝒙𝑖𝑖  and 
the composite norm ‖max𝑖𝑖 |𝒙𝒙𝑖𝑖| ‖0 represents the mixing 
norm ℓ∞ ,0 of 𝑿𝑿. The minimization of this norm 
encourages first diversity along i and then sparsity of the 
resulting vector. 

 
• Fundamental atoms, which correspond to nonzero 

impulses of the first cycle. 
• Harmonic atoms, which are deduced from 

fundamental atoms by shifting with multiple of the 
cycle i.e. atoms corresponding to nonzero 
impulses of the remaining cycles. 

Before studying in detail the cyclosparse 
approximation we first recall the principle of sparse 
approximation. 

IV. From Sparse Approximation to 
Cyclosparse Approximation 

a) Sparse approximation 
The problem of sparse signal approximation 

consists in approximating a signal as a linear 
combination of a restricted number of elementary 
signals selected in a redundant collection (dictionary). It 
can be written as: 

Find sparse 𝒙𝒙 such that  𝚽𝚽𝒙𝒙 ≈ 𝒚𝒚, 

where 𝒚𝒚 corresponds to measured data and 𝚽𝚽 
is a known matrix with atoms  {𝜙𝜙𝑘𝑘}𝑘𝑘=1...𝑄𝑄  as columns. 
Sparse approximations have to deal with a compromise 
between a good approximation and the number of 
involved elementary signals. Mathematically such 
compromise arises from minimizing the following 
criterion: 

𝒥𝒥(𝒙𝒙) = ‖𝒚𝒚 − Φ𝒙𝒙‖2
2 + 𝛽𝛽‖𝒙𝒙‖0                         (4) 

The parameter β controls the trade-off between 
the sparsity of the solution and the quality of the 
approximation. The lower is β, less sparse is the solution 
and better is the approximation. Hence, β is the key 
parameter to reach the compromise [38]. 

Of course, minimizing such a criterion 
corresponds to a combinatory optimization problem 
which is widely known to be NP hard. However, two 
approaches are usually used to avoid sweeping every 
combination: 1) Greedy algorithms, which iteratively 
ripen the approximation by successively identifying 
additional elementary signals that improves the 
approximation quality [13, 22]; 2) Convex relaxation 
algorithms i.e. based on the relaxation of the criterion 
(4), which replace the combinatorial problem with an 
easier optimization problem often chosen convex [16]. 
In the latter, the ℓ0-norm is often relaxed with a ℓ𝑝𝑝 -norm, 

where ‖𝒙𝒙‖𝑝𝑝 = (∑ |𝑥𝑥𝑘𝑘 |𝑝𝑝𝑘𝑘 )
1
𝑝𝑝  (note that 𝑝𝑝 = ∞ is a limiting 

case for which ‖𝒙𝒙‖∞ = max𝑘𝑘 |𝑥𝑥𝑘𝑘 |). For 𝑝𝑝 = 1 this 
problem corresponds to the Least Absolute Shrinkage 
And Selection Operator Regression (LASSO) [18] or 
Basis Pursuit DeNoising (BPDN) in signal processing 
[16].   

Serious efforts have been made over many 
years to relate the solution of the original problem and 
the results of these two approaches and related 
algorithms. Some theoretical results give sufficient 
conditions of equivalence, depending on the dictionary 
and eventually of the solution [23, 22]. One such 
sufficient condition, not depending on the elementary 
signals of solution, is related to the coherence 
parameter µ of a dictionary which corresponds to the 
maximum absolute inner product between two distinct 
atoms in the dictionary: 

𝜇𝜇 ≝ max 
𝑗𝑗≠𝑘𝑘

�〈𝜙𝜙𝑗𝑗   ,𝜙𝜙𝑘𝑘〉� = max 
𝑗𝑗≠𝑘𝑘

|(𝚽𝚽T𝚽𝚽)𝑗𝑗𝑘𝑘 |. 
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The cyclosparsity in the case of deconvolution 
involves that two kinds of atoms participate to the linear 
combination in order to build data y. Thus, we 
distinguish,



 

 

In particular, it has been shown [24, 25, 22] that 
recovery condition for which the solution is unique and 
can be computed with various algorithms (BP, OMP, . . 
.) is 

              ‖𝒙𝒙‖0 <
1
2
�1 +

1
𝜇𝜇
�  with  𝜇𝜇 < 1.                (5) 

This is a sufficient condition under which both 
ℓ1 criterion and greedy approaches can recover an 
exactly sparse signal. 

b) Cyclosparse approximation 
The extension of sparse approximation for 

cyclostationary and sparse signals is the main aim of 
this study. A cyclosparse solution is given by 
minimizingthe following criterion:  

𝒥𝒥(𝒙𝒙)��𝒚𝒚−𝜱𝜱{𝑖𝑖+𝑚𝑚𝑇𝑇 ;  𝑚𝑚=0,… ,𝐾𝐾−1}𝒙𝒙�
2

𝑇𝑇

𝑖𝑖=1

𝛽𝛽𝐾𝐾‖𝑿𝑿‖∞ ,0 ;       (6) 

with K and T denote respectively the number of 
cycles/periods and the cyclic period. Actually, the inner 
ℓ∞-norm encourages diversity along the cycles so the 
ℓ∞ ,0 mixed-norm measures the cyclosparsity along the 
whole signal. Both approaches used to avoid exploring 
every combination of the sparse approximation problem 
can be extended to cyclosparse context: greedy 
algorithms and convex relaxation. In this paper, we 
focus on greedy algorithms. 

c) Difference between joint sparse approximation and 
cyclosparse deconvolution 

In spite of the fact that the joint sparse 
approximation [26, 27, 28, 29] and cyclosparse 
deconvolution seem to have similar formulations, they 
are completely different, and the most basic differences 
are listed as follows: 
1. In the case of deconvolution, the dictionary is 

imposed by the IR and cannot be chosen unlike 
sparse approximation where the dictionary is 
generally chosen as union of bases or wavelet 
dictionary. Also, the dictionary size is of the same 
order as data size, so the dictionary does not 
correspond to a redundant set of elementary signals 
as in sparse approximation. 

2. The deconvolution aims to retrieve the object x, i.e., 
to find the coefficients associated to the actual 
elementary signals forming the data. Whereas, the 
problem of sparse approximation searches for a 
good approximation of the object involving few 
atoms. 

3.
 

The joint sparsity is used for multi-dimensional 
signals or images that share almost the same 
dictionary. In the context of our study, we deal with 
mono-dimensional signals which cannot be split to 
apply joint sparsity.

 

The first point is a matter of prime importance in 
terms of computation of the solution. Indeed, as for 
deconvolution, the dictionary atoms correspond to 
shifted versions of the IR, hence they are highly 
correlated. So, the theoretical properties which 
guarantee the solution of greedy algorithms or convex 
relaxation to correspond to the sparse approximation 
are often not satisfied. For example, the coherence is 
generally very high ( 𝜇𝜇 > 1

2
 ) so theorems based on such 

quantities guarantee to reach the solution only if it is 
composed of a single elementary signal. This can be 
demonstrated by considering a cyclosparse object x 
with  ‖𝒙𝒙‖0 = 𝐾𝐾‖𝑿𝑿‖∞,0 = 𝐾𝐾𝑑𝑑, relationship 5 becomes  
𝜇𝜇 < 1

2𝐾𝐾𝑑𝑑−1
 . To be in conformity with  𝜇𝜇 > 1

2
 , 𝐾𝐾𝑑𝑑 must be 

set to 1, which means that the signal is composed of 
single period with one impulse i.e. a single elementary 
signal. More precisely, it can easily be seen in this case 
that the scalar product 〈𝐡𝐡𝑗𝑗  ,𝐡𝐡𝑘𝑘〉 roughly corresponds (up 
to the boundary conditions taken into account for the 
convolution) to a value of the auto-correlation of the 
IR:〈𝐡𝐡𝑗𝑗  ,𝐡𝐡𝑘𝑘〉 = 〈ℋ ∗ 𝛿𝛿𝑗𝑗  ,ℋ ∗ 𝛿𝛿𝑘𝑘〉 =  〈𝛿𝛿𝑗𝑗 ,ℋ−  ∗ ℋ ∗ 𝛿𝛿𝑘𝑘〉   =
 ℋ− ∗ℋ(𝑘𝑘 − 𝑗𝑗),where ℋ− ( 𝑗𝑗 ) = ℋ(−𝑗𝑗) and 𝛿𝛿 
represents the Kronecker symbol. For example, if the IR 
has a Gaussian-like shape, the autocorrelation of the IR 
also has a Gaussian-like shape with a twice as large 
standard deviation, so a correct sampling of the 
Gaussian leads to 𝜇𝜇 > 1

2
 . On the other hand, it is 

obvious that two spikes are easy to detect if they are 
sufficiently far away from each other. A sufficient 
recovery condition has been established on the basis of 
such distance for sparse deconvolution [30] and also for 
super-resolution [37], but this condition may not be 
carried out for real data. Therefore, no theoretical results 
guarantee that the algorithms converge towards the 
sparse solution. So the various algorithms have to be 
tested on realistic data. Moreover, as each algorithm 
could give different solutions, one should compare the 
efficiency of each algorithm on a coherent basis, in 
particular with respect to the tuning parameters.  

The second point points-out the issues of 
sparse deconvolution and sparse approximation. 
Indeed, the objective of sparse deconvolution is to 
recover the spike-like objects, i.e. to detect the 
unresolved objects and to estimate their amplitude, and 
not only to have a sparse solution which gives a good 
approximation of the data. So if the algorithms fail to 
reach the real solution, this leads to false alarms and 
missing detection of objects. Moreover, when dealing 
with real data, it is not guaranteed that the sparse 
solution corresponds to the true objects. To avoid such 
a problem in this study, we will only compare hereafter 
the algorithms on simulated data for which the true 
solution is known.  

Finally, the third point establishes that joint 
sparsity modeling is not suitable for periodic random 
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impulses. Actually, the major difference between both 
concepts arises in the fact that joint sparsity assumes 
that multi-dimensional signals are disjointed on the 
border. This means that each signal does not contribute 
on its neighbors because the convolution is 
independently made between each mono-dimensional 
signal and the IR. However, for cyclosparsity, the cycles 
are related and connected because of the convolution 
with the IR. Hence, the cycles are not independent 
anymore and cannot be split as for joint sparsity. 

Consequently, we came to the conclusion that 
the joint sparsity cannot be used to characterize and 
model cyclostationary signals with periodic random 
impulses. These were the reasons behind developing 
the concept of cyclosparsity. 

In addition, as the algorithms may give different 
solutions, one should test all the existing algorithms.  In 
this study we focus on the greedy algorithms. The first 
reason is that greedy algorithms are classically used in 
many domains for a long time, and even before the first 
publications on sparse representations. So the use of 
greedy algorithms is quite natural. Moreover, one 
important aspect of this study is to be able to compare 
the algorithms on the same basis in terms of parameters 
tuning. The noise level of real data can often be 
modeled or at least estimated from the data so the 
noise variance can be considered as a known 
parameter. In this study, we will use the noise variance 
to build the condition to stop the iterations of the various 
greedy algorithms on the same statistical basis. Such a 
condition is not as easy to build on the same basis 
using convex relaxation. 

V. Cyclosparse deconvolution 

a) Structure of the dictionary H 
 Let us first specify the boundary condition 

accounted for in the convolution operator. We assume 
that the convolution (Eq. 1) is computed with the zero-
padded edges. Using this option the resulting signal has 
length 𝐿𝐿𝑦𝑦 = 𝐿𝐿𝑥𝑥 + 𝐿𝐿ℎ − 1 where  𝐿𝐿𝑥𝑥   and  𝐿𝐿ℎ   stand 
respectively for the length of the signal to reconstruct 
and the Point Spread Function (PSF). Of course, such 
boundary hypothesis influences size and structure of the 
dictionary H formed from the IR. In particular, for 
physical reasons, the IR is normalized such that 
∑ ℋ𝑗𝑗

2𝐿𝐿ℎ
𝑗𝑗=1 = 1 so the columns of the matrix which 

correspond to shifted versions of the IR should have a 
constant norm 𝐡𝐡𝑖𝑖𝑇𝑇𝐡𝐡𝑖𝑖 = ∑ ℋ𝑗𝑗

2𝐿𝐿ℎ
𝑗𝑗=1 . 

Note that H is a sparse matrix of dimension  
𝐿𝐿𝑦𝑦  ⨉ 𝐿𝐿𝑥𝑥    with 𝐿𝐿ℎ⨉ 𝐿𝐿𝑥𝑥  nonzero elements (the length of 

the PSF is generally largely smaller than the length of 
the signal). But as the  𝐿𝐿𝑥𝑥  atoms of the dictionary 
correspond to shifted versions of the PSF, matrix H is 
composed only with the 𝐿𝐿ℎ  elements of the PSF. 

Moreover, as matrix H models a convolution 
operator, it has a Toeplitz structure (diagonal-constant 
matrix) and each operation involving H may be 
computed as a result of a convolution. 

b) Problem statement 
Before discussing the general case modeling of 

cyclosparse deconvolution, let us consider an example 
of cyclosparse object x, with two periodic random 
impulses of positions 𝑑𝑑1 +𝑚𝑚𝑇𝑇 and  𝑑𝑑2 +𝑚𝑚𝑇𝑇, in order 
to make clear the formulation. Thus, the atoms that 
participate to build-up 𝒚𝒚 are  𝐡𝐡 𝑑𝑑1 +𝑚𝑚𝑇𝑇  and 𝐡𝐡𝑑𝑑2+𝑚𝑚𝑇𝑇   with 
𝑚𝑚 = 0, . . . ,𝐾𝐾 − 1. In addition, the atoms  𝐡𝐡 𝑑𝑑1+𝑚𝑚𝑇𝑇  are 
not correlated (likewise 𝐡𝐡𝑑𝑑2+𝑚𝑚𝑇𝑇  ) (i.e. the scalar product 
of these vectors for different values of m is null) as the IR 
length 𝐿𝐿ℎ  is generally smaller than the cyclic period T. If 
it is not the case, the IR  can be truncated such as 
𝐿𝐿ℎ < 𝑇𝑇. 

Consequently, for any cyclosparse object x, the 
model 1 can be written with matrix notations as follows, 

𝒚𝒚 = H D 𝒙𝒙+ 𝒏𝒏 

 = H� 𝒙𝒙+ 𝒏𝒏 

H� TH�  = 𝐃𝐃�HT𝐇𝐇�𝐃𝐃  with D is the cyclosparsity operator 
which is a  𝐿𝐿𝑥𝑥⨉ 𝐿𝐿𝑥𝑥  diagonal matrix 

DT=D = ∑ ∑ 𝒆𝒆𝑑𝑑𝑛𝑛+𝑚𝑚𝑇𝑇 𝒆𝒆𝑑𝑑𝑛𝑛+𝑚𝑚𝑇𝑇
T‖𝒙𝒙‖∞,0

𝑛𝑛=1
𝐾𝐾−1
𝑚𝑚=0 =

diag�∑ ∑ 𝒆𝒆𝑑𝑑𝑛𝑛+𝑚𝑚𝑇𝑇

‖𝒙𝒙‖∞,0
𝑛𝑛=1

𝐾𝐾−1
𝑚𝑚=0 �where 𝒆𝒆𝑑𝑑𝑛𝑛+𝑚𝑚𝑇𝑇   are the 

canonical basis vectors and 𝑑𝑑𝑛𝑛  is the index of the nth 
impulse with 𝜏𝜏𝑛𝑛  as factor delay. Thus, H� is a 𝐿𝐿𝑦𝑦⨉ 𝐿𝐿𝑥𝑥  
matrix with particular structure i.e. the nonzero columns 
for each cycle are deduced by shifting the columns of 
the first cycle with a multiple of the cyclic period 𝑇𝑇. 
Hence, H�  points out the cyclosparsity property in the 
convolution case. 

c) Cyclosparse greedy algorithms 
Let the sub-matrix HΛ built-up from the columns 

of H where the indices are in , 𝐡𝐡𝑖𝑖=H{i}, and Λ(k) is the 
set of the selected indices at iteration 𝑘𝑘. The vectors are 
defined as follows, 𝒙𝒙 = [𝑥𝑥1, … , 𝑥𝑥𝐿𝐿𝑥𝑥  ]T,  y = [𝑦𝑦1, … , 𝑦𝑦𝐿𝐿𝑦𝑦  ]T,
𝒏𝒏 = [𝑛𝑛1, … , 𝑛𝑛𝐿𝐿𝑦𝑦  ]Tand 𝒓𝒓 = [𝐶𝐶1, … , 𝐶𝐶𝐿𝐿𝑦𝑦  ]T which denotes 
the residual. 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦  and 𝐿𝐿ℎ  stand respectively for the 
length of 𝒙𝒙, 𝒚𝒚 and . Finally, let the vector 𝑚𝑚 =
[0, 1, … . , (𝐾𝐾 − 1)] be the vector of period indices. 

In this study the interest is focused on the 
extension of greedy sparse approximation algorithms to 
cyclosparsity context for deconvolution. The dictionary is 
given by the Toeplitz matrix H deduced from the IR . 
Greedy algorithms are iterative algorithms composed of 
two major steps at each iteration: 1) the selection of an 
additional elementary signal in the dictionary; 2) the 
update of the solution and the corresponding 
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approximation. A stopping rule helps decide whether to 
stop or continue the iteration. 

Let us consider 𝒙𝒙(𝑘𝑘) be the solution of the kth 
iteration, 𝒙𝒙Λ

(𝑘𝑘) being its coefficients at indices  and 
𝒓𝒓(𝑘𝑘) = 𝒚𝒚 − H 𝒙𝒙(𝑘𝑘) the residual corresponding to this 
solution (approximation error). The typical structure of a 
greedy algorithm is:  
Initialize 𝑘𝑘 = 0,  Λ(k) = ∅ and 𝒓𝒓(𝑘𝑘) = 𝒚𝒚. 
Iterate on 𝑘𝑘 = 𝑘𝑘 + 1 until the stopping rule is satisfied: 
• Select the index 𝑖𝑖(𝑘𝑘) corresponding to an atom 𝐡𝐡𝑖𝑖 

improving the approximation. 
• Update the solution 𝒙𝒙(𝑘𝑘), with nonzero elements at 

indices Λ(k) = Λ(k−1)  ∪ {𝑖𝑖(𝑘𝑘)}, and the 
corresponding residual 𝒓𝒓(𝑘𝑘). 

The various algorithms differ on the selection or 
the updating steps. The most popular greedy algorithm 
must be the Matching Pursuit [13] and its orthogonal 
version OMP [14]. Both algorithms and two other 
algorithms will be extended to cyclosparsity context. 

The Cyclo-MP (or Cyclic-MP) is the extension of 
the Matching Pursuit (MP) [13]. The K additional atoms 
jointly maximize the scalar product with the residual. The 
update corresponds to an orthogonal projection of the 
residual on the selected atoms, so only the solution at 
the selected indices is updated. Note that with such a 
scheme it is possible to select already selected atoms. 

Cyclo-Matching Pursuit (Cyclo-MP) 

In order to avoid overloading equations, the 
index 𝑖𝑖(𝑘𝑘) +𝑚𝑚𝑇𝑇 will be replaced by 𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘) in the following. 
• Selection of  K atoms: Λ(k) = Λ(k−1)  ∪ {𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘);  𝑚𝑚 =
1, … ,𝐾𝐾 − 1}, 

𝑖𝑖(𝑘𝑘) = argmax
𝑖𝑖

��𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇  
T 𝒓𝒓(𝑘𝑘−1)� 

𝐾𝐾−1

𝑚𝑚=0

       (7) 

• Update: 
solution: 

𝒙𝒙
𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘)
(𝑘𝑘) = 𝒙𝒙

𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘)

(𝑘𝑘−1) + �𝐇𝐇
𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘)
T 𝐇𝐇𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘) �
−1
𝐇𝐇
𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘)
T  𝒓𝒓(𝑘𝑘−1)      (8) 

residual: 

𝒓𝒓(𝑘𝑘) =  𝒓𝒓(𝑘𝑘−1) − 𝐇𝐇𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) �𝐇𝐇

𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘)

T 𝑯𝑯𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) �

−1
𝐇𝐇
𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘)
T  𝒓𝒓(𝑘𝑘−1)     (9) 

• Stoping criterion 
where the matrix  

𝐇𝐇𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) = [ 𝐡𝐡𝑖𝑖 , 𝐡𝐡𝑖𝑖+𝑇𝑇 , … ,𝐡𝐡𝑖𝑖+(𝐾𝐾−1)𝑇𝑇]  gathers the K selected 

atoms. Appendix A explains why the selection step of 
the Cyclo-MP (Eq. 7) is more efficient? 

The Cyclo-OMP (or Cyclic-OMP) is the 
extension of the Orthogonal Matching Pursuit (OMP) 
[14]. The Cyclo-OMP differs from the Cyclo-MP on the 
updating step as an orthogonal projection of the data on 
the whole selected atoms is performed. This avoids the 

selection of already selected atoms but increases the 
computation cost as the amplitudes associated to all the 
selected atoms are updated. 

Cyclo-Orthogonal Matching Pursuit (Cyclo-OMP) 

• Selection: same as for the Cyclo-MP (7) 
• Update: 
solution:  

 𝒙𝒙
Λ(𝑘𝑘)
(𝑘𝑘)  =    �HΛ(𝑘𝑘)

T HΛ(𝑘𝑘)�
−1

HΛ(𝑘𝑘)
T 𝒚𝒚          (10) 

residual:    

𝒓𝒓(𝑘𝑘) = 𝒚𝒚 −HΛ(𝑘𝑘)𝒙𝒙Λ(𝑘𝑘)
(𝑘𝑘)  

• Stopping criterion 
where the matrix  

𝐇𝐇𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) = [ 𝐡𝐡𝑖𝑖 , 𝐡𝐡𝑖𝑖+𝑇𝑇 , … ,𝐡𝐡𝑖𝑖+(𝐾𝐾−1)𝑇𝑇]  gathers the K selected 

atoms. Appendix A explains why the selection step of 
the Cyclo-MP (Eq. 7) is more efficient? 

The Cyclo-OMP (or Cyclic-OMP) is the 
extension of the Orthogonal Matching Pursuit (OMP) 
[14]. The Cyclo-OMP differs from the Cyclo-MP on the 
updating step as an orthogonal projection of the data on 
the whole selected atoms is performed. This avoids the 
selection of already selected atoms but increases the 
computation cost as the amplitudes associated to all the 
selected atoms are updated. 

Cyclo-Orthogonal Matching Pursuit (Cyclo-OMP) 

• Selection: same as for the Cyclo-MP (7) 
• Update: 

solution:  

 𝒙𝒙
Λ(𝑘𝑘)
(𝑘𝑘)  =    �HΛ(𝑘𝑘)

T HΛ(𝑘𝑘)�
−1

HΛ(𝑘𝑘)
T 𝒚𝒚          (10) 

residual:    
𝒓𝒓(𝑘𝑘) = 𝒚𝒚 −HΛ(𝑘𝑘)𝒙𝒙Λ(𝑘𝑘)

(𝑘𝑘)  

• Stopping criterion 

The Cyclo-OLS (or Cyclic-OLS) is the extension 
of the Orthogonal Least Squares (OLS) [15]. The Cyclo-
OLS differs from the Cyclo-OMP on the selecting step 
as the selected atoms minimize the approximation error. 
The Cyclo-OLS is the more coherent greedy algorithm 
as both in the selection and the updating steps it aims 
to minimize the approximation error. However, the 
computation cost of the Cyclo-OLS highly increases 
compared to the Cyclo-OMP. 

Cyclo-Orthogonal Least Squares (Cyclo-OLS) 

• Selection:  Λ(k) = Λ(k−1)  ∪ {𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1}, 

𝑖𝑖(𝑘𝑘) = argmin 
𝑖𝑖
‖𝒚𝒚 − 𝐇𝐇Λ�HΛ

T𝑯𝑯Λ�
−1

HΛ
T𝒚𝒚‖2         (11) 

with    Λ = Λ(k−1)  ∪ {𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1}, 

• Update: same as for the Cyclo-OMP solution (10) 

• Stopping criterion 
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The Cyclo-SBR (or Cyclic-SBR) is the extension 
of the Single Best Replacement (SBR) algorithm [19, 20, 
21]. The SBR algorithm is not strictly speaking a greedy 
algorithm. It is an iterative algorithm which aims to 
minimize criterion (4). The SBR has been inspired by the 
Single Most Likely Replacement (SMLR) algorithm [31] 
proposed for Bernoulli-Gaussian deconvolution. Of 
course, the SBR is not guaranteed to converge towards 
the global minimum of (4), i.e. to the sparse 
approximation, but it is an interesting alternative to 
greedy algorithms as it has a very similar iterative 

scheme and has been shown to give better results for 
deconvolution [19, 20, 21]. 

Cyclo-Single Best Replacement (Cyclo-SBR): For a given parameter β, the selection and 
update steps of the Cyclo-SBR can be written as: 
• Selection:  

Λ(k) = Λ(k−1)  ∪ {𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1} 
      Addition 

or 

Λ(k) = Λ(k−1) \{𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1} 

Removal 
 

 

𝑖𝑖(𝑘𝑘) = argmin  
𝑖𝑖
𝒥𝒥Λ = argmin 

𝑖𝑖
‖𝒚𝒚 − 𝐇𝐇Λ�HΛ

𝑇𝑇𝐇𝐇Λ�
−1

HΛ 𝒚𝒚‖2 +  𝛽𝛽 ⋕ {Λ}  (12) 

 

Λ = Λ(k−1)
 ∪ �𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1� 

with    or                                                           (13) 

Λ = Λ(k−1)
 \{𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1}                      

• Update: same as for the Cyclo-OMP solution (10) 
• Stopping criterion: no replacement is accepted 

This means that the selection step compares 
both selecting K new atoms and deleting K previously 
selected atoms, the replacement which minimizes 
criterion (4) being selected. In case of suppression, the 
set of selected atoms is updated as Λ(k) = Λ(k−1) \
�𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1�. Note that the selection step for 

adding K new atoms is strictly identical to the Cyclo-OLS 
one, the updating step being identical to that of the 
Cyclo-OMP and the Cyclo-OLS. The iterations of the 
Cyclo-SBR stops when no replacement allows 
decreasing the criterion. Appendix C illustrates the 
reason why the selection step of the Cyclo-SBR (Eq. 12) 
is more efficient? 

d) Stopping rule 
The only parameter to set for using these 

greedy algorithms is the stopping rule. In terms of 
sparse approximation, comparing the norm of the 
residual to a threshold is a natural stopping rule, as it 
corresponds to an expected quality of approximation. 
On the other hand, for deconvolution, the residual for 
the true object corresponds to the noise. So a statistical 
test on the residual may be used as stopping rule, which 
decides whether the residual can be distinguished from 
noise. For Gaussian, centered, independent and 
identically distributed (i.i.d.) noise, of known variance 𝜎𝜎2, 
the norm ‖𝒏𝒏‖2

2/𝜎𝜎2 = ∑ 𝑛𝑛𝑘𝑘2 /𝜎𝜎2𝑁𝑁
𝑘𝑘=1  follows a Chi-square 

distribution with 𝑁𝑁 degrees of freedom. So, the Chi-
square distribution may be used to determine the value 
of 𝜖𝜖 for which 𝑃𝑃𝐶𝐶��𝒓𝒓(𝑘𝑘)� ≤ 𝜖𝜖� = 𝜂𝜂 for a given probability, 
e.g.  𝜂𝜂 = 95%. 

e) Discussion 
• Note that for the four algorithms, the selection step 

is made jointly over the whole set of cycle indices m 
thanks to cyclosparsity. Also note that the original 
version of the algorithms can be retrieved taking into 
account a single period for m = 0. 

• An objective and meaningful comparison of the 
greedy algorithms and the Cyclo-SBR requires a 
common tuning of the parameters. This means that 
the parameter β of the Cyclo-SBR has to be set in 
agreement with the stopping rule of the greedy 
algorithms. This can be done using a continuation 
path technique for the SBR [19, 20, 21] named 
CSBR (Continuation SBR). Roughly, the SBR 
algorithm is executed for decreasing values of  
𝛽𝛽 = 𝛽𝛽𝑞𝑞  and stopped at the higher value of β for 
which the approximation is acceptable, i.e. with the 
same stopping rule as the greedy algorithms 
presented  5.4. Note that the critical values 𝛽𝛽𝑞𝑞  for 
which the selected atoms may change have been 
shown to be a by-product of the SBR algorithm [19, 
20, 21] and do not require additional computation. 

• Another advantage of cyclic greedy algorithms is 
the significant reduction of the computation cost. 
Cyclic greedy algorithms select 𝐾𝐾 atoms at time 
utilizing the residual at iteration 𝑘𝑘 i.e. one scalar 
product with atoms. Unlike greedy algorithms that 
select one atom at time utilizing the residual at 
iteration k, to select an additional atom, the residual 
at iteration (𝑘𝑘 + 1) must be calculated and then the 
scalar product with atoms. In consequence, to 
select 𝐾𝐾 atoms, 𝐾𝐾 scalar product must be 
performed. Thus, the computation cost for the 
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Appendix B shows why the selection step of the Cyclo-
OLS (Eq. 11) is more efficient?



 

 

selection step is roughly divided by 𝐾𝐾. For that 
matter Appendix E summarizes the computational 
cost of the studied greedy algorithms. 

• Proceeding [32, 14, 19, 20, 21] one can use the 
matrix inversion lemma to compute iteratively 

(HΛ(k−1) ∪�𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) ;𝑚𝑚=1,…,𝐾𝐾−1�

T 𝐇𝐇Λ(k−1) ∪�𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘) ;𝑚𝑚=1,…,𝐾𝐾−1�)

−1 at a 

low cost, from the knowledge of (HΛ(k−1) T 𝐇𝐇Λ(k−1))−𝟏𝟏 

(see Appendix D for more details).
 

•
 

The cyclic greedy algorithms have been presented 
with matrix notations, which are very useful to 
understand the algorithms but may not be used 
directly for their implementation in the case of large 
size data. For the deconvolution case, according to 
the dictionary and matrix structures some efficient 
implementation has to be accounted for to reduce 
the computation cost and the memory storage. As 
matrix H

 
models a convolution operator, it has a 

Toeplitz structure and each operation involving H
 

(Matrices and vectors operation) may be computed 
as a result of a convolution. An efficient 
implementation is proposed in [33], based on the 
convolution operator and not on vector and matrix 
products as is usually done for sparse 
approximations. We used therefore the same 
practical implementation for cyclic greedy 
algorithms for the deconvolution.

 

VI.
 

Simulation
 

a)
 

Description
 

The proposed methods are tested using 
synthetic signals in order to evaluate their effectiveness. 
To do so, we consider simulation example with the 
following parameters. A cyclostationary signal based on 
periodic random impulses 𝐿𝐿

 
𝑥𝑥 = 256

  
and

 
𝑇𝑇 = 32, so the 

number of periods is 𝐾𝐾
 

= 8). This input signal consists 
of d

 
= 5 periodic random impulses of the same 

positions (7, 9, 11, 13 and 15) in each cycle. The signal 
is then filtered by an ARMA system where the transfer 

function is given as: 𝐻𝐻(𝑧𝑧) =
 1+𝑏𝑏1

 
𝑧𝑧−1

1+𝐶𝐶1
 
𝑧𝑧−1+𝐶𝐶2

 
𝑧𝑧−2

  
where 

𝑏𝑏1 = −0.6, 𝐶𝐶1 = −0.9
 

and 𝐶𝐶2 = 0.6
 
; the time 

representation of the IR (𝐿𝐿ℎ = 15)
 
is reported in Fig. 2-b. 

 

Then i.i.d.
 
Gaussian noise (𝐿𝐿𝑦𝑦 = 270)

 
is added 

to the convolved signal, as illustrated by (1), such that 
the SNR is 14dB. The resulting signal is reported in Fig. 
2-a.

 

For the first evaluation we consider the time 
representations of the reconstructed signals given by 
each algorithm versus the true signal. Fig. 3 reports the 
true signal (blue line) described by the relationship (1) 
and the estimated signal (colored line) for each method. 
We note that we constrained the plot to the three first 
periods in order to avoid overloading Fig. 3. Regarding 
each algorithm and its corresponding extension, we 

note from Fig. 3 that deconvolution across cyclosparsity 
hypothesis allows to: 

 

 
Figure 2 (a) : The observed signal (SNR= 14dB).  

The IR used for all simulations 

• Detect and restore impulses even drowned in noise 
• Reduce false and missing detections 
• Estimate well the amplitude of impulses 

Comparing all algorithms, we deduce that the 
Cyclo-OMP, the Cyclo-OLS and the Cyclo-SBR provided 
the best estimations. This point will be examined in 
detail using other evaluations (mean squared error and 
histogram). 
b) Mean Squared Error 

We provide here a comparison between the 
proposed approaches against the original ones. The 
aim is to show the performance of cyclosparse greedy 
deconvolution in various i.i.d. noisy environments. The 
simulation is made with the same parameters as the first 
example except SNR. Actually, the SNR will vary from 
1dB to 30dB. And for each value of the SNR, 500 Monte 
Carlo (MC) runs will be implemented. Thus, for each MC 
run, 
• The periodic random impulses keep the same 

positions but with random amplitudes 
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(b):



 

 

• The input signal is filtered by the IR of Fig. 2-b 
• i.i.d. Gaussian noise is added to the convolved 

signal, as illustrated by (1), such that the SNR is set 
to the desired value 

Another measure adopted to evaluate our 
system involved changing the SNR while every other 
variable used in MC simulations remained         
constant.  We  aim to examine the effects of increasing 
noise on the performances of these methods. The 
evaluation quantities for our simulation study, comparing 
the performances of these methods, were average 
Mean Squared Error (MSE) and average histogram. 

The MSE provides a measure of the quality of 
the reconstructed signal. The MSE of the estimate 𝒙𝒙� with 
respect to 𝒙𝒙 is defined as, MSE(𝒙𝒙�) = E[(𝒙𝒙� − 𝒙𝒙)]. These 
MSE will be averaged over the number of MC runs. Fig. 
4 shows the variation of each output’MSE, for the 
proposed       methods and the original ones as well, 
with the SNR. We note from the trend of the graph that 
the MSE decreases with increasing SNR. This is 
because higher SNR implies lower noise effect on 
observed data y. This effect allows fewer amplitude 
estimation errors after detection takes place; hence, 
good performances of the algorithms. However, we note 
from Fig. 4 (for 𝐾𝐾 = 8) that higher MSE occurs for lower 
SNR. This is also as a result of higher noise effect for 
lower SNR. Also, the MSE is nearly the same for all 
cyclo-algorithms except Cyclo-MP, with highest MSE 
occurring for lower SNR. 
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Figure 3 :  The reconstructed signal versus the original one (the SNR is set to 14dB)

Furthermore, as can be seen from the same 
figure (Fig. 4, for 𝐾𝐾 = 8), the algorithms’ behavior with 
respect to the MSE against noise can be decomposed 
into two parts: SNR less or greater than 6dB. For SNR 
greater than 6dB, the MSE of the algorithms can be 
sorted in descending order as follow, MP; Cyclo-MP; 
(OMP, OLS and SBR); (Cyclo-OMP, Cyclo-OLS and 
Cyclo-SBR). However for SNR less than 6dB, the MSE of 
the algorithms can be sorted as, (MP, OMP, OLS and 
SBR); Cyclo-MP; (Cyclo-OMP and Cyclo-OLS); Cyclo-
SBR. We conclude therefore, that cyclo-algorithms 
perform well even for lower SNR 
c) Histogram 

The histogram shows the distribution of data 
values. Thus, performing the histogram to the 
reconstructed signal will show the number of the true 

impulses and false/missing detections that happen 
within the true impulses as well. Therefore, this will help 
us know how much detection is in error for each 
algorithm. We made MC simulations in order to help us 
determine an average histogram over the number of 500 
MC runs. Fig. 5 shows the variation of each 
output’average histogram obtained by varying SNR from 
1dB to 30dB for the proposed methods and the original 
ones as well. As the histogram is almost periodic, we 
constrained the plot to the first period in order to avoid 
overloading Figures 5, 6, 7 and 8. 

We note from Fig. 5 that false detections 
increase with decreasing SNR. This is because higher 
SNR implies lower noise effect on observed data y. The 
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histogram is nearly the same for all cyclo-algorithms 
except Cyclo-MP, with highest missing detections 
occurring even for higher SNR. However, we note from 
Fig. 5 that higher missing/false detections occur mainly 
for lower SNR. This is also as a result of higher noise 
effect for lower SNR. 

The histogram indicates good detection, false 
detection/alarms and missing detection. Based on these 
three criteria, we can classify the histogram similarly to 
the MSE. As can be seen from this Fig. 5, the 
algorithms’ behavior with respect to the histogram 
against noise can be decomposed into two parts: SNR 
less or greater than 6dB. Consequently, the histogram 
confirms the MSE behavior of the algorithms and leads 
to the same sorting of the algorithms. 

d) Influence of the number of cycles 

 

 

data size set were reported in Fig. 4 for the average 
MSE and Figures 6, 7, 5 and 8 for the average 
histogram. As expected from theory, increasing the 
number of cycles leads to good performances with less 
false/missing detections and errors in the estimation of 
the impulses amplitudes, for cyclo-algorithms in 
comparison with their corresponding algorithms. We 
note also that the Cyclo-OLS and Cyclo-OMP converge 
gradually (especially for lower SNR) to the Cyclo-SBR as 
K increases. This is because less error occurred in the 
selection step for adding new atoms, so no need for the 
Cyclo-SBR to correct any error on the selection step by 
removing already added atoms. 

VII. Discussion 

The objective of the previous simulations is to 
evaluate the contribution of cyclosparsity for greedy 
deconvolution. It is apparent therefore, that 
deconvolution across cyclosparsity hypothesis allows 
detecting and restoring impulses even drowned in noise 
provided that these impulses being significant for the 
other cycles of the signal. Also, increasing the number 
of cycles i.e. more atoms involved in the average leads 
to a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 :  The effect of varying SNR from 1dB to 30dB over MC runs on the MSE

considerable enhancement of the performances of 
cyclo-algorithms. 

The Cyclic algorithms perform better than their 
corresponding classical ones even for lower SNR. The 

Cyclo-OLS and Cyclo-OMP reach the performances of 
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Another parameter which can influence the 
performances of the cyclo-algorithms is the number of 
cycles/periods K. To examine this, we performed three
simulations in which K was gradually increased. The 
simulations are made with the same parameters as the 
second example except data size. Actually, changing 
the number of cycles means changing data size as well. 
So, for K equal to 2, 4, 8 and 16, correspond 
respectively to data size 64, 128, 256 and 512. 
Simulation results for each data size set were reported in 



 

 

the Cyclo-SBR, especially for higher SNR, because 
averaging over m reduces false/missing detections, so 
the Cyclo-SBR seldom if ever removes already added 
atoms. The Cyclo-MP has the bad performances. What 
happened to the behavior of the Cyclo-MP can be 
explained by the distance between adjacent impulses. 
When nonzero elements are so close and strongly 
correlated, false detections occur often because the 
orthogonal projections are made over only the K 
selected atoms unlike the other algorithms where the 
orthogonal projections are made over the whole 
selected atoms. However, by increasing the parameter 
K, the Cyclo-MP behavior converges to the behavior of 
OMP, OLS and SBR for higher SNR, whereas for lower 
SNR the Cyclo-MP behavior converges to the behavior 
of Cyclo-OMP and Cyclo-OLS. This means that 
cyclosparsity allows to the Cyclo-MP to overcome the 
drawback of the MP. 

VIII. Conclusion 

• The objective of the paper is the introduction of the 
concept of cyclosparsity for cyclostationary signals 
based on periodic random impulses. Then, 
integrate this concept for greedy sparse algorithms 
in order to increase the performances of the 
deconvolution and reduce significantly the 
computation cost as well. 

• The performance of the new algorithms using 
computer simulated cyclostationary signals was 
demonstrated. It is apparent therefore that the 
proposed methods compare favorably with the 

original ones. Reasons for the improved 
performance of the proposed methods over the 
original ones include the following: the cyclosparsity 
model makes possible the exploitation of the 
information given by the periodicity which allows 
less false alarms and missing detections as well. 

• The unique additional information required by cyclic 
greedy algorithms is the cyclic period T.  In general, 
the cyclic period is related to the studied system. 
For rotating machines, the cyclic period is a multiple 
of the shaft rotation. Furthermore, the problem of 
estimating the cyclic period or the cyclic frequency 
has been addressed in several articles as [34]. 

• We investigate to apply the proposed algorithms to 
vibratory signals namely bearing signals for 
diagnostic. Actually, bearing with inner rice or outer 
rice default signals are known to be random 
periodic impulse signals. These signals are 
convolved by the IR of the mechanical structure of 
the rotating machine and then noise is added to the 
convolved signal. Thus, the resulting signal is not 
legible, and hence, the need of deconvolution to 
restore the random periodic impulses in order to 
estimate the degree of the default. 

Appendix A.  Comparison between the selection step of 
the Cyclo-MP (Eq. 7) and the one of the MP 

 The selection step of the Cyclo-MP and Cyclo-
OMP is given by, 

     𝑖𝑖(𝑘𝑘) = arg max 
𝑖𝑖

� |hi+mT
T

𝐾𝐾−1

𝑚𝑚=0

𝒓𝒓(𝑘𝑘−1)|             (𝐴𝐴. 1) 

Let develop the term  ∑ |hi+mT
𝑇𝑇𝐾𝐾−1

𝑚𝑚=0 𝒓𝒓(𝑘𝑘−1)|, 

� |hi+mT
T

𝐾𝐾−1

𝑚𝑚=0

𝒓𝒓(𝑘𝑘−1) �= � |C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖

𝐾𝐾−1

𝑚𝑚=0

(𝑖𝑖 +𝑚𝑚𝑇𝑇)� = � |ℋ− ∗
𝐾𝐾−1

𝑚𝑚=0

𝒓𝒓(𝑘𝑘−1)(𝑖𝑖 + 𝑚𝑚𝑇𝑇)| 

= �C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖
(𝑖𝑖)� + �C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖

(𝑖𝑖 + 𝑇𝑇)�+ ⋯+ |C𝐶𝐶(𝑘𝑘−1)ℎ𝑖𝑖
(𝑖𝑖 + (𝐾𝐾 − 1)𝑇𝑇)| 

= |ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖)�+|ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖 + 𝑇𝑇)�+ ⋯+ |ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖 + (𝐾𝐾 − 1)𝑇𝑇)| 

where C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖
𝑇𝑇  represents the correlation 

between 𝐶𝐶(𝑘𝑘−1) and  and ℋ−(𝑗𝑗) =  ℋ(-j).  
The selection step of the MP and OMP is 

exclusively based on the term |C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖
T (𝑖𝑖)|  (equivalent 

to |ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖)|). So the selected atom is the one 
who maximizes it. Whereas, the Cyclo-MP and Cyclo-
OMP are based on the correlation at i  for the multiple of 
the cyclic period T, i.e.  

�C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖
(𝑖𝑖)�+ �C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖

(𝑖𝑖 + 𝑇𝑇)� +⋯+ |C𝐶𝐶 (𝑘𝑘−1)ℎ𝑖𝑖
(𝑖𝑖 + (𝐾𝐾 − 1)𝑇𝑇)| 

equivalent to 

|ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖)�+|ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖 + 𝑇𝑇)�+⋯+ |ℋ− ∗ 𝒓𝒓(𝑘𝑘−1)(𝑖𝑖 + (𝐾𝐾 − 1)𝑇𝑇)| 

for the step selection. Thus, the K selected atoms 
should maximize jointly the sum. 

Obviously, this has the advantage to avoid 
penalizing atoms associated to impulses with small 
amplitude thanks to the sum over periods that allows a 
joint selection of K atoms at once. And hence, the need 

to involve more atoms in the sum. So, when K increases 
the sum covers more atoms, therefore the chance to 
have atoms that bear on the sum increase significantly. 
Then less errors occur (especially when impulses are 
close) in the selection step. 
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Appendix B. Comparison between the selection step of 
the Cyclo-OLS (Eq. 11) and the one of the OLS 
 The selection step of the Cyclo-OLS is given by,           

𝑖𝑖(𝑘𝑘) = argmin 
𝑖𝑖
‖𝒚𝒚 − 𝐇𝐇Λ(𝑘𝑘 )�HΛ(𝑘𝑘)

T 𝐇𝐇Λ(𝑘𝑘)�
−1

HΛ(𝑘𝑘)
T 𝒚𝒚‖2     (𝐵𝐵. 1) 

where  𝐇𝐇Λ(1) = [𝐡𝐡i ,𝐡𝐡i+T , … ,𝐡𝐡i+(K-1)T ]. 

For this case, HΛ(1)
T 𝐇𝐇Λ(1) = 𝐈𝐈𝑲𝑲 with 𝐈𝐈𝐾𝐾  stands for 

the K×K identity matrix. This is because, the IR is 
normalized such that ∑ ℋ𝑗𝑗

2 = 1𝐿𝐿ℎ
𝑗𝑗=1  so the columns of the 

matrix which correspond to shifted versions of the IR 
should have a constant norm h𝑖𝑖+𝑚𝑚𝑇𝑇

T 𝐡𝐡i+mT =  ∑ ℋ𝑗𝑗
2.𝐿𝐿ℎ

j=1  

Also, for a given 𝑖𝑖 the atoms 𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇  (for all m) are not 
correlated (this is because the scalar product of these 
vectors for different values of m is null) as the IR length 

𝐿𝐿ℎ  is assumed to be smaller than the cyclic period T. 
Thus, Eq. B.2 becomes, 

𝑖𝑖(1) = argmin 
𝑖𝑖
‖𝒚𝒚 − 𝐇𝐇Λ(1)HΛ(1)

T 𝒚𝒚‖𝟐𝟐 

 

𝑖𝑖(1) = argmax 
𝑖𝑖

� |hi+mT
T  𝒓𝒓(0)|

(𝐾𝐾−1)

𝑚𝑚=0

 

= argmax 
𝑖𝑖
‖HΛ(1)

T 𝐫𝐫(0)‖2 

Which is equivalent to 

    i(1)  = argmin  
i

min 
α
‖𝐫𝐫(0) − 𝐇𝐇Λ(1)α‖2 

Proof 
min 
α
‖𝒓𝒓(0) −𝐇𝐇Λ(1)α‖2 = min 

α
𝒓𝒓(0)T𝒓𝒓(0) − 2𝒓𝒓(0)T𝐇𝐇Λ(1)α + αTHΛ(1)

T 𝐇𝐇Λ(1)α 

= min− 2 
α

𝒓𝒓(0)T𝐇𝐇Λ(1)α + αTα (as HΛ(1)
T 𝐇𝐇Λ(1) = 𝐈𝐈𝐾𝐾)                      

The solution is  α = HΛ(1)
T 𝒓𝒓(0). Therefore,  

min ‖
𝑖𝑖

𝒓𝒓(0) − 𝐇𝐇Λ(1)HΛ(1)
T 𝒓𝒓(0)‖2 = min 

i
𝒓𝒓(0)T𝒓𝒓(0) − 2𝒓𝒓(0)T𝐇𝐇Λ(1)HΛ(1)

𝑇𝑇 𝒓𝒓(0) + 𝒓𝒓(0)T𝐇𝐇Λ(1)HΛ(1)
T 𝒓𝒓(0) = min 

i
 −𝒓𝒓(0)T𝐇𝐇Λ(1)HΛ(1)

T 𝒓𝒓(0)  

= max ‖
i

HΛ(1)
T 𝒓𝒓(0)‖2  

As for the first iteration  𝒚𝒚 = 𝒓𝒓(0) the selection 
step of the Cyclo-OLS for the first K atoms is identical to 
the Cyclo-MP/Cyclo-OMP and is based on the sum of 
the correlation between 𝒚𝒚 and ℋ at 𝑖𝑖 + 𝑚𝑚𝑇𝑇. 

For the other iterations, the selection step of the 
Cyclo-OLS is given by the minimization of‖𝐲𝐲 − 𝐇𝐇Λ(k )𝒙𝒙�‖2 
with   𝒙𝒙�(𝑘𝑘) = (HΛ(𝑘𝑘)

T 𝐇𝐇Λ(k ))−1HΛ(𝑘𝑘)
T 𝒚𝒚 being the orthogonal 

projection of y on the atoms of index in Λ(k) = Λ(k−1)  ∪
�𝑖𝑖𝑚𝑚𝑇𝑇

(𝑘𝑘);𝑚𝑚 = 1, … ,𝐾𝐾 − 1�, and 𝐇𝐇Λ(𝑘𝑘)𝒙𝒙�(𝑘𝑘) represents the 

contribution of the estimated impulses (till iteration k) 
𝒙𝒙�(𝑘𝑘) on 𝒚𝒚. 

Hence, the K selected atoms {𝑖𝑖𝑚𝑚𝑇𝑇
(𝑘𝑘)}  should 

minimize jointly the MSE between 𝒚𝒚 and 𝐇𝐇Λ(k)𝒙𝒙�(𝑘𝑘). Since 
the minimization is made simultaneously, the impulses 
of small amplitudes are not penalized if the remaining 
atoms (for other value of m) bear on the minimization of 
the MSE. 

Consequently, the selection step of the Cyclo-
OLS is more efficient than the one of the OLS which 
minimizes independently the MSE for each atom. 
Appendix C. Comparison between the selection step of 
the Cyclo-SBR (Eq. 12) and the one of the SBR  

As the Cyclo-SBR has a similar selection 
criterion (Eq. 12) as the Cyclo-OLS except the second 
term, 𝛽𝛽 ⋕ {Λ(k)}, which does not really depend on the 
selected atoms as it indicates how many atoms are 
added. Note that for 𝛽𝛽 = 0  the Cyclo-SBR is reduced to 
the Cyclo-OLS. Also, for the first iteration (k=1), there is 
no added atoms as Λ(0) = ∅ and hence,  removal test is 
inconceivable. Only addition test is possible and is 

identical to the Cyclo-OLS with an additional value 
𝛽𝛽 ⋕ {Λ(1)} = 𝛽𝛽𝐾𝐾. If we leave out the second term of the 
criterion (Eq. 12), we conclude that Cyclo-SBR behaves 
in the same way as the Cyclo-OLS for the selection step 
(mainly for adding K new atoms). Unfortunately, this is 
not the case for the SBR as it behaves as the OLS (for 
addition test). In consequence, the selection step of the 
Cyclo-SBR (Eq. 12) is more efficient than the one of the 
SBR. 
Appendix D. Use of the Matrix inversion lemma 

 

 

 

 

 

  

    
f22 = (𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇T 𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇 −

 
𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇T 𝐇𝐇Λ�𝐅𝐅Λ�𝐇𝐇Λ�

T𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇 )−1,
  

with  
 
𝐟𝐟12 =

 
−f22𝐅𝐅Λ�𝐇𝐇Λ�

T𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇 .                           (D.1)
 

       
 
𝐅𝐅11 =

 
𝐅𝐅Λ�

 
+

 
f22𝐅𝐅Λ�𝐇𝐇Λ�

T𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇T 𝐇𝐇Λ�𝐅𝐅Λ�
 
,
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Link between the selections criteria of the 
Cyclo-MP/Cyclo-OMP and Cyclo-OLS

In addition to the matrix-vector products, the 
Cyclo-OMP, Cyclo-OLS and Cyclo-SBR algorithms 
require the inversion of the matrix 𝐅𝐅Λ = (𝐇𝐇Λ

T𝐇𝐇Λ)−1, (for 
the sake of simplicity the superscript (k) is omitted 
hereafter) with a growing set of indices β, in particular in 
the updating step (10) of the Cyclo-OMP and even in the 
selecting steps (11) and (12) of the Cyclo-OLS and 
Cyclo-SBR respectively. Following [32, 14, 19, 20, 21] 
one can take advantage of the matrix inversion lemma 
to compute iteratively 𝐅𝐅Λ∪{𝑖𝑖 ,…,𝑖𝑖+(𝐾𝐾−1)𝑇𝑇)} at a low 
computation cost, from the knowledge of 𝐅𝐅Λ =
(𝐇𝐇Λ

T𝐇𝐇Λ)−1. Indeed, using a block matrices notation, it 
can be shown that as 𝐇𝐇Λ�∪{𝑖𝑖+𝑚𝑚𝑇𝑇 } = [𝐇𝐇Λ� |𝐡𝐡(𝑖𝑖+𝑚𝑚𝑇𝑇 )] and 

Λ� = Λ,  𝐅𝐅Λ�∪{𝑖𝑖+𝑚𝑚𝑇𝑇 } = [
𝐅𝐅11|𝐟𝐟12
𝐟𝐟12

T |f22
] : 



 

 

Such notation can also be used to compute 𝐅𝐅Λ�  
from 𝐅𝐅Λ�∪{𝑖𝑖+𝑚𝑚𝑇𝑇 }, which is required in the selection step 
(12) of the Cyclo-SBR, as 

𝐅𝐅Λ� =  𝐅𝐅11  − f22
−1𝐟𝐟12 𝐟𝐟12

T                  (D.2) 

It should be noted that the relations D.1 and D.2 
will be repeated iteratively for each value of  𝑚𝑚 =
[0, 1, . . . , (𝐾𝐾 − 1] with of course an updated set Λ� = Λ� ∪
{𝑖𝑖 +𝑚𝑚𝑇𝑇} when addition or Λ� = Λ�\{𝑖𝑖 +𝑚𝑚𝑇𝑇} when 
removal.  

Using these relations, the computation of the 
matrix  𝐅𝐅Λ�∪{𝑖𝑖+𝑚𝑚𝑇𝑇 }, with an increasing (or eventually 

decreasing for the Cyclo-SBR) set of indices Λ�  can be 
performed at a relative low cost.  

Furthermore, the selection steps of the Cyclo-
OLS and Cyclo-SBR do not require the computation of 
the solution but only the computation of the criterion 𝒥𝒥Λ 
of (12) (note that eq. (11) is identical to eq. (12) for 
parameter 𝛽𝛽 = 0) which can be updated using the 
previous block matrix notation, in case of addition or 
removal of the K atoms: 

 

𝒥𝒥Λ�∪{𝑖𝑖 ,…,𝑖𝑖+(𝐾𝐾−1)𝑇𝑇} − 𝒥𝒥Λ = � {−f22 (𝒚𝒚T𝐇𝐇Λ�𝐅𝐅Λ�𝐇𝐇Λ�
T𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇 − 𝒚𝒚T𝐡𝐡𝑖𝑖+𝑚𝑚𝑇𝑇 )2 + 𝛽𝛽}

𝐾𝐾−1

𝑚𝑚=0

  with Λ� = Λ� ∪ {𝑖𝑖 +𝑚𝑚𝑇𝑇}    (D. 3)  

𝒥𝒥Λ�\{𝑖𝑖 ,…,𝑖𝑖+(𝐾𝐾−1)𝑇𝑇} − 𝒥𝒥Λ = � {−f22
−1([𝐟𝐟12

T |f22]𝐇𝐇Λ�
T𝒚𝒚)2 − 𝛽𝛽}

𝐾𝐾−1

𝑚𝑚=0

     with  Λ� = Λ�\{𝑖𝑖 +  𝑚𝑚𝑇𝑇}            (D. 4)

where f22 , 𝐟𝐟12 ,𝐅𝐅Λ� , and 𝐇𝐇Λ�   are updated with 
the relations D.1 and D.2 for each value of m. 
 Appendix E. Computational cost 

Since the computational cost of the studied 
cyclo-algorithms is roughly the one of their 
corresponding greedy algorithm divided by K, therefore, 
the computational cost is given for MP, OMP, OLS and 
SBR, which can be respectively retrieved from Cyclo-
MP, Cyclo-OMP, Cyclo-OLS and Cyclo-SBR taking into 
account a single period for m=0. As the cost of an 
addition operation is generally negligible compared to a 
multiplication operation, only multiplication operation is 
considered in the computation cost. The multiplications 

required for each algorithm at a given iteration k are 
summarized in table E.1. For the SBR, we suppose only 
addition of atoms (atom removal does not happen), this 
corresponds to the worst case. It should be noted that 
this computational cost is founded on the efficient 
implementation (proposed in [33]) which is based on 
the convolution operator and not on vector and matrix 
products as is usually done for sparse approximations. 
In other respects, many applications in signal and image 
processing where the computations are expensive from 
the execution time and from memory storage point of 
view use parallel approach as [36]. 

Table E.1 :  multiplication required for each algorithm at a given iteration k 

 Algorithms 
 Multi. MP OMP OLS SBR 

Full convolution 
 1 (7) 1 (7) 0 0 

Sparse convolution 
 1 (9) k (11) 0 0 

Vector-Matrix product 
 

0 1 (10) 0 0 

Update F (addition)  0 1 (10) 1 (11) 1/0 (12) 

Addition test  +  0 0 
  

Removal test 
 

0 0 0 
 

Update F (removal)  0 0 0 0/1 (D.2) 

A rough estimate of the maximum number of multiplications of the algorithms for a number M of iterations is 
given in table E.2 

Table E.2 :
  
Maximum number of multiplications of the various algorithms for M

 
of iterations

 

MP
 

  +  (M
 
+ 1)

 

OMP
 

  +  (
 

M  + )   +  (
 

M  + )
 

OLS
 

  +  (
 

  + )   + M + )
 
+ 

 
+ 

 
+4M  + )

 

SBR
 

  +  (
 

  + )   + M + )
 
+ 

 
+ 

 
+4M  + 

 
)
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The MP has a low computation cost, but may 
select several times the same atom as the amplitudes 
are not computed from a joint orthogonal projection. 
Compared to the MP, the OMP just adds, for each 
iteration, an orthogonal projection step to compute the 
amplitude of the selected atoms and k-sparse 
convolution for the residual update, so the additional 
computation cost is relatively low. The selection step of 
the OLS is based on the orthogonal projection used in 
the update step of the OMP, but the computation cost is 
dramatically reduced thanks to the use of the block 
matrix inversion and eq. (D.3). Finally, the SBR has a 
computation cost very similar to the OLS as the 
removing tests can be computed at a low cost using eq. 
(D.4). 
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Figure 5 :  The effect of varying SNR from 1dB to 30dB over MC runs on the histogram (K=8) 
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Figure 6 :  The effect of varying SNR from 1dB to 30dB over MC runs on the histogram (K=2) 
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Figure

 

7 :

  

The effect of varying SNR from 1dB to 30dB over

 

MC runs on the histogram (K=4)
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Figure 8 :  The effect of varying SNR from 1dB to 30dB over MC runs on the histogram (K=16)
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