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A Novel Approach for Elastic Query Processing 
in the Cloud 

CH. Pavaniα, B.Naga Saiσ & Dr. K. V. Daya Sagar ρ

Abstract-  Cloud computing is a promising model of service-
oriented computing. One major advantage of cloud computing 
is its elasticity, i.e., the system's capability to supply and take 
away resources dynamically at runtime. For that, it's essential 
to design and implement a systematic and effective technique 
that takes complete advantage of the system's potential 
flexibility. This paper  presents a non-invasive approach that 
monitors the performance of relational database management 
systems in  cloud infrastructure, and dynamically makes 
choices to maximise the effectiveness of the provider's 
environment whereas still satisfying specified service level 
agreements" (SLAs). 
Keywords: elasticity, query processing, non-intrusive, 
service level agreement. 

I. Introduction 

loud Computing  is a platform consists of a 
commonly  very large number of computers 
responsible for data computing and storage. 

Such large   computing re-sources are combined to 
serve multiple consumers using a multi holder model, 
with different physical and virtual resources dynamically 
assigned and reassigned according to the users' 
demands. Consider a cloud computing environment as 
a set of virtual machines (VMs) which may be assigned 
to different physical machines (PMs), different VMs may 
return different performances due  to many factors, e.g., 
concurrency with other processes on the PMs.   

Cloud computing elasticity enables the system 
to provide and remove resources according to the 
application's needs in real-time. providing suitable cloud 
elasticity on demand is not a frivolous matter. A cloud 
computing environment is apt  to several factors that 
may influence its performance, including different types 
of virtual systems provided by the service, different time 
zones, and demand variation .To providing cloud 
computing elasticity requires monitoring closely  the 
system's demand for resources in order to decide when 
to add or to remove resources. 
When users purchase figure out time from a cloud 
provider, commonly both sides, the user and provider 
agree on the quality of service, via a service level 
agreement (SLA), which may be composed of the 
following parameters:  
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bommareddysainani@gmail.com 
Author ρ: Associate Professor,  Department of Computer Science & 
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Revenue: monetary value paid by the user to 
the provider for the computing time. 

Operating Costs: monetary value paid by the 
user to the provider for the computing resources 
allocated for processing the user's workload. 

Service Level Objective (SLO): It is associated 
with a user-defined metric which must be satisfied by 
the provider. e.g., response time, throughput, 
availability. 
Penalty: monetary value paid by the provider to the user 
for not satisfying the SLO. 

The advantage of cloud providers to 
accordingly  monitor and scale their resources, e.g., 
VMs, in real-time as a function of the current workload, 
in order to lower their computing cost while satisfying all 
current SLAs and minimizing penalties as much as 
possible. This is the very problem we address. 

In this paper we aim at continuously monitoring 
a DBMS's performance and automatically minimizing the 
VMs used for query processing while minimizing 
potential SLO violations. We use query processing time 
as the contracted SLO metric. 

Our resource provisioning approach does not 
assume that the number of VMs is fixed, or that VMs 
yield the same performance, nor we assume we can 
conclude the workload beforehand. 

Using our elastic solution to ensure those, the 
immigrate  process of applications to the cloud can be 
made directly. Our approach uses the relational data 
model and works with full reproduction. Thus, each set 
up  VM has a DBMS with a complete copy of the 
database. Our solution does not partition the data, but 
the query. 

We apply virtual partitioning to divide the query 
into sub queries to be processed on allocated virtual 
machines. 

In that paper only select-range queries based 
on key attributes were investigated. This paper extends 
by showing how to address select-range queries on 
non-key attributes as well as aggregation queries. 
Main contributions are : 
• a non-intrusive, automatic and adaptive 

performance monitoring technique for DBMSs on 
the currently allocated VMs 

• a pragmatic approach which dynamically aims at 
providing the smallest set of VMs capable of 
satisfying each query's SLO and thus the user's 
SLA in general. 

C 
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One of the main advantages of the approach 
that we propose is that it may be easily applied to cases 
where the user already has its applications using 
relational database and ambition to deploy it in a cloud 
infrastructure, without the need of re architect ring the 
applications which are especially based on RDBMS 
technology.

II. Related Work

An adaptive approach for provisioning VMs for 
the use of a distributed stream processing systems 
(DSPS)in the cloud. The proposed provisioning 
algorithm uses a black box approach, i.e., it is 
independent of the specifics of the queries running in 
the DSPS. It scales the number of VMs used entirely 
based on measurements of input stream rates. It 
detects an overload condition when a decrease in the 
processing rate of input data occurs because of 
discarded data tuples due to load dropping. The 
algorithm is invoked periodically and calculates the new 
number of VMs that are needed to support the current 
workload demand however, the paper does not specify 
how often this algorithm is invoked. We do not focus 
only on resource provision, and our contribution is also 
an adaptive monitoring, and re provisioning if 
necessary, during querying processing.[1]

The authors of proposed Kingfisher, a cost-
aware system that tries to minimize the customer-centric 
cost, the cost of renting servers while meeting the 
application's SLA. It solves an integer linear program to 
account for both the infrastructure and transition cost 
deriving appropriate elasticity decisions under each 
workload change. Kingfisher uses a proactive approach 
to know when to provision as well as an ideal workload 
predictor that uses statistics gathered by the monitoring 
engine to derive estimates of future workload. Our 
approach differs from this approach in many ways: we 
use a cloud-provider-centric approach, and we do not 
assume a workload predictor, rather than the system's 
performance is continuously monitored.[2]

The problem of provisioning resources in a 
public cloud to execute data analytic workloads is 
exited. The algorithm presented an lazes the space of 
possible structure   for the input workload based on 
conclude costs of the structure. The algorithm tries to 
find a structure where resource costs are minimized 
while the SLA associated with the workload is met. The 
cost model presented is similar to ours. However, 
considering that the performance of a particular 
structure  can therefore degrade and SLAs are violated, 
it might be necessary to change the resources allocated 
to the application. The paper does not present a 
dynamic provisioning as we have done in our work.[3]

This paper presents an adaptive method to 
optimize the response time of range queries in a 
distributed database. The algorithm partitions and 

adaptively identifies the best level of parallelism for each
query, since choosing the maximum level of parallelism 
is not necessarily the best strategy to optimize a query's 
performance. If a query is sent to too many storage 
hosts, it can saturate a single client by returning results 
faster than the client can consume them. That work, 
similar to ours, proposes an adaptive provisioning 
algorithm for range queries and considers possible 
variation in VM performances, but it differs from our work 
as it does not have an SLA to observe and does not 
specify how often the algorithm is invoked.[4]

III. Proposed Work

Problem Formulation
Let TRQ denotes the estimated total time 

needed to process a query Q and let SLOQ be the 
agreed time to process a given query Q as per the SLA.
If p is the cost, per unit of time, of failing to satisfy 
SLOQ, we can define the provider's penalty (cost) as:

ppQ = max{(TRQ - SLOQ) * p, 0}   (1)

Let cvm be the cost, per unit of time, for using a 
VM which contains a full model of a relational database 
and let nQ(t) be the number of VMs allocated to execute 
Q at time t, where time is discretized in billable units. 
Then, we can define the computing cost for running Q 
as:

ccQ=∑ (𝑛𝑛𝑛𝑛(𝑡𝑡) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐)𝑇𝑇𝑇𝑇𝑛𝑛
𝑡𝑡=1

allocating as many VMs as possible will output an 
optimally minimum provider's penalty cost, but will 
increase its computing cost. Like wise , allocating a 
single VM will minimize the provider's computing cost, 
but will very likely output  a potentially large penalty cost.
given a query Q, we need to obtain, for each  time point 
t, the number of VMs (nQ (t)) minimizing Q's cost

(ppQ + ccQ)

This problem definition captures the elasticity of 
the cloud environment, namely that in different points of 
time a different number of VMs may be sufficient to 
process a query with respect to its SLO.

a) Query Definition
A preliminary version of this paper appears in 

that paper only select-range queries based on Key 
attributes were investigated. A select-range query is 
defined as follows:

SELECT * FROM table T1 WHERE T1.attr >= Vs and 
T1.attr <Vf

where T1.attr denotes an attribute of table T1 
and Vs and Vf are integer values.

For instance scan queries:
SELECT *FROM table T

A Novel Approach for Elastic Query Processing in the Cloud
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can be commonplace rewritten as the following two 
queries:



 

 

 

 

 

 

 
 

 
 

 

  

  

  

  

 

 

 

   
 

  
  

   

 

  

  

 

 

  

 

 

 
  

 

 

 

 
 

 

 
 

  

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

 

SELECT MIN (T1.pk) into Vs, MAX (T1.pk) into Vf FROM 
table T1;

SELECT MIN (T1.pk) into Vs, MAX (T1.pk) into Vf FROM 
table T1;

where T1.pk denotes the primary key attribute of T1.
We can  also handle aggregation queries and 

aggregation over range:
SELECT OPER (T1.attr)
FROM table T1;

where OPER is an aggregate operator (SUM, 
for example) and T1.attr denotes an attribute of a table 
T.

b) Motivating Example

i. Select-Range Query
Assume that the following single select-range 

queryQ with SLOQ is received by the cloud provider.

SELECT * // <--- Q

FROM table T1 WHERE T.pk >= 0 and T.pk < 4000;

where T1.pk is the primary key of table T1.
Assuming that T's primary key has no gaps, 

Qs=4000 tuples. Further let us assume that SLOQ is 100 
seconds and that our initial provisioning is one single 
machine vm0 such that RR0 = 30 and consequently NT0

Q

= 3000. Clearly, using only vm0 will output a penalty to 
be paid by the provider, namely the cost of reading all 
the 4000 tuples, (TRQ - SLOQ) * p = (150-100)*p = 
50*p. It is wise then to bring another VM (vm1) up, to
help. Let us assume that RR1 = 10 and NT1

Q = 2000.
At this point it may be seemed that those two 

VMs are enough to process Q and satisfy its SLO by 
rewriting Q into the following two (sub)queries, Q1 and 
Q2, running the first on vm0 and the second on vm1, 
respectively. Note that we use virtual partitioning (i.e. 
partitioning the range over the primary key) to divide Q 
into Q1 and Q2.

SELECT * // <--- Q1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 3000;

SELECT * // <--- Q2

FROM table T1

WHERE T1.pk >= 3000 and T1.pk < 4000;
Our proposal to deal with  this issue is to more  

partition queries so that the executing VMs' reading rate 
can be monitored often enough in such way that other 
VMs can be added as needed in order to enforce SLOQ.

If monitoring is too constant  that means the
original queries would have to be partitioned in too 
many sub-queries, then the overhead added may hurt 
more than help. If hardly done it may be too late to make 
any corrections and to avoid potential penalties.

To address the partitioning process we build on 
historical data, i.e., how long it took to process a select-
range query with a given selectivity using a certain 
number of partitions. We assume the existence of a 
table H for each VM where each entry has a 4-tuple: 
(Partitioning attribute, query's selectivity, number of 
partitions, average processing time). 

Using H we can find the maximum number of 
partitions and we can divide a query on, thus allowing 
an as-frequent-as-possible monitoring, while still 
satisfying SLOQ.

For the sake of argumentation, let us assume 
that H has enough information so that the following 
entries can be found when the query's selectivity is set 
to 4000and the partitioning attribute is pk as follows:

In this case, the larger number of partitions we 
can use is 4, maximizing the chance to monitor Q's 
performance while still satisfying SLOQ.
Thus, we divide query Q1 into four queries:
SELECT * // <--- Q1, 1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 500;

SELECT * // <--- Q1, 2

FROM table T1

WHERE T1.pk >= 500 and T1.pk < 1000;

SELECT * // <--- Q1, 3

FROM table T1

WHERE T1.pk >= 1000 and T1.pk < 1500;

SELECT * // <--- Q1, 4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT * // <--- Q1, 5

FROM table T1

WHERE T1.pk >= 2000 and T1.pk < 2500;

SELECT * // <--- Q1, 6

FROM table T1

WHERE T1.pk >= 2500 and T1.pk <3000;
Even though it is not discussed here for the 

sake of brevity, a similar reasoning would be applied 
with respect to Q2 to be processed at vm1. 

This partitioning methodology using primary key 
as a partitioning attribute is the same for both select-
range queries and aggregation queries which are 
presented in the next subsection. Let us assume that 
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vm1's performance is stable though and it is able to 
finish its workload as planned.

When Q1; 1 finishes we have the first 
opportunity to monitor, in a non-invasive manner, the 
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VM's performance. Let us assume that it spent actually 
40 seconds to finish. This leads us to reset the value of 
that VM's reading rate to RR0 = 20  (500 tuples in 50 
seconds), which leads to an expected completion time, 
for all five  remaining sub-queries, of 200 seconds. This 
brings the expected completion time above SLOQ, and 
triggers a revision of the initial provisioning, so that 
SLAQ can still be satisfied. Note that before reviewing 
the initial provisioning, the three remaining partitions 
(Q1, 2, Q1, 3 and Q1, 4,Q1,5and Q1,6) are gathered in 
a single query.

Our elastic system would be able to process Q
as follows: vm0 would be used from time 0 to110  in 
order to retrieve tuples satisfying the primary key range 
[0, 2000], vm1 would also be used from time 0 to 100 in 
order to retrieve tuples satisfying the range [3000, 4000], 
and vm2 would be used from time 50 to70 to retrieve 
tuples in the range [2000, 3000]. The number of VMs 
used as a function of time to execute Q would require 
two VMs between time [0, 40], three VMs between time 
[40, 60] and again two VMs between time [60, 90] as we 
could see in Fig.1. On the 110thsecond, the VMs were 
deallocated.

Figure 1: Variation in the number of nodes allocated by our approach.

c) Aggregation query
Assume that the following single aggregation 

query Q, with SLOQ equal to 100 seconds, is received 
by the cloud provider.

SELECT OPER(T.attr) // <--- Q

FROM table T1;

The difference between this example and the 
previous one is how to partition an aggregation query. 
For partitioning Q, we added a range over the primary 
key of T1 which is used as the partitioning attribute. The 
range value in this case is between the maximum and 
minimum value for the primary key. In order to simplify, 
let the maximum value be 2999 and the minimum be 
zero.
SELECT OPER(T1.attr) // <--- Q
FROM table T
WHERE T1.pk >= 0 and T1.pk < 4000;

We assume that the query's selectivity in this 
case is the range' selectivity over T.pk
(Qs = 4000 tuples).

If the aggregation operator is a distributive 
function as COUNT, for example, the result of Q is the 
summation of the results collected for each partition. 
However, if the aggregation operator is an algebraic 
function as AVG, the original query result may not be 
easily obtained through the partitions. We have to 

transform to distributive functions; in the case of AVG, 
we could transform on SUM and COUNT, so that the 
original query result can be easily obtained through the 
summation of partitions' results.

If we consider the same scenario presented in 
the previous example, vm0 has a reading rate RR0 = 30 
and consequently NTQ0 = 3000. Using only vm0 will 
yield a ((TRQ-SLOQ)*p = (150-100)*p = 50*p) to be 
paid by the provider. It is wise then to bring another VM 
(vm1) up, to help. Let us assume that RR1 = 10 and 
NTQ1 = 2000. 

We rewrite Q into the two following
(sub)queries, Q1 and Q2, running the first on vm0 and
the second on vm1, respectively.
// Q1:

SELECT OPER(T1.attr)

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 3000;

// Q2:

SELECT OPER(T1.attr)

FROM table T1

WHERE T1.pk >= 3000 and T1.pk < 4000;
We could rely on the same historical data H of

the previous example since we use the same 
partitioning attribute. The larger number of partitions in 
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FROM table T1

  

  

IV. Our Adaptive Approach

a) Prototype Architecture

Figure 2 : Architecture
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WHERE T1.pk >= 1000 and T1.pk < 1500;

SELECT OPER(T1.attr) // <--- Q1,4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT OPER(T1.attr) // <--- Q1,4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT OPER(T1.attr) // <--- Q1,5

FROM table T1

WHERE T1.pk >= 2000 and T1.pk < 2500;

SELECT OPER(T1.attr) // <--- Q1,6
FROM table T1

WHERE T1.pk >= 2500 and T1.pk < 3000;
A similar thinking would be applied with respect 

to Q2 to be run at vm1. As in the previous example, we
assume that vm1's performance is stable yet and it is 
able to finish its workload as planned.

After Q1.1finishes we have the first opportunity to
monitor the VM's performance in a non-invasive manner. 
For the sake of brevity, we could suppose the same 
what happened in the previous example where Q1,1 
spent 40 seconds to finish, therefore the VM's reading 
rate decreases to RR0 = 20 and leads to an expected 
completion time, for all three remaining partitions (Q1,2,
Q1,3 and Q1,4,Q1,5and Q1,6), of 200 seconds.

Let us allocate a new VM (vm2) with RR2 = 40 
to satisfy the SLOQ and to o²oad some query 
processing. Then all remaining 1000 tuples might be 
read by vm2 in 20 seconds, in the best case, which 
does not lead to a violation of SLOQ (recall that at this 
point 40 seconds have already been spent on Q1;1). We 
have the same elastic behaviour (two VMs between time 
[0,40], three VMs between time [40, 60] and again two 
VMs between time [60, 90]) presented in Fig.1.

The fact that a single basic approach can be 
easily adapted/ applied to different types of queries is a 
significant advantage. For instance, any optimization
that can be done to the basic underlying (select-range) 
query can benefit other types of queries.

SELECT OPER(T1.attr) // <--- Q1,1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 500;

SELECT OPER(T1.attr) // <--- Q1,2

FROM table T1

WHERE T1.pk >= 500 and T1.pk < 1000;

SELECT OPER(T1.attr) // <--- Q1,3

this case is4, because it maximizes the chance to 
monitor Q's performance while still satisfying SLOQ. 
Thus, we divide query Q1 into four queries:



 

 

 
 

 

 
 

 

 

  

  
  

 

 
 

    
 

  

 
   
 

 
 

 
 

   

  

  

  

 

  

  
   

 

  
   

   

   
  
  
  
   
    
  
 
  

 
   
    

  
  
   

  
 

 
  

 

  
  

 
  

 

 

  

  

 
 

V. Implementation

  

  
  

  

ii. T start := timer( );
iii. TP := execute( );
iv. Tend:=timer( );   
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• The capacity planner initially provisions a number 
of VMs to process a query Q within the agreed 
SLOQ, minimizing the computational cost and 
penalty. It also has to make some decisions when 
the monitoring engine warns that the SLOQ is
about to be violated. 

• The orchestration engine communicates with the 
capacity planner to obtain a provisioning, and with 
the partition engine to obtain the partitions and 
afterwards gives them to the monitoring engine.

a) Partition Query Algorithm
Step1: Start/begin
Step2: Read the input elements H, Q, SLOQ, V= {vm0, 
vm1,… ,vmm}.
Step3: For each vmi that belongs to V do the following 
four steps

i. Calculate Qi which is sub query of Q with NTi
Q

selectivity.
ii. Calculate ni

Q which is the query in H, the 
maximum number of partitions for Qi  satisfying 
SLOQ .

iii. Calculate Pi  i.e. divide Qi in ni
Q partitions.

iv. Call monitoring algorithm by passing Pi and SLOQ 
  

as input.
Step4: Stop/end 

Partition Query algorithm describes how 
partitions are created from a query Q taking into 
account SLOQ, performance of all vmi that belongs to V 
and data table H. 
The working of this algorithm is as follows:

For each vmi allocated to process Q, the 
partition engine rewrites Q into a sub query Qi which has 
selectivity equal to the number of tuples that vmi can
read without violating SLOQ, i.e., NTi

Q and then Qi is 
partitioned using data table H by constructing the 
largest set of partitions Pi to be processed by vmi, such 
that the average Pi processing time does not exceed 
SLOQ.

How to obtain the value NTi
Q for each vmi is 

discussed in the next section. After built Partitions, 
Algorithm 2 i.e. monitoring algorithm is applied inside 
each vmi.

b) VM’s Monitoring Algorithm
Step 1: Start/begin
Step 2: Read the input elements Pi , SLOQ which are 
obtained from partitioning algorithm.

Step 3: Ps := selectivity (Pi);
Step 4: until Pi ≠ 0 do the following steps

i. Q := Pi .remove( );

v. Tq := Tend- T start ;
vi. Tspent := Tspent+ Tq;
vii. Ps := Ps - |TP|;
viii. Testimated:= Ps /RRi ;
ix. TRQ := Tspent+ Testimated + TMi;
x. Check 

if TRQ - SLOQ > 0 then do the following two steps
a. Tremain := SLOQ – (Tspent+ TMi);
b. return make Decision (Vmi, Pi, Tremain);

else if TRQ - SLOQ < 0 then do the following two steps
a. STi :=SLOQ – TRQ ;
b. HasSlackTime(STi );

xi. remove VM(vmi);
Step 5: Stop/end.

Monitoring algorithm, monitors query partition 
processing, is carried on at each virtual machine 
allocated to this process.
The working of this algorithm is as follows:

At each vmi, monitoring algorithm starts 
monitoring the VMs' reading rate and estimates how 
long it takes to finish all partitions in Pi. For each 
partition Pi, monitoring algorithm calculates the time 
spent to process the partition. Therefore, it is possible to 
know how many tuples of Pi remain to be retrieved, and 
also the estimated time to do that. This estimated time 
is based on the VM's reading rate, i.e., RRi. If the 
estimated total time needed to process Q is greater 
than SLOQ , this indicates that SLOQ may be violated. 
Note that we also consider the time TMi spent to monitor 
vmi’s performance. Hence, continuing to process Pi only 
with vmi will yield a penalty. In order to use the 
remaining time to process the remaining partitions in Pi 
without violating SLOQ, we have to make some decision 
.At this point Pi should be recomputed for vmi, using 
make decision algorithm.

Monitoring algorithm should also work in the 
situation when the SLOQ could be satisfied faster than 
expected. In such case, we may use the slack time for 
processing other incoming query partitions or to reduce 
the number of VMs allocated. STi represents the slack 
time value of vmi that can be further allocated without 
violating SLOQ. The VMs with slack time are used by 
provisioning algorithms, for reusing overloaded machine 
resources. The selectivity of each partition is calculated 
in accordance to the range selectivity of partitioning 

• The partition engine uses table H and is 
responsible for partitioning the query aiming at 
respecting the query's SLO.

• The monitoring engine is executed within each VM
vmi allocated to process a query Q and aims at 
making sure each VM keeps within the expected 
SLO. VMs can request" and offer" help. Both the 
partition engine and monitoring engine form the 
core of our approach. 



 

 

  
  

  
  

    
  

  
 

  

   
   
     
 

 
 

  

  
 

 

  

 

 
 

 

  
  

 
 

 
  

  

 
 

  

 

 

  

  
 

 
  

  
  

 
 

 
   
  

     
     

     
   

  
   
    
    
  

 

  

 

 

Step 4: Qs:= Selectivity(Q);
Step 5: Until Qs >0 ^ S≠ 0  do the following steps

i. (vmi ,STi) :=S.remove( );

    
  

  

  

  
   

  

  

  

  

  

Recall that in Algorithm 2 we have to make
some decision to continue query processing while 
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ii. Check 
a. if (STi> SLOQ ) then NTi

Q :=SLOQ * RRi ;
b. else  NTiQ :=STi * RRi ;

iii. Qs := Qs - NTi
Q;

iv. V := V U {vmi };
Step 6: Until Qs >0 do the following steps

i. Vmi :=new( );
ii. NTi

Q :=SLOQ * RRi;
iii. Qs := Qs - NTi

Q;
iv. V := V U {vmi };

Step 7: Call Partioning Query algorithm by passing the 
variables H, Q, SLOQ, V as input.

Step 8: Stop/end.
This algorithm implements the initial 

provisioning approach. The purpose of this algorithm is 
to compute the smallest set V of virtual machines (V = 
{vm0, ……,vmn}) that should be initially dedicated to 
processing Q while satisfying SLOQ. For each vmi 

allocated it is required to know the amount of Q's tuples 
that vmi can process without violating SLOQ i.e., NTi

Q. 
NTi

Q is computed agreeing to the vmi's reading rate 
capacity (RRi) within SLOQ. It computes the Q's 
selectivity and computes the adequate amount of tuples 
(NTi

Q ) that should be provided to each vmi that belongs 
to V .We can get the query's selectivity by using the 
query plan statistics presented by the  using the query 
plan statistics presented by the Database Management 
Systems.

Here we take the advantage of VM's slack time. 
This algorithm finds in S the largest set of vmi whose STi

can be devoted to processing Q. The choice of the 
largest set is to allow the provider to serve more clients 
using less computing resources (VMs) and meeting the 
SLA. The choice is made using a greedy method, 
following the order of S. Let S be an ordered set of pairs 
(vmi, STi), which contains slack time STi for each vmi, 
such that there is only one element for each vmi and STi

is greater than 0 for all set elements. The set S is 
ordered by the descendent order of STi value.

This algorithm calculates Q's selectivity. If S =0, 
the algorithm removes the first vmi from S and 
computes the number of tuples vmi can retrieve. If STi> 
SLOQ, then NTi

Q is calculated based on SLOQ and RRi. 
Otherwise, NTQi is computed based on STi and RRi.

The second loop in this Algorithm is 
responsible for distributing remaining tuples in Q to new 
VMs. When instantiating a new virtual machine vmi, the 
algorithm calculates its NTi

Q .  NTi
Q is calculated using 

the VM's reading rate (RRi) and the value of SLOQ. 
Algorithm 3 terminates when there is no tuples in Q to 
be distributed. After that, our strategy partitions Q 
(Algorithm 1 discussed in the previous subsection) is 
called to monitor the performance of each provisioned 
VM during Q execution.

satisfying SLO. We therefore propose an elastic solution 
(described in Algorithm 4), which dynamically provisions 
VMs. At the monitoring stage, Algorithm 4 is called for 
each vmi that has the possibility of violating SLOQ. 
Suppose that vmi has a set of remaining partitions Pi, 
which should be processed within T remain units of time 
without violating the SLOQ. Algorithm 4 recalculates the 
number of VMs to help vmi to finish the processing of Pi 
within T remains, aiming at satisfying SLOQ. First, 
Algorithm 4 recalculates how many tuples vmi may 
retrieve while satisfying SLOQ. After that, Algorithm 4 
provisions a new set of VMs and allocates to each of 
them an amount of tuples to be processed.

d) Decision Making Algorithm

Step 1: Start/begin

Step 2: Read input elements vmi, Pi, Tremain
Step 3: V := 0 ;

Step 4: Q’ := gather Partitions (Pi);
Step 5: Q’s := selectivity(Q);
Step 6:NTiQ := Tremain* RRi

Step 7:Q’s :=Q’s-NTi
Q;

Step 8: V := V U {vmi};
while Q’s >0 ^ S ≠ 0 do the following steps

i. (vmi ,STi) :=S.remove( );
ii. Check 
a. if (STi> SLOQ ) then NTi

Q :=Tremain* RRj ;
b. else  NTi

Q :=STj * RRj ;
iii. Q’s := Q’s – NTj

Q ;
iv. V := V U {vmj };

Step 9: Until Q’s >0 do the following steps
i. Vmj :=new( );
ii. NTj

Q :=Tremain * RRj ;
iii. Q’s := Q’s – NTj

Q ;
iv. V := V U {vmj};

Step 10: Call Partioning Query algorithm by passing the 
variables H, Q, Tremain, V as input.

Step 11: Stop/end.
At the monitoring stage, Algorithm 4 is called 

for each vmi that has the possibility of violating SLOQ. 

c) Initial Dynamic Provisioning Algorithm
Step 1: Start/begin

Step 2: Read input elements Q, SLOQ .
Step 3: V := ø ;

attribute. Recall that in all queries we chose the primary 
key as the partitioning attribute.
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VI. Conclusion

A cloud-based, non-intrusive, automatic and 
adaptive performance monitoring technique for DBMSs 
for select-range queries and aggregation queries, as 
well as an approach that dynamically minimizes the 
number of VMs needed to satisfy the queries' SLO.

VII. Future Scope

Future work will focus on queries that use joins.
Future work is to study the  other parameters that can 
be used beyond the reading rate of each VM, such as 
CPU and effective memory available in each VM.
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instantiating a new machine vmj, the algorithm 
calculates its NTj

Q’ which is using the VM's reading rate 
(RRj) and the value of Trema in. Algorithm 4 terminates 
when there are no more tuples of Q’ to be distributed. 
After that, our partitions Q’ (Algorithm 1 discussed in the 
previous subsection is called) to monitor the 
performance of each provisioned VM during Q’ 
execution, trying to ensure the Q’ execution with in 
Tremain.

From Algorithm 4, the remaining partitions of Pi

are gathered into a new query Q’. Then NTi
Q’ is figured, 

i.e., the amount of Q's tuples that vmi

If there still are tuples to be processed in Q’ 
and S = 0 we have to allocate new VMs. When 

Suppose that vmi has a set of remaining partitions Pi, 
which should be processed within Tremain units of time 
without violating the SLOQ. Algorithm 4 recalculates the 
number of VMs to help vmi to finish the processing of Pi

within Tremain, aiming at satisfying SLOQ. First, 
Algorithm 4 recalculates how many tuples vmi may 
retrieve while satisfying SLOQ. After that, Algorithm 4 
necessities a new set of VMs and allocates to each of 
them an amount of tuples to be processed.

  At the monitoring stage, Algorithm 4 is called 
for each vmi that has the possibility of violating SLOQ. 
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