
© 2014. CH. Pavani, B.Naga Sai & Dr. K. V. Daya Sagar. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 14 Issue 4 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Novel Approach for Elastic Query Processing in the Cloud
 By CH. Pavani, B.Naga Sai & Dr. K. V. Daya Sagar

 K L University, India
Abstract- Cloud computing is a promising model of serviceoriented computing. One major advantage
of cloud computing is its elasticity, i.e., the system's capability to supply and take away resources
dynamically at runtime. For that, it's essential to design and implement a systematic and effective
technique that takes complete advantage of the system's potential flexibility. This paper presents a
non-invasive approach that monitors the performance of relational database management systems in
cloud infrastructure, and dynamically makes choices to maximise the effectiveness of the provider's
environment whereas still satisfying specified service level agreements" (SLAs).

Keywords: elasticity, query processing, non-intrusive, service level agreement.

GJCST-B Classification : C.2.4 D.4.7

ANovelApproachforElasticQueryProcessingintheCloud

Strictly as per the compliance and regulations of:

A Novel Approach for Elastic Query Processing
in the Cloud

CH. Pavaniα, B.Naga Saiσ & Dr. K. V. Daya Sagar ρ

Abstract- Cloud computing is a promising model of service-
oriented computing. One major advantage of cloud computing
is its elasticity, i.e., the system's capability to supply and take
away resources dynamically at runtime. For that, it's essential
to design and implement a systematic and effective technique
that takes complete advantage of the system's potential
flexibility. This paper presents a non-invasive approach that
monitors the performance of relational database management
systems in cloud infrastructure, and dynamically makes
choices to maximise the effectiveness of the provider's
environment whereas still satisfying specified service level
agreements" (SLAs).
Keywords: elasticity, query processing, non-intrusive,
service level agreement.

I. Introduction

loud Computing is a platform consists of a
commonly very large number of computers
responsible for data computing and storage.

Such large computing re-sources are combined to
serve multiple consumers using a multi holder model,
with different physical and virtual resources dynamically
assigned and reassigned according to the users'
demands. Consider a cloud computing environment as
a set of virtual machines (VMs) which may be assigned
to different physical machines (PMs), different VMs may
return different performances due to many factors, e.g.,
concurrency with other processes on the PMs.

Cloud computing elasticity enables the system
to provide and remove resources according to the
application's needs in real-time. providing suitable cloud
elasticity on demand is not a frivolous matter. A cloud
computing environment is apt to several factors that
may influence its performance, including different types
of virtual systems provided by the service, different time
zones, and demand variation .To providing cloud
computing elasticity requires monitoring closely the
system's demand for resources in order to decide when
to add or to remove resources.
When users purchase figure out time from a cloud
provider, commonly both sides, the user and provider
agree on the quality of service, via a service level
agreement (SLA), which may be composed of the
following parameters:

Author α σ: Department of Electronic and Computer Engineering,
B.Tech K L University. e-mail: pavanichirasani@gmail.com,
bommareddysainani@gmail.com
Author ρ: Associate Professor, Department of Computer Science &
Engineering, K L University. e-mail: sagar.tadepalli@gmail.com

Revenue: monetary value paid by the user to
the provider for the computing time.

Operating Costs: monetary value paid by the
user to the provider for the computing resources
allocated for processing the user's workload.

Service Level Objective (SLO): It is associated
with a user-defined metric which must be satisfied by
the provider. e.g., response time, throughput,
availability.
Penalty: monetary value paid by the provider to the user
for not satisfying the SLO.

The advantage of cloud providers to
accordingly monitor and scale their resources, e.g.,
VMs, in real-time as a function of the current workload,
in order to lower their computing cost while satisfying all
current SLAs and minimizing penalties as much as
possible. This is the very problem we address.

In this paper we aim at continuously monitoring
a DBMS's performance and automatically minimizing the
VMs used for query processing while minimizing
potential SLO violations. We use query processing time
as the contracted SLO metric.

Our resource provisioning approach does not
assume that the number of VMs is fixed, or that VMs
yield the same performance, nor we assume we can
conclude the workload beforehand.

Using our elastic solution to ensure those, the
immigrate process of applications to the cloud can be
made directly. Our approach uses the relational data
model and works with full reproduction. Thus, each set
up VM has a DBMS with a complete copy of the
database. Our solution does not partition the data, but
the query.

We apply virtual partitioning to divide the query
into sub queries to be processed on allocated virtual
machines.

In that paper only select-range queries based
on key attributes were investigated. This paper extends
by showing how to address select-range queries on
non-key attributes as well as aggregation queries.
Main contributions are :
• a non-intrusive, automatic and adaptive

performance monitoring technique for DBMSs on
the currently allocated VMs

• a pragmatic approach which dynamically aims at
providing the smallest set of VMs capable of
satisfying each query's SLO and thus the user's
SLA in general.

C

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

B
20

14

One of the main advantages of the approach
that we propose is that it may be easily applied to cases
where the user already has its applications using
relational database and ambition to deploy it in a cloud
infrastructure, without the need of re architect ring the
applications which are especially based on RDBMS
technology.

II. Related Work

An adaptive approach for provisioning VMs for
the use of a distributed stream processing systems
(DSPS)in the cloud. The proposed provisioning
algorithm uses a black box approach, i.e., it is
independent of the specifics of the queries running in
the DSPS. It scales the number of VMs used entirely
based on measurements of input stream rates. It
detects an overload condition when a decrease in the
processing rate of input data occurs because of
discarded data tuples due to load dropping. The
algorithm is invoked periodically and calculates the new
number of VMs that are needed to support the current
workload demand however, the paper does not specify
how often this algorithm is invoked. We do not focus
only on resource provision, and our contribution is also
an adaptive monitoring, and re provisioning if
necessary, during querying processing.[1]

The authors of proposed Kingfisher, a cost-
aware system that tries to minimize the customer-centric
cost, the cost of renting servers while meeting the
application's SLA. It solves an integer linear program to
account for both the infrastructure and transition cost
deriving appropriate elasticity decisions under each
workload change. Kingfisher uses a proactive approach
to know when to provision as well as an ideal workload
predictor that uses statistics gathered by the monitoring
engine to derive estimates of future workload. Our
approach differs from this approach in many ways: we
use a cloud-provider-centric approach, and we do not
assume a workload predictor, rather than the system's
performance is continuously monitored.[2]

The problem of provisioning resources in a
public cloud to execute data analytic workloads is
exited. The algorithm presented an lazes the space of
possible structure for the input workload based on
conclude costs of the structure. The algorithm tries to
find a structure where resource costs are minimized
while the SLA associated with the workload is met. The
cost model presented is similar to ours. However,
considering that the performance of a particular
structure can therefore degrade and SLAs are violated,
it might be necessary to change the resources allocated
to the application. The paper does not present a
dynamic provisioning as we have done in our work.[3]

This paper presents an adaptive method to
optimize the response time of range queries in a
distributed database. The algorithm partitions and

adaptively identifies the best level of parallelism for each
query, since choosing the maximum level of parallelism
is not necessarily the best strategy to optimize a query's
performance. If a query is sent to too many storage
hosts, it can saturate a single client by returning results
faster than the client can consume them. That work,
similar to ours, proposes an adaptive provisioning
algorithm for range queries and considers possible
variation in VM performances, but it differs from our work
as it does not have an SLA to observe and does not
specify how often the algorithm is invoked.[4]

III. Proposed Work

Problem Formulation
Let TRQ denotes the estimated total time

needed to process a query Q and let SLOQ be the
agreed time to process a given query Q as per the SLA.
If p is the cost, per unit of time, of failing to satisfy
SLOQ, we can define the provider's penalty (cost) as:

ppQ = max{(TRQ - SLOQ) * p, 0} (1)

Let cvm be the cost, per unit of time, for using a
VM which contains a full model of a relational database
and let nQ(t) be the number of VMs allocated to execute
Q at time t, where time is discretized in billable units.
Then, we can define the computing cost for running Q
as:

ccQ=∑ (𝑛𝑛𝑛𝑛(𝑡𝑡) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐)𝑇𝑇𝑇𝑇𝑛𝑛
𝑡𝑡=1

allocating as many VMs as possible will output an
optimally minimum provider's penalty cost, but will
increase its computing cost. Like wise , allocating a
single VM will minimize the provider's computing cost,
but will very likely output a potentially large penalty cost.
given a query Q, we need to obtain, for each time point
t, the number of VMs (nQ (t)) minimizing Q's cost

(ppQ + ccQ)

This problem definition captures the elasticity of
the cloud environment, namely that in different points of
time a different number of VMs may be sufficient to
process a query with respect to its SLO.

a) Query Definition
A preliminary version of this paper appears in

that paper only select-range queries based on Key
attributes were investigated. A select-range query is
defined as follows:

SELECT * FROM table T1 WHERE T1.attr >= Vs and
T1.attr <Vf

where T1.attr denotes an attribute of table T1
and Vs and Vf are integer values.

For instance scan queries:
SELECT *FROM table T

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV24

(
DDDD

)
Y
e
a
r

B
20

14

can be commonplace rewritten as the following two
queries:

SELECT MIN (T1.pk) into Vs, MAX (T1.pk) into Vf FROM
table T1;

SELECT MIN (T1.pk) into Vs, MAX (T1.pk) into Vf FROM
table T1;

where T1.pk denotes the primary key attribute of T1.
We can also handle aggregation queries and

aggregation over range:
SELECT OPER (T1.attr)
FROM table T1;

where OPER is an aggregate operator (SUM,
for example) and T1.attr denotes an attribute of a table
T.

b) Motivating Example

i. Select-Range Query
Assume that the following single select-range

queryQ with SLOQ is received by the cloud provider.

SELECT * // <--- Q

FROM table T1 WHERE T.pk >= 0 and T.pk < 4000;

where T1.pk is the primary key of table T1.
Assuming that T's primary key has no gaps,

Qs=4000 tuples. Further let us assume that SLOQ is 100
seconds and that our initial provisioning is one single
machine vm0 such that RR0 = 30 and consequently NT0

Q

= 3000. Clearly, using only vm0 will output a penalty to
be paid by the provider, namely the cost of reading all
the 4000 tuples, (TRQ - SLOQ) * p = (150-100)*p =
50*p. It is wise then to bring another VM (vm1) up, to
help. Let us assume that RR1 = 10 and NT1

Q = 2000.
At this point it may be seemed that those two

VMs are enough to process Q and satisfy its SLO by
rewriting Q into the following two (sub)queries, Q1 and
Q2, running the first on vm0 and the second on vm1,
respectively. Note that we use virtual partitioning (i.e.
partitioning the range over the primary key) to divide Q
into Q1 and Q2.

SELECT * // <--- Q1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 3000;

SELECT * // <--- Q2

FROM table T1

WHERE T1.pk >= 3000 and T1.pk < 4000;
Our proposal to deal with this issue is to more

partition queries so that the executing VMs' reading rate
can be monitored often enough in such way that other
VMs can be added as needed in order to enforce SLOQ.

If monitoring is too constant that means the
original queries would have to be partitioned in too
many sub-queries, then the overhead added may hurt
more than help. If hardly done it may be too late to make
any corrections and to avoid potential penalties.

To address the partitioning process we build on
historical data, i.e., how long it took to process a select-
range query with a given selectivity using a certain
number of partitions. We assume the existence of a
table H for each VM where each entry has a 4-tuple:
(Partitioning attribute, query's selectivity, number of
partitions, average processing time).

Using H we can find the maximum number of
partitions and we can divide a query on, thus allowing
an as-frequent-as-possible monitoring, while still
satisfying SLOQ.

For the sake of argumentation, let us assume
that H has enough information so that the following
entries can be found when the query's selectivity is set
to 4000and the partitioning attribute is pk as follows:

In this case, the larger number of partitions we
can use is 4, maximizing the chance to monitor Q's
performance while still satisfying SLOQ.
Thus, we divide query Q1 into four queries:
SELECT * // <--- Q1, 1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 500;

SELECT * // <--- Q1, 2

FROM table T1

WHERE T1.pk >= 500 and T1.pk < 1000;

SELECT * // <--- Q1, 3

FROM table T1

WHERE T1.pk >= 1000 and T1.pk < 1500;

SELECT * // <--- Q1, 4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT * // <--- Q1, 5

FROM table T1

WHERE T1.pk >= 2000 and T1.pk < 2500;

SELECT * // <--- Q1, 6

FROM table T1

WHERE T1.pk >= 2500 and T1.pk <3000;
Even though it is not discussed here for the

sake of brevity, a similar reasoning would be applied
with respect to Q2 to be processed at vm1.

This partitioning methodology using primary key
as a partitioning attribute is the same for both select-
range queries and aggregation queries which are
presented in the next subsection. Let us assume that

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

25

(
DDDD DDDD

)
Y
e
a
r

B
20

14

vm1's performance is stable though and it is able to
finish its workload as planned.

When Q1; 1 finishes we have the first
opportunity to monitor, in a non-invasive manner, the

A Novel Approach for Elastic Query Processing in the Cloud

VM's performance. Let us assume that it spent actually
40 seconds to finish. This leads us to reset the value of
that VM's reading rate to RR0 = 20 (500 tuples in 50
seconds), which leads to an expected completion time,
for all five remaining sub-queries, of 200 seconds. This
brings the expected completion time above SLOQ, and
triggers a revision of the initial provisioning, so that
SLAQ can still be satisfied. Note that before reviewing
the initial provisioning, the three remaining partitions
(Q1, 2, Q1, 3 and Q1, 4,Q1,5and Q1,6) are gathered in
a single query.

Our elastic system would be able to process Q
as follows: vm0 would be used from time 0 to110 in
order to retrieve tuples satisfying the primary key range
[0, 2000], vm1 would also be used from time 0 to 100 in
order to retrieve tuples satisfying the range [3000, 4000],
and vm2 would be used from time 50 to70 to retrieve
tuples in the range [2000, 3000]. The number of VMs
used as a function of time to execute Q would require
two VMs between time [0, 40], three VMs between time
[40, 60] and again two VMs between time [60, 90] as we
could see in Fig.1. On the 110thsecond, the VMs were
deallocated.

Figure 1: Variation in the number of nodes allocated by our approach.

c) Aggregation query
Assume that the following single aggregation

query Q, with SLOQ equal to 100 seconds, is received
by the cloud provider.

SELECT OPER(T.attr) // <--- Q

FROM table T1;

The difference between this example and the
previous one is how to partition an aggregation query.
For partitioning Q, we added a range over the primary
key of T1 which is used as the partitioning attribute. The
range value in this case is between the maximum and
minimum value for the primary key. In order to simplify,
let the maximum value be 2999 and the minimum be
zero.
SELECT OPER(T1.attr) // <--- Q
FROM table T
WHERE T1.pk >= 0 and T1.pk < 4000;

We assume that the query's selectivity in this
case is the range' selectivity over T.pk
(Qs = 4000 tuples).

If the aggregation operator is a distributive
function as COUNT, for example, the result of Q is the
summation of the results collected for each partition.
However, if the aggregation operator is an algebraic
function as AVG, the original query result may not be
easily obtained through the partitions. We have to

transform to distributive functions; in the case of AVG,
we could transform on SUM and COUNT, so that the
original query result can be easily obtained through the
summation of partitions' results.

If we consider the same scenario presented in
the previous example, vm0 has a reading rate RR0 = 30
and consequently NTQ0 = 3000. Using only vm0 will
yield a ((TRQ-SLOQ)*p = (150-100)*p = 50*p) to be
paid by the provider. It is wise then to bring another VM
(vm1) up, to help. Let us assume that RR1 = 10 and
NTQ1 = 2000.

We rewrite Q into the two following
(sub)queries, Q1 and Q2, running the first on vm0 and
the second on vm1, respectively.
// Q1:

SELECT OPER(T1.attr)

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 3000;

// Q2:

SELECT OPER(T1.attr)

FROM table T1

WHERE T1.pk >= 3000 and T1.pk < 4000;
We could rely on the same historical data H of

the previous example since we use the same
partitioning attribute. The larger number of partitions in

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV26

(
DDDD

)
Y
e
a
r

B
20

14

FROM table T1

IV. Our Adaptive Approach

a) Prototype Architecture

Figure 2 : Architecture

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

27

(
DDDD DDDD

)
Y
e
a
r

B
20

14

WHERE T1.pk >= 1000 and T1.pk < 1500;

SELECT OPER(T1.attr) // <--- Q1,4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT OPER(T1.attr) // <--- Q1,4

FROM table T1

WHERE T1.pk >= 1500 and T1.pk < 2000;

SELECT OPER(T1.attr) // <--- Q1,5

FROM table T1

WHERE T1.pk >= 2000 and T1.pk < 2500;

SELECT OPER(T1.attr) // <--- Q1,6
FROM table T1

WHERE T1.pk >= 2500 and T1.pk < 3000;
A similar thinking would be applied with respect

to Q2 to be run at vm1. As in the previous example, we
assume that vm1's performance is stable yet and it is
able to finish its workload as planned.

After Q1.1finishes we have the first opportunity to
monitor the VM's performance in a non-invasive manner.
For the sake of brevity, we could suppose the same
what happened in the previous example where Q1,1
spent 40 seconds to finish, therefore the VM's reading
rate decreases to RR0 = 20 and leads to an expected
completion time, for all three remaining partitions (Q1,2,
Q1,3 and Q1,4,Q1,5and Q1,6), of 200 seconds.

Let us allocate a new VM (vm2) with RR2 = 40
to satisfy the SLOQ and to o²oad some query
processing. Then all remaining 1000 tuples might be
read by vm2 in 20 seconds, in the best case, which
does not lead to a violation of SLOQ (recall that at this
point 40 seconds have already been spent on Q1;1). We
have the same elastic behaviour (two VMs between time
[0,40], three VMs between time [40, 60] and again two
VMs between time [60, 90]) presented in Fig.1.

The fact that a single basic approach can be
easily adapted/ applied to different types of queries is a
significant advantage. For instance, any optimization
that can be done to the basic underlying (select-range)
query can benefit other types of queries.

SELECT OPER(T1.attr) // <--- Q1,1

FROM table T1

WHERE T1.pk >= 0 and T1.pk < 500;

SELECT OPER(T1.attr) // <--- Q1,2

FROM table T1

WHERE T1.pk >= 500 and T1.pk < 1000;

SELECT OPER(T1.attr) // <--- Q1,3

this case is4, because it maximizes the chance to
monitor Q's performance while still satisfying SLOQ.
Thus, we divide query Q1 into four queries:

V. Implementation

ii. T start := timer();
iii. TP := execute();
iv. Tend:=timer();

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV28

(
DDDD

)
Y
e
a
r

B
20

14

• The capacity planner initially provisions a number
of VMs to process a query Q within the agreed
SLOQ, minimizing the computational cost and
penalty. It also has to make some decisions when
the monitoring engine warns that the SLOQ is
about to be violated.

• The orchestration engine communicates with the
capacity planner to obtain a provisioning, and with
the partition engine to obtain the partitions and
afterwards gives them to the monitoring engine.

a) Partition Query Algorithm
Step1: Start/begin
Step2: Read the input elements H, Q, SLOQ, V= {vm0,
vm1,… ,vmm}.
Step3: For each vmi that belongs to V do the following
four steps

i. Calculate Qi which is sub query of Q with NTi
Q

selectivity.
ii. Calculate ni

Q which is the query in H, the
maximum number of partitions for Qi satisfying
SLOQ .

iii. Calculate Pi i.e. divide Qi in ni
Q partitions.

iv. Call monitoring algorithm by passing Pi and SLOQ

as input.
Step4: Stop/end

Partition Query algorithm describes how
partitions are created from a query Q taking into
account SLOQ, performance of all vmi that belongs to V
and data table H.
The working of this algorithm is as follows:

For each vmi allocated to process Q, the
partition engine rewrites Q into a sub query Qi which has
selectivity equal to the number of tuples that vmi can
read without violating SLOQ, i.e., NTi

Q and then Qi is
partitioned using data table H by constructing the
largest set of partitions Pi to be processed by vmi, such
that the average Pi processing time does not exceed
SLOQ.

How to obtain the value NTi
Q for each vmi is

discussed in the next section. After built Partitions,
Algorithm 2 i.e. monitoring algorithm is applied inside
each vmi.

b) VM’s Monitoring Algorithm
Step 1: Start/begin
Step 2: Read the input elements Pi , SLOQ which are
obtained from partitioning algorithm.

Step 3: Ps := selectivity (Pi);
Step 4: until Pi ≠ 0 do the following steps

i. Q := Pi .remove();

v. Tq := Tend- T start ;
vi. Tspent := Tspent+ Tq;
vii. Ps := Ps - |TP|;
viii. Testimated:= Ps /RRi ;
ix. TRQ := Tspent+ Testimated + TMi;
x. Check

if TRQ - SLOQ > 0 then do the following two steps
a. Tremain := SLOQ – (Tspent+ TMi);
b. return make Decision (Vmi, Pi, Tremain);

else if TRQ - SLOQ < 0 then do the following two steps
a. STi :=SLOQ – TRQ ;
b. HasSlackTime(STi);

xi. remove VM(vmi);
Step 5: Stop/end.

Monitoring algorithm, monitors query partition
processing, is carried on at each virtual machine
allocated to this process.
The working of this algorithm is as follows:

At each vmi, monitoring algorithm starts
monitoring the VMs' reading rate and estimates how
long it takes to finish all partitions in Pi. For each
partition Pi, monitoring algorithm calculates the time
spent to process the partition. Therefore, it is possible to
know how many tuples of Pi remain to be retrieved, and
also the estimated time to do that. This estimated time
is based on the VM's reading rate, i.e., RRi. If the
estimated total time needed to process Q is greater
than SLOQ , this indicates that SLOQ may be violated.
Note that we also consider the time TMi spent to monitor
vmi’s performance. Hence, continuing to process Pi only
with vmi will yield a penalty. In order to use the
remaining time to process the remaining partitions in Pi
without violating SLOQ, we have to make some decision
.At this point Pi should be recomputed for vmi, using
make decision algorithm.

Monitoring algorithm should also work in the
situation when the SLOQ could be satisfied faster than
expected. In such case, we may use the slack time for
processing other incoming query partitions or to reduce
the number of VMs allocated. STi represents the slack
time value of vmi that can be further allocated without
violating SLOQ. The VMs with slack time are used by
provisioning algorithms, for reusing overloaded machine
resources. The selectivity of each partition is calculated
in accordance to the range selectivity of partitioning

• The partition engine uses table H and is
responsible for partitioning the query aiming at
respecting the query's SLO.

• The monitoring engine is executed within each VM
vmi allocated to process a query Q and aims at
making sure each VM keeps within the expected
SLO. VMs can request" and offer" help. Both the
partition engine and monitoring engine form the
core of our approach.

Step 4: Qs:= Selectivity(Q);
Step 5: Until Qs >0 ^ S≠ 0 do the following steps

i. (vmi ,STi) :=S.remove();

Recall that in Algorithm 2 we have to make
some decision to continue query processing while

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

29

(
DDDD DDDD

)
Y
e
a
r

B
20

14

ii. Check
a. if (STi> SLOQ) then NTi

Q :=SLOQ * RRi ;
b. else NTiQ :=STi * RRi ;

iii. Qs := Qs - NTi
Q;

iv. V := V U {vmi };
Step 6: Until Qs >0 do the following steps

i. Vmi :=new();
ii. NTi

Q :=SLOQ * RRi;
iii. Qs := Qs - NTi

Q;
iv. V := V U {vmi };

Step 7: Call Partioning Query algorithm by passing the
variables H, Q, SLOQ, V as input.

Step 8: Stop/end.
This algorithm implements the initial

provisioning approach. The purpose of this algorithm is
to compute the smallest set V of virtual machines (V =
{vm0, ……,vmn}) that should be initially dedicated to
processing Q while satisfying SLOQ. For each vmi

allocated it is required to know the amount of Q's tuples
that vmi can process without violating SLOQ i.e., NTi

Q.
NTi

Q is computed agreeing to the vmi's reading rate
capacity (RRi) within SLOQ. It computes the Q's
selectivity and computes the adequate amount of tuples
(NTi

Q) that should be provided to each vmi that belongs
to V .We can get the query's selectivity by using the
query plan statistics presented by the using the query
plan statistics presented by the Database Management
Systems.

Here we take the advantage of VM's slack time.
This algorithm finds in S the largest set of vmi whose STi

can be devoted to processing Q. The choice of the
largest set is to allow the provider to serve more clients
using less computing resources (VMs) and meeting the
SLA. The choice is made using a greedy method,
following the order of S. Let S be an ordered set of pairs
(vmi, STi), which contains slack time STi for each vmi,
such that there is only one element for each vmi and STi

is greater than 0 for all set elements. The set S is
ordered by the descendent order of STi value.

This algorithm calculates Q's selectivity. If S =0,
the algorithm removes the first vmi from S and
computes the number of tuples vmi can retrieve. If STi>
SLOQ, then NTi

Q is calculated based on SLOQ and RRi.
Otherwise, NTQi is computed based on STi and RRi.

The second loop in this Algorithm is
responsible for distributing remaining tuples in Q to new
VMs. When instantiating a new virtual machine vmi, the
algorithm calculates its NTi

Q . NTi
Q is calculated using

the VM's reading rate (RRi) and the value of SLOQ.
Algorithm 3 terminates when there is no tuples in Q to
be distributed. After that, our strategy partitions Q
(Algorithm 1 discussed in the previous subsection) is
called to monitor the performance of each provisioned
VM during Q execution.

satisfying SLO. We therefore propose an elastic solution
(described in Algorithm 4), which dynamically provisions
VMs. At the monitoring stage, Algorithm 4 is called for
each vmi that has the possibility of violating SLOQ.
Suppose that vmi has a set of remaining partitions Pi,
which should be processed within T remain units of time
without violating the SLOQ. Algorithm 4 recalculates the
number of VMs to help vmi to finish the processing of Pi
within T remains, aiming at satisfying SLOQ. First,
Algorithm 4 recalculates how many tuples vmi may
retrieve while satisfying SLOQ. After that, Algorithm 4
provisions a new set of VMs and allocates to each of
them an amount of tuples to be processed.

d) Decision Making Algorithm

Step 1: Start/begin

Step 2: Read input elements vmi, Pi, Tremain
Step 3: V := 0 ;

Step 4: Q’ := gather Partitions (Pi);
Step 5: Q’s := selectivity(Q);
Step 6:NTiQ := Tremain* RRi

Step 7:Q’s :=Q’s-NTi
Q;

Step 8: V := V U {vmi};
while Q’s >0 ^ S ≠ 0 do the following steps

i. (vmi ,STi) :=S.remove();
ii. Check
a. if (STi> SLOQ) then NTi

Q :=Tremain* RRj ;
b. else NTi

Q :=STj * RRj ;
iii. Q’s := Q’s – NTj

Q ;
iv. V := V U {vmj };

Step 9: Until Q’s >0 do the following steps
i. Vmj :=new();
ii. NTj

Q :=Tremain * RRj ;
iii. Q’s := Q’s – NTj

Q ;
iv. V := V U {vmj};

Step 10: Call Partioning Query algorithm by passing the
variables H, Q, Tremain, V as input.

Step 11: Stop/end.
At the monitoring stage, Algorithm 4 is called

for each vmi that has the possibility of violating SLOQ.

c) Initial Dynamic Provisioning Algorithm
Step 1: Start/begin

Step 2: Read input elements Q, SLOQ .
Step 3: V := ø ;

attribute. Recall that in all queries we chose the primary
key as the partitioning attribute.

A Novel Approach for Elastic Query Processing in the Cloud

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV30

(
DDDD)

Y
e
a
r

B
20

14

VI. Conclusion

A cloud-based, non-intrusive, automatic and
adaptive performance monitoring technique for DBMSs
for select-range queries and aggregation queries, as
well as an approach that dynamically minimizes the
number of VMs needed to satisfy the queries' SLO.

VII. Future Scope

Future work will focus on queries that use joins.
Future work is to study the other parameters that can
be used beyond the reading rate of each VM, such as
CPU and effective memory available in each VM.

References Références Referencias

1. Coelho da Silva T L, Nascimen to M A, de Mace do
J A F, Sousa F R C, and Machado J C “Towards
non-intrusive elastic query processing in the cloud”.
In Proc. the 4th International Workshop on Cloud
Data Management, Oct. 29-Nov. 2, 2012.

2. Sharma U, Shenoy P, Sahu S, Shaikh A,” A cost-
aware elasticity provisioning system for the cloud”
In Proc. the 31stInternational Conference on
Distributed Computing Systems, June 2011.

3. Mian R, Martin P, Vazquez-Poletti J L,” Provisioning
data analytic workloads in a cloud” Future
Generation Computer Systems, 2013,

4. Rogers J, Papaemmanouil O, Cetintemel U,”A
generic auto provisioning framework for cloud
databases” In Proc. the 26th IEEE International
Conference on Data Engineering Workshops,
March 2010.

instantiating a new machine vmj, the algorithm
calculates its NTj

Q’ which is using the VM's reading rate
(RRj) and the value of Trema in. Algorithm 4 terminates
when there are no more tuples of Q’ to be distributed.
After that, our partitions Q’ (Algorithm 1 discussed in the
previous subsection is called) to monitor the
performance of each provisioned VM during Q’
execution, trying to ensure the Q’ execution with in
Tremain.

From Algorithm 4, the remaining partitions of Pi

are gathered into a new query Q’. Then NTi
Q’ is figured,

i.e., the amount of Q's tuples that vmi

If there still are tuples to be processed in Q’
and S = 0 we have to allocate new VMs. When

Suppose that vmi has a set of remaining partitions Pi,
which should be processed within Tremain units of time
without violating the SLOQ. Algorithm 4 recalculates the
number of VMs to help vmi to finish the processing of Pi

within Tremain, aiming at satisfying SLOQ. First,
Algorithm 4 recalculates how many tuples vmi may
retrieve while satisfying SLOQ. After that, Algorithm 4
necessities a new set of VMs and allocates to each of
them an amount of tuples to be processed.

 At the monitoring stage, Algorithm 4 is called
for each vmi that has the possibility of violating SLOQ.

	A Novel Approach for Elastic Query Processing in the Cloud
	Author
	Keyword
	I. Introduction
	II. Related Work
	III. Proposed Work
	a) Query Definition
	b) Motivating Example
	c) Aggregation query

	IV. Our Adaptive Approach
	a) Prototype Architecture

	V. Implementation
	a) Partition Query Algorithm
	b) VM’s Monitoring Algorithm
	c) Initial Dynamic Provisioning Algorithm
	d) Decision Making Algorithm

	VI. Conclusion
	VII. FutureScope
	References Références Referencias

