

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 14 Issue 1 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Load Balancing and Job Migration Algorithms for Autonomic Grid
Environment

 By Paritosh Kumar, Pankaj Kumar & Monika Singh
Thapar University, India

Abstract- Resource management and load balancing are the main areas of concern in a distributed,
heterogeneous and dynamic environment like Grid. Load balancing may further cause Job migration
or in some cases resubmission of Job. In this paper a number of job migration algorithms have been
surveyed and studied which have resulted because of the Load balancing problem. A comparative
analysis of these algorithms has also been presented which summarizes the utility and applicability
of different algorithms in different environment and circumstances.

GJCST-B Classification: C.1.4

LoadBalancingandJobMigrationAlgorithmsforAutonomicGridEnvironment

Strictly as per the compliance and regulations of:

© 2014. Paritosh Kumar , Pankaj Kumar & Monika Singh. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Load Balancing and Job Migration Algorithms
for Autonomic Grid Environment

Paritosh Kumar α, Pankaj Kumar σ & Monika Singh ρ

Abstract- Resource management and load balancing are the
main areas of concern in a distributed, heterogeneous and
dynamic environment like Grid. Load balancing may further
cause Job migration or in some cases resubmission of Job. In
this paper a number of job migration algorithms have been
surveyed and studied which have resulted because of the
Load balancing problem. A comparative analysis of these
algorithms has also been presented which summarizes the
utility and applicability of different algorithms in different
environment and circumstances.

I. Introduction

rid has a number of resources working
independently with different processing
capability and processes different workloads

accordingly. Grid computing joins all the scattered
resources into a large problem solving heterogeneous
environment for different types of applications, which
can run in parallel. Considering the whole distributed
system as one unit, workload should be evenly
distributed over all the resources as per the
configuration of the system, to minimize the job
execution time. Therefore, Load balancing and resource
management are major areas of concern for a Grid
environment.

Main objective of load balancing is to optimize
the response time of the application by which workload
would be maintained according to resources. There are
broadly three reasons which are the major causes of
load balancing, resubmission of jobs and job migration;
heterogeneity of resources, dynamic nature of
resource’s performance and diversity of applications in
case of Grids [3]. This is even more crucial in
computational Grid where the main concern is to fairly
assign jobs to resources and to minimize the difference
between the heaviest and the lightest resource load [4].

This paper presents a survey of job migration
algorithms and techniques, which is done to balance the

load in a Grid environment. It also compares and
construes the applicability of each technique as per the

requirement. The paper is organized as: Section 2
contains background of load balancing, and job
migration. In Section 3, existing job migration algorithms

Author α: Computer Science and Engineering Department Thapar
University, India. e-mail: paritosh200623@gmail.com
Author σ: Ramjas College, University of Delhi.
e-mail: pkumar240183@gmailcom
Author ρ: MITS Lakshmangarh, Rajasthan.
e-mail: dhariwal.monika@gmail.com

are discussed. In the section 4, describe the proposed
load balancing algorithm. Finally Section 5 concludes
the paper and provides the future scope of work.

II. Load Balancing and Job Migration

Load balancing is main area of concern in
distributed environment whereas job migration is one of
the best solutions to handle load balancing problems.

a) Load Balancing
An important issue of distributed and

heterogeneous environment is the efficient assignment
of tasks and utilization of resources, commonly referred
to as load balancing problem [13].

Load balancing is required to disperse the
resource’s load evenly so that maximum resource
utilization and minimum task execution time could be
possible. This is very crucial concern in distributed
environment to fairly assign jobs to resources.
Generally, load balancing mechanisms can be broadly
categorized as centralized or decentralized, dynamic or
static, and periodic or non periodic [5]. All load
balancing methods are designed such as, to spread the
load on resources equally and maximize their utilization
while minimizing the total task execution time. Selecting
the optimal set of jobs for transferring has a significant
role on the efficiency of the load balancing method as
well as Grid resource utilization. This problem has been
neglected by researchers in most of previous
contributions on load balancing, either in distributed
systems or in the Grid environment [7].

Job migration is the only efficient way to
guarantee that submitted jobs are completed reliably
and efficiently in case of process failure, processer
failure, node crash, network failure, system performance
degradation, communication delay; addition of new
machines dynamically even though a resource failure
occurs which changes the distributed environment [12].

Load balancing strategies aim to adapt the load
optimally to the environment. However, they mainly
consider the application running on a parallel,
homogeneous system.

b) Job Migration
Grid is inherently a dynamic system where

environmental conditions are subjected to unpredictable
changes like system or network failures, system
performance degradation, addition of new machines,
variations in the cost of resources etc. Job migration is

G

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

B
20

14

the next step when there is no proper scheduling or
resubmission of jobs. Whenever any resources
encounter problem, then job migration to the next
eligible system is suggested. Migration behavior of jobs
lead to the assumption that small sites tend to migrate
resourcedemanding jobs, while large sites confine to
pass only small jobs to the central job pool. Job
migration is the only efficient way to guarantee that the
submitted jobs are completed and that the user
restrictions are met [10].

Job migration mechanisms, which take the
nondedicated and dynamic natures of Grids into
consideration, become important for optimizing the
application performance [13]. Job monitoring,
rescheduling and check pointing are some steps
involved in job migration. Job monitoring contains all
performance related data of all the resources so that it
could initiate the migration. Further this information is
reported to the rescheduler, which evaluates if it is worth
Migrating the job, and in that case, decides a new
allocation for the job. Check pointing is capturing a
snapshot of the state of a running job, in such a way
that the job can be restarted from that state in a later
time in case of migration.

III. Survey of Existing Job Migration

Algorithms

There are many mechanism but only five
mechanism is surveyed here which is surveyed here.
Which are Virtual machine migration, node
reconfiguration method, check pointing, Robin-hood
algorithms and load based graph method.

a) Virtual Machine Migration (Live Migration)

In Virtual machine migration snapshots of
machine are sent to other machine that’s why it is called
the virtual machine migration. There are two methods for
virtual machine migration. First one is live migration and
second one is regular migration [1]. In live migration,
running domain between the different host machines is
migrated without stopping the job. In between it stops
job and gathers all required data then resumes. But this
happens only in same layer –layer network and IP
subnet. In regular migration generally stop the job then
migrated.

An important aspect of this mechanism is to
make the run-time job migration with non-dedicated
shared resources in dynamic Grid environment. Virtual
machine migration provides high isolation, security and

customization environment in which administrator

privileges the user to execute the work. Ether IP and IP

tunneling are required while migrating in this
mechanism. This algorithm redistributes the load
coming to any particular node, which may be the old
connected node or newly added node for that load.

b) Node reconfiguration by User Level Thread Migration
This mechanism makes application workload

migrate from source node to destination node, and then
let source node depart from original computing
environment .There are two mechanism for this, first one
is node reconfiguration by user-level thread migration
and another one is node reconfiguration by kernel level
thread migration. Node reconfiguration by user level
thread migration has been discussed in this survey.

There is two-implementation fashion of node
reconfiguration. One is synchronous method and the
other is asynchronous method. In synchronous method,
all nodes are paused during reconfiguration. On the
other hand, in asynchronous method all nodes continue
to work simultaneously with reconfiguration.
Synchronous method may make performance down
even though it is easier to design. Alternatively, better
performance can be obtained by asynchronous method
as long as more attention paid to correctly maintain the
order of node reconfiguration messages [1].

Information regarding redistribution of workload
and how to add/delete nodes is present in the
implementation of node reconfiguration mechanism.
With the help of user level thread migration, which is
already supported by the thread package workload, is
redistributed here. Same as virtual machine migration,
node reconfiguration mechanism also needs to transfer
in memory states from source node to destination node.

c) Check-Pointing Approach
Checkpoint is defined as a designated place in

a program at which normal processing is interrupted
specifically to preserve the status information necessary
to allow resumption of processing at a later time. By
periodically invoking the check pointing process, one
can save the status of a program at regular intervals. If
there is a failure one may restart computation from the
last check point thereby avoiding repeating the
computation from the beginning. The process of
resuming computation by rolling back to a saved state is
called rollback recovery [2].

There are three types of check pointing
implementations: kernel-level, user-level and application
level. These implementations differ in level of
transparency, efficiency and mechanism used to initiate
checkpoint and restart. In kernel level check pointing
user does not have to change the application at all so
least efficient, because system does not have the
knowledge about the application. Developer achieves
user level check pointing, and he puts or implements
some set of procedures that handle check pointing and
restart. Developer knows all about the application that’s
why this approach is more efficient. The developer itself
achieves application-level check pointing. This appr-
oach is the most efficient, because developer has
detailed knowledge about application.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

2

(
DDDD

)
Y
e
a
r

B
20

14
Load Balancing and Job Migration Algorithms for Autonomic Grid Environment

This is very useful in case of preemption and
migration and is used in making fault tolerant systems.
Most common benefit of the check pointing technology
is the high level of fault tolerance offered by the
applications that can be check pointed. Besides it used
to recover from failures, check pointing is also used in
playback debugging distributed programs, migrating
processes in a multiprocessor system, software
rejuvenation and optimistic simulation.

Check pointing balances the load of processors
in a distributed system; processes are moved from
heavily loaded processors to lightly loaded ones. Check
pointing process periodically provides the information
necessary to move it from one processor to another.

d) Robin Hood: An Active Objects Load Balancing
Mechanism for Intranet

Robin Hood algorithms present a new totally
non centralized solution, multicast channel to
communicate, and synchronize the processors and
proactive tools to migrate jobs between them. Proactive
techniques are very useful and provide the mobility and
security in uniform framework. This work focuses on
dynamic load balancing. Main objective of this algorithm
is to improve the decision time in non-centralized
environment.

In this mechanism two basic things have been
considered, first one to know about the local load and
second one transfer the load from high dense node to
the less loaded node. This uses the non-centralized
architecture and non-broadcasting of the balance of
each node to reduce the overload in network. This is
totally non-centralized load balancing mechanism, using
the proactive library for the migration of jobs, and a
multicast channel for node coordination.

e) Load Graph Based Transfer Method
Load based graph method is based on network

graph where each node is represented with its load,
whereas load can be the number of users, average
queue length or the memory utilization. It uses analytic
model and single load determination policy throughout
the system and load is determined on the basis of
memory utilization and average queue length. This
algorithm is based on three layered structure. Top layer
is load balancing layer which takes care of token
generation, taking decision about task transfer; middle
one is called monitoring layer and acts as an interface
between top and middle and monitors load changes
and third one called communication layer which take
care of actual task transfer.

Here token is generated on the basis of
outgoing and incoming edges and initialized on the
basis of some specific value HWM & LWM (Highest
Water Mark, Lowest Water Mark). Specific values are
decided on the basis of load value of neighbors. Nodes
having load value greater than HWM and are local

maxima or nodes having load value less than LWM and
are the local minima, can initiate token [9].

Maximum message transfer per node, if N is
number of nodes and X is maximum message transfer
per node
Total message transfer =NX

And transfer of task will occur only if there would
be proper load difference between the nodes as
1. La - Lb > M where M is the required

Load difference for the task transfer.
Token will be generated if following conditions

will be satisfied

1. For nth node (Load) n > L where L is maximum
Load where load balancing is not required.

2. (Load) n > Σ sum of load of all nodes

If both conditions are satisfied then the token is
generated in more than sixty percent of the cases where
load imbalance exists token finds out the proper node
for the task transfer which improves the system
performance[9]. In this algorithm along with the task
transfer among the neighboring nodes with the token
transfer method care is taken to avoid the starvation of
those nodes for which neighbors are not suitable for the
task transfer.

The major parameter, network-partitioning
issues along with inter-cluster and intra-cluster transfers
for decision making of load balancing for the transfer is
considered here.

IV. Proposed Load Balancing Algorithm

Proposed load balancing algorithm is
developed considering main characteristics like
performance, throughput, and resource utilization.

a) Architecture of Load Balancing System
This section discusses about the architecture of

load balancing algorithm-imposed system. Figure 4.2
presents a pictorial view of the system. Monitor server
uses monitoring tool to gather information about all the
connected nodes. This resource information is
managed, processed and updated to a database. This
information is accessed through web pages and is
presented to the users. The web pages can be
accessed from any nodes at the same network.

Load Balancing and Job Migration Algorithms for Autonomic Grid Environment

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

B
20

14

Figure 4.1

: System Overall Architecture

Server node gets all information from the nodes
via

monitoring tool and updates the database. Web
pages are

created and hosted on local network using
Apache HTTP

server to provide the resources
information to users, any

system on local network
running Apache HTTP server

can access these web
pages. This is shown in figure:

Figure 4.2

b) Design of Proposed Load Balancing Algorithm
Pseudo code and flow chart of the proposed

load balancing algorithm. Proposed algorithm for load
balancing is given below:

Begin
(Initiating activity happens)
(Load balancing start)
Monitoring info. And job request (n resources & n jobs)
Create job queue
If (job req. not matched with resource.)
Job goes to main queue
Else
Assigned job to resource
If (Machine failure)
Job goes to main queue with check-pointed data

Else
Job completed
End

c) Complexity of Proposed Load Balancing Algorithm
Complexity is a measure of the performance of

an algorithm in term of CPU time and memory usage. In
this case computational complexity has been
considered as this algorithm is for grid environment.

Computational Complexity: To measure
computational complexity computation number should
be known.
By Big-O notation
Above proposed algorithm have equation like this
N3+N2+N+C, where C is constant
According to Big-O notation
f (n) = O (N3) + O (N3) + O (N) + O (C) ,C is constant
f (n) = O (N3)
Another formula to find out complexity of algorithm
Complexity = No. Of closed loop = 3;
Another formula to find out Complexity of algorithm
Complexity = No. of decision making statements + 1;
Complexity = 2 +1 =3;

V. Conclusion

Load balancing is a key issue in grid resource
management and results in job migration or re-
submission of job. In this paper load balancing and job
migration algorithms have been surveyed and studied
which have been designed for different scenarios.
Based on all these algorithms new algorithm have been
introduced, considering main characteristics like
performance, throughput, and resource utilization.

Different algorithms do well in their respective
contexts like multiple token policy results in optimal
resource selection and minimum migration time where
as Robin-hood provides better security and check-
pointing provides good results for fault tolerant systems.

References Références Referencias

1. Po-Cheng Chen, Cheng-I Lin, Sheng-Wei Huang,
Jyh-Biau Chang, Ce-Kuen Shieh, Tyng-Yeu Liang” A
Performance Study of Virtual Machine Migration vs
Thread Migration for Grid Systems” 22nd
International Conference on Advanced Information
Networking and Applications – Workshops.

2. S Kalaiselvi, V Rajaraman, ”A Survey of Check-
Pointing Algorithms for Parallel and Distributed
Computers” v ol. 25, Part 5, October 2000,
pp.489±510.

3. Belabbas Yagoubi, Hadj Tayab Lillia and Halima Si
Mo ussa, “Load Balancing in Grid Computing”.

4. Mohsen Amini Salehi, Hossein Deldari “Balancing
Load in a Computational Grid Applying Adaptive,
Intelligent Colonies of Ants”.

5. Y. Lan, T. Yu (1995) “A Dynamic Central Scheduler
load-Balancing Mechanism”, Proc. 14th IEEE Conf.

Load Balancing and Job Migration Algorithms for Autonomic Grid Environment

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

4

(
DDDD

)
Y
e
a
r

B
20

14

on Computers and Communication, Tokyo, Japan,
pp. 734-740.

6. Mohsen Amini Salehi Hamid Tabatabaee Yazdi,
Mohammad Reza Akbarzade Toutoonchi,” An
Optimal Job Selection method in Load Balancing
Algorithms of Economical Grids”.

7. S. Rips “Load Balancing Support for Grid-enabled
Applications” NIC Series, Vol. 33, ISBN 3-00-
017352-8, pp. 97-104, 2006.

8. Gracjan Jankowski, Radoslaw Januszewski, Rafal
Mikolajczak Poznan, ” Improving the fault-tolerance
level within the GRID computing environment -
integration with the low-level check pointing
packages” Core Grid TR-0158 June 16, 2008.

9. Parag Kulkarni & Indranil Sengupta,” Load
Balancing with Multiple Token policy”.

10. Rafael A.Moreno, Ana B. Alonso-conde” Job
Scheduling and Resource Management Techniques
in Dynamic Grid Environments” Volume 2970 of
LNCS (2004).

11. Luis Ferreira, Viktors Berstis, Jonathan Armstrong,
Mike Kendzierski, Andreas Neukoetter, asanobu
Takagi, Richard Bing-Wo, Adeeb Amir, Ryo
Murakawa, Olegario. Hernandez, James Magowan,
Norbert Bieberstein “Red Books”
ibm.com/Redbooks.

12. Belabbas Yagoubi and Yahya Slimani” Dynamic
Load Balancing Strategy for Grid Computing”
Proceedings of World Academy of Science,
Engineering and Technology Volume 13 May 2006
ISSN 1307-6884.

13. Neeraj Nehra, R.B. Patel, and V.K. Bhat” Load
Balancing with fault tolerance and Optimal
Resource Utilization in grid Computing” Information
Technology Journal vol. 6:784-797, 2007.

Load Balancing and Job Migration Algorithms for Autonomic Grid Environment

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

B
20

14

This page is intentionally left blank

Load Balancing and Job Migration Algorithms for Autonomic Grid Environment

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

6

(
DDDD

)
Y
e
a
r

B
20

14

	Load Balancing and Job Migration Algorithms for Autonomic Grid Environment
	Authors
	I. Introduction
	II. Load Balancing and Job Migration
	a) Load Balancing
	b) Job Migration

	III. Survey of Existing Job Migration Algorithms
	a) Virtual Machine Migration (Live Migration)
	b) Node reconfiguration by User Level Thread Migration
	c) Check-Pointing Approach
	d) Robin Hood: An Active Objects Load Balancing Mechanism for Intranet
	e) Load Graph Based Transfer Method

	IV. Proposed Load Balancing Algorithm
	a) Architecture of Load Balancing System
	b) Design of Proposed Load Balancing Algorithm
	c) Complexity of Proposed Load Balancing Algorithm

	V. Conclusion
	References Références Referencias

