
© 2013. M N Sahulamid & M Regina Bagum. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Network, Web & Security
Volume 13 Issue 14 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Accuracy in Selecting Reconfigurable Web Services
By M N Sahulamid & M Regina Bagum

Abstract - Service-Oriented Architecture (SOA) provides a flexible framework for service composition.
Using standard-based protocols (such as SOAP and WSDL).There are several constraints meant for
selecting the right and appropriate service to be designed as reconfigurable dynamic web services.
Those constraints leverage to the following factors availability, response time, failure handling and
supports dynamic configuration. Our paper presents the way of predicting the service methods which
are really necessary for providing as a dynamic web service. Since all the service methods cannot be
used as dynamically as it depends upon the number of users really using the service by the service
providers.

GJCST-E Classification : H.3.5

Accuracy in Selecting Reconfigurable Web Services

Strictly as per the compliance and regulations of:

SBM College of Engineering and Technology, India

Accuracy in Selecting Reconfigurable Web
Services

M N Sahulamid α & M Regina Bagum σ

Abstract - Service-Oriented Architecture (SOA) provides a
flexible framework for service composition. Using standard-
based protocols (such as SOAP and WSDL).There are several
constraints meant for selecting the right and appropriate
service to be designed as reconfigurable dynamic web
services. Those constraints leverage to the following factors
availability, response time, failure handling and supports
dynamic configuration. Our paper presents the way of
predicting the service methods which are really necessary for
providing as a dynamic web service. Since all the service
methods cannot be used as dynamically as it depends upon
the number of users really using the service by the service
providers.

I. Introduction for Selecting
Dynamic Web Services

eb Services are software applications or
services that are uniquely identified by a URI
(Uniform Resource Identifiers) and expose

public interfaces for clients, using XML (extended
markup language). Those web services can be
discovered and used by other client applications using
XML based messages and protocols such as HTTP.

The emergence and continued development of

web services standards such as SOAP (simple object
access protocol) and WSDL (web services description
language) [3] enable us to request and describe web
services in a standard way. This will increase the ease of
use of web services, enable interoperability between
heterogeneous platforms and help businesses solve

Authors

α σ

: SBM college of engineering and technology, India.

E-mail : sahulamid@gmail.com

integration problems of their applications. Consequently,
it is anticipated that web servers that host the services
will be subject to increasing usage and have a higher
load. Furthermore, the current simple modulus operand
involving client/server activation of a single web service
will be enhanced to support more complex scenarios, in
which applications and service providers them
selvesrely on other external web services as part of their
business logic. The reliance on third party web services
reduces the control of the

Organization over its application and
(sometimes) mission-critical code. The control and
information of certain parts of the system is pushed
outside organizational boundaries. Scenarios involving
reliance on external web services raise several new
issues and challenges. An example of common
scenario would be of clients consuming external web
services, which in turn outsource their computational
resources to other service providers. Furthermore,
runtime information such as service load and availability
or business related constraints might affect the selection
process of an external web service, and not be
predecided, as it is today. In the existing frameworks for
web services there is no incentive to bind dynamically to
a specific web service. However, once runtime
information concerning those web services is available
to the application, a dynamic binding becomes
advantageous over a static, pre-decided one. We
suggest a model that provides the web service client
runtime information that is pertinent to its execution and
business logic. The client application can then
dynamically bind to the temporarily best service, from a
selection of acceptable web services it works with, and
according to the client’s set of constraints. A client may
want to apply some business rules when dynamically
choosing a web service, or may be more concerned
with response time or availability. When response time is
critical (e.g. stock quotes service etc.) it is important for
an application to activate the fastest web service
available at that given time, or have some mechanism
that ensures availability and reliability. When several
clients participate in such a scenario, an indirect load
balancing mechanism is created, which helps to direct
clients to available and relatively fast web services.

Figures 1 illustrate a client activation decisions
based on information gathered at runtime from the
service providers according to the client constraints.

W

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Figure 1 : Web service activation according to response
time and availability

In figure 1, the client is concerned with
availability and response times of a web service; after
retrieving related information from the service providers,
it activates the fastest available web service. This
behaviour contributes to the robustness of the client
application. Figure 1 shows client activation, based on

response time and quality of service. According to the
client’s business constraints, it may prefer to switch to
another service provider when it observe a change in the
combination of quality and response time offered by the
service providers.

II. Related Work

Architecture

Figure 2 : Architecture of the Dynamic Web Service Selection Framework

Figure 2 shows different components involved
in a Dynamic web service selection Framework. The
upload component uploads semantic description and
WSDL parameters of a web service. The information
from WSDL document is extracted and stored in UDDI
repository. The semantic matcher matches semantic
descriptions of services with user requirements and
proposes a list of services matching with his
requirements. The user can execute any of matching
services using execution environment. The
recommendation component asks the user to rate the
executed service, so it will be used for recommendation
purpose.

Semantic Matcher
Service providers publish DAML-S [5]

descriptions of services to a Semantic Description
Repository. A service user gives his requirements using
DAML-S description. The semantic matcher finds the
match between user requirement and all published
service descriptions using a Semantic Matching
Algorithm. It along with Recommendation System gives
matching services in an order.

Figure 3 shows the detailed architecture of a
Semantic Matcher [6][7][4]. The Ontology Inference
Engine creates a knowledge base from the specified
ontology in a DAML-S description and a request
description. Web Service Description parser parses the
Web Service Descriptions to find out different

parameters to be matched. The criteria table specifies
service attributes to be compared and the

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

20

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Accuracy in Selecting Reconfigurable Web Services

least preferred similarity measures for those attributes.
The

similarity measure can be exact, plug-in, sub

sumption, container,

disjoint, part of.

If the two
conceptual annotations are syntactically identical,

the
mapping is called an Exact map. If the second

conceptual annotation specializes the first, the mapping
is

called Plug-in. If the first conceptual annotation
specializes

the second, the mapping is called Sub

sumption map.

If the first conceptual annotation contains the
second, the

mapping is called a Container map and

if
first conceptual

annotation is part of the second, the
mapping is called Part

of map. Otherwise the mapping
is called disjoint map.

Recommendation System

The Dynamic Web Service Selection Framework
has are

commendation system, which recommends the
best service

satisfying the user’s requirements. When a
user uses a

web service, it asks user to rate a web
service; so that users

can help each other to find a
better web service. This is

especially important when
there are more than one web services

which have same
functionality but their quality of service

is different. We
provide the user, a metric to help him

decide the rating
of a web service. It will be a comparison

matrix of
runtime behavior of a web service and the users

expected QoS parameters like max execution time,
average

execution time, max response time, average
response time

etc. Web service with better quality of
service will get more

rating than other service which
offers same functionality but

poor service quality.

The
recommendation system uses the item based
collaborative

filtering approach [8]. As users rate web
services,

it is possible to predict how a given user will
rate a particular

web service. Once it knows prediction
of ratings to

each web service satisfying user
requirements, it can recommend

web

services in order
of their ratings. This approach

looks at the set of web

services the target user has rated and

computes how
similar they are to the web service for which

user rating
is to be predicted. Once the similar web services

are
found, the prediction is computed by taking a weighted

average of the target user’s ratings on these similar web
services.

The item based collaborative filtering approach
has two

aspects namely similarity computation and
prediction generation.

a)

Similarity Computation

The similarity [8][9]

between two web services
is

computed by subtracting the average rating of the two
web

services. Considering only users who have rated
both web

service A and web service B, say that there
are 10 such

users, we sum the ratings that A and B got,
say 65 and 85.Clearly B is ranked higher than A by 2 on
average. The similarity

between web services is
computed whenever users

rate a web service. The result
of similarity computation is

stored in a similarity matrix.

b)

Prediction Generation

The prediction function [8][9]

predicts how a
particular

user will rate a web service. It computes
prediction on

a web service i for a user u by computing
the sum of ratings

given by the user on the web services
similar to i. Each

rating is weighted by the
corresponding similarity Si,j

between

web services i and
j.Pu,

i=_all similar items, j(si,j ∗Ru,j)_all similar items,
j(|si,j|)Basically it tries to capture how the active user
rates the

similar web services. The weighted sum is
scaled by the

sum

of the similarity terms to make sure
the prediction is

with

in the predefined range.

If the user
has used a similar service, it predicts his likely

satisfaction index for this service/service chain. If no

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Accuracy in Selecting Reconfigurable Web Services

similar service has been used before, it considers the
average rating of all the users for similar services.

III.

Dynamic Web Service Invocation -

Advanced

a)

Headers

Besides parameters, a web service operation
may include “headers”. Headers are basically additional
parameters that are carried inside the header of a SOAP
request/response instead of in the body. In general
headers are used to specify additional information not
strictly related to the semantics of an operation such a
as the credentials (username and password) required to
invoke it.

The WSData class allows managing parameters
and headers homogeneously: while the

voidset

Parameter(<parameter-name>, < parameter-
value>)

AbsObjectgetParameter(<parameter-name>)

String get

Parameter

String(<parameter-name>),

Intget

Parameter

Integer(<parameter-name>),

booleanget

Parameter

Boolean(<parameter-name>)

methods are available to manage parameters, the

voidset

Header(<header-name>, <header-value>)

AbsObjectgetHeader(<header-name>)

String getHeaderString(<header-name>)

integergetHeaderInteger(<header-name>)

booleangetHeaderBoolean(<header-name>)

methods are available to manage headers.

b)

Proxy

In many cases both the access to a WSDL (at
Dynamic

Client initialization time) and the actual web
service invocation require passing through an HTTP
Proxy. The Dynamic

Client class provides the following
methods to set proxy information.

•

setProxyHost(<host>): Set the proxy host (e.g.
163.162.10.12)

•

setProxyPort(<port>): Set the proxy port (e.g. 8080)

•

setNonProxyHosts(<listOfAddresses>): Set a list of
addresses (possibly including ‘*’) that will be
accessed without using the proxy. The separator is
the ‘|’ character

•

setProxyAuthentication(<user>, <password>): Set
the credentials (if any) required to access the proxy

The following code snipped provides an example.

dc.setProxyHost(“10.12.175.14”);

dc.setProxyPort(“8080”);

dc.setNonProxyHosts(“163.163.*|*.telecomitalia.it”);

dc.setProxyAuthentication(“myUser”, “myPwd”);

dc.initClient(new URI("http://myWSDL"));

c)

Security

Certain web services require HTTP Basic
Authentication. The Dynamic

Client class provides the
following methods to set HTTP related information.

•

setDefaultHttpUsername(): Specifies the http
username used in all requests.

•

setDefaultHttpPassword(): Specifies the http
password used in all requests.

The following code snipped provides an example.

dc.setDefaultHttpUsername(“MyHttpUsername”);

dc.setDefaultHttpPassword(“MyHttpPassword”);

If the credential of HTTP Basic Authentication
are different in all requests is possible specify them in
invoke(…) method with Security

Properties object.

Instead, if the credential of HTTP Basic
Authentication are different for the WSDL discovery is
possible specify them in initClient(…) method.

The following code snipped provides an
example dc.initClient

(new URI("http://myWSDL"),
“MyHttpUsername”, “MyHttpUsername”); Other web
services require WS-Security Username Token. The
DynamicClient class provides the following methods to
set WSS related information.

•

setDefaultWSSUsername(): Specifies the wss
username used in all requests.

•

setDefaultWSSPassword(): Specifies the wss
password used in all requests.

•

setDefaultWSSPasswordType(): Specifies the wss
password type used in all requests (TEXT or
DIGEST, see SecurityProperties object).

The following code snipped provides an example.

dc.setDefaultWSSUsername(“MyWSSUsername”);

dc.setDefaultWSSPassword(“MyWSSPassword”);

dc.setDefaultWSSPasswordType(SecurityProperties.PW
_TEXT);

If the credential of WS-Security Username
Token are different in all requests is possible specify
them in invoke(…) method with Security

Properties
object.

Other web services require WS-Security
Timestamp. The Dynamic

Client class provides the
following method to set WSS related information.

•

setDefaultWSSTimeToLive(): Specifies the wss
request time to live (in second) used in all requests.

The following code snipped provides an example.

dc.setDefaultWSSTimeToLive(60);

If the credential of WS-Security Timestamp are
different in all requests is possible specify them in
invoke(…) method with Security

Properties object.

Other web services require SSL connections
with or without certificates. The Dynamic

Client class
provides the following methods to set SSL related
information.

•

enableCertificateChecking(): Enables the certificates
checking mechanism. When this mechanism is

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

22

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Accuracy in Selecting Reconfigurable Web Services

enabled (the default situation) a trust store holding
certificates of trusted remote servers must be
indicated (see the setTrustStore() method).

• disableCertificateChecking(): Disables the certificate
checking mechanism.

•

setTrustStore(<file.keystore>): Specifies the
keystore holding certificates of trusted remote
servers

•

setTrustStorePassword(<password>): Specifies
the password used to protect the keystore of trusted
certificates

The following code snipped provides an example.

dc.setTrustStore(“C:/myFolder/cert.keystore”);

dc.setTrustStorePassword(“myPassword”);

dc.initClient(new URI("http://myWSDL"));

d)

Caching

Considering that the initialization of a Dynamic

Client (initClient() method) is a long operation that may

take some seconds, a good approach is to create a
single Dynamic

Client instance for each WSDL and
reuse it whenever an operation of a service described in
that WSDL must be invoked (note that the invoke()
methods of the Dynamic

Client class are thread safe
and therefore can be called by two or more threads in
parallel). In order to facilitate this practice the WSDC
provides a class called Dynamic

Client

Cache that
manages all issues related to creation, initialization and

caching of Dynamic

Client objects in a thread safe
mode. The Dynamic

Client

Cache class follows the
singleton pattern and therefore the first step when using
it is to retrieve the singleton Dynamic

Client

Cache
instance by means of the get

Instance() method.

The following code snippet shows how to use the DynamicClientCache class.

DynamicClientCache dcc = DynamicClientCache.getInstance();

DynamicClient client = dcc.get(new URI("http://myWSDL"));

WSData output = client.invoke(“sum”, input);

The get() method of the DynamicClientCache

class first checks if a DynamicClient object was already
created to access the given WSDL and returns it in that
case. Only if no DynamicClient object is already
available a new one is created and initialized.

 IV.

Service

Selection

Algorithms

for
General

Flow

Structure

Many real-world service processes have

services that are not in strictly sequential

order. They
may have parallel operations to perform several services
at the

same time, conditional branch operations, and

loops for using a service more

than once in a flow.

The
function graph for composite service with general
composition patterns

may contain complex structures
among function nodes. In order to simplify the

problem
and construct a service candidate graph with a

DAG
structure, we first

remove the loop operations by
unfolding the cycles as in [Zeng et al. 2004]. A

cycle is
unfolded by cloning the function nodes involved in the
cycle as many

times as the maximal loop count.

 V.

Conclusion

We have studied the problem of service

selection with multiple QoS constraints

and proposed
several algorithms. The selection of dynamic web
service is depends upon the Execution price, Execution
duration, Reputation, Successful execution rate,
Availability, response time ≤ 600,

cost ≤ 25 0,

availability ≥ 85%.

 References Références Referencias

1.

Towards Efficient Selection of Web Services

Amir
Padovitz

School of Computer Science &

Software
Engineering,

Monash University

Padovitz@big

pond.com

ShonaliKrishnaswamy

School of

Computer Science &

Software Engineering,

Monash
University

shonali.

krishnaswamy@mail.csse.

monash.edu.au

SengWaiLoke

School of Computer
Science &

Software Engineering,

Monash University

swloke@csse.monash.edu.au

2.

Dynamic Selection of Web Services with
Recommendation System

UmardandShripad

Manikrao

Indian Institute of Technology, Kanpur

shripad@cse.iitk.ac.in T.V.

Prabhakar

Indian
Institute of Technology, Kanpur

tvp@cse.iitk.ac.in

3.

World Wide Web Consortium (2000/2001): Web
Services,

eXtended Markup Language (XML),

Simple Object Access Protocol (SOAP), Web
Services

Description Language (WSDL)

Available at:
4.1 http://www.w3.org/TR/ws-gloss/,4.2

http://www.

w3.org, 4.3 http://www.w3.org/TR

4.

EvrenSirin, BijanParsia, and James Hendler.
“Filtering

and Selecting Semantic Web Services with
Interactive

Composition Techniques”, IEEE
Intelligent

Systems, 19(4):

42-49, 2004.

5.

DAML Technical Committee. DARPA Agent Markup

Language-

DAML. http://www.daml.org

6.

Prashant

Doshi, Richard Goodwin, Rama

Akkiraju.
“Parameterized Semantic Matching

for Workflow
Composition”, IBM Research

Report,

RC23133

(W0403-026),

March, 2004.

7.

M. Paolucci et al. “Semantic Matching of Web
Services

Capabilities”, The Semantic Web-ISWC
2003:

1st Int’l Semantic Web Conf., LNCS 2342,
Springer-Verlag, 2002, p.333.

8.

Badrul

Sarwar, George Karypis, Joseph Konstan,
and

John Riedl. “Item-based Collaborative Filtering
Recommendation

Algorithms”.

In the Proceedings

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Accuracy in Selecting Reconfigurable Web Services

of the 10 International World Wide Web Conference.
Hong Kong, 2001.

9.

Daniel Lemire, Sean McGrath. “Implementing a

Rating-Based Item-to-Item Recommender System in

PHP/SQL”,

Technical Report D-01, January, 2005.

10.

Efficient Algorithms for Web Services

Selection with
End-to-End QoS Constraints

TAO YU, YUE ZHANG,
and KWEI-JAY LIN

University of California, Irvine.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
IV

 V
er
sio

n
I

24

(
DDDD DDDD

)
Y
e
a
r

01
3

2
E

Accuracy in Selecting Reconfigurable Web Services

	Accuracy in Selecting Reconfigurable Web Services
	Author's
	I. Introduction for Selecting Dynamic Web Services
	a) Similarity Computation
	b) Prediction Generation

	III. Dynamic Web Service Invocation -Advanced
	a) Headers
	b) Proxy
	c) Security
	d) Caching

	IV. Service Selection Algorithms for General Flow Structure
	V. Conclusion
	References Références Referencias

