
© 2013. Muneer Ahmad Dar & Javed Parvez. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Network, Web & Security
Volume 13 Issue 12 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Evaluating Smartphone Application Security: A Case Study on
Android

 By Muneer Ahmad Dar & Javed Parvez
University of Kashmir, India

Abstract - Currently, smart phones are becoming indispensable for meeting the social expectation
ofalways staying connected and the need for an increase inproductivity are the reasons for the
increase in smartphone usage. One of the leaders of the smart phone evolution is Google’s Android
operating system. It ishighly likely that Android is going to be installed in manymillions of cell phones
during the near future. With thepopularity of Android smart phones everyone finds it convenient to
make transactions through these smartphones because of the openness of Android applications.
The malware attacks are also significant. Androidsecurity is complex and we evaluate an
applicationdevelopment environment which is susceptible tomalware attacks. This paper evaluates
Android securitywith the purpose of identifying a secure applicationdevelopment environment for
performing securetransactions on Android-based smart phones.

Keywords : smartphone, android, malware, spam, vulnerabilities, attacks, mobility, API.

GJCST-E Classification :

Evaluating Smartphone Application Security A Case Study on Android

Strictly as per the compliance and regulations of:

D.4.6

Evaluating Smartphone Application Security:
A Case Study on Android

Muneer Ahmad Dar α & Javed Parvez σ

Keywords : smartphone, android, malware, spam,
vulnerabilities, attacks, mobility, API.

I. Introduction

martphones have become indispensable part of
our daily lives in recent years, since they are
involved in keeping in touch with friends and

family, doing business, accessing the internet and other
activities. Andy Rubin, Google’s director of mobile
platforms, has commented: “There should be nothing
that users can access on their desktop that they can’t
0access on their cell phone” [1]. Growth in smartphone
sales is depicted in the figure below.

Figure 1 : Worldwide Smartphone Sales

It indicates that smart phone sales are
continuously on rise and more and more people are
becoming dependent on these devices. As these
Smartphones are going to outnumber the world’s total
population in 2014, securing these devices has
assumed paramount importance. Owners use their
smart phones to perform tasks ranging from everyday
communication with friends and family to the
management of banking accounts and accessing
sensitive Work related data. These factors, combined
with limitations in administrative device control through
owners and security critical applications like the banking
transactions, make Android-based Smart phones a very
attractive target for hackers, attackers and malware
authors with almost any kind of motivation.

In this paper we analyze the security
architecture of Smartphones in section II and identify the
security loopholes of the current framework in section III.
We then have a detailed description of the existing work
done by the researchers in section IV. Finally we draw
our conclusions in section V.

II. Security Framework of Smartphone

A Smartphone is an intricate combination of a
mobile phone and a computing platform, with high-
speed connectivity and powerful computing ability.
Therefore, the Smartphone has necessary components
of the computing platform: an operating system,
applications and hardware. Furthermore, as a personal
communication device, the Smartphone also often has
multiple communication capabilities and ability to store
large amounts of sensitive user data [2].

Figure 2 : Common Smartphone Architecture [2]

S

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

9

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

Abstract - Currently, smart phones are becoming
indispensable for meeting the social expectation of always
staying connected and the need for an increase in productivity
are the reasons for the increase in smart phone usage. One of
the leaders of the smart phone evolution is Google’s Android
operating system. It is highly likely that Android is going to be
installed in many millions of cell phones during the near future.
With the popularity of Android smart phones everyone finds it
convenient to make transactions through these smart phones
because of the openness of Android applications. The
malware attacks are also significant. Android security is
complex and we evaluate an application development
environment which is susceptible to malware attacks. This
paper evaluates Android security with the purpose of
identifying a secure application development environment for
performing secure transactions on Android-based smart
phones.

Author α : Scientist-B at National Institute of Electronics and
Information Technology Srinagar, India, received Masters degree in
Computer Applications from the University of Kashmir.
E-mail : muneerdar07@gmail.com
Author α : Senior Assistant Professor at University of Kashmir,
received a BE in Electrical & Electronics Engineering from BITS-Pilani,
India, MS in Computer Science from University of Oklahoma (USA)
and PhD in Computer Science from the University of Kashmir, India.
E-mail : javedparvez1225@gmail.com

Android is a Linux-based platform programmed
with Java and enhanced with its own security
mechanisms tuned for a mobile environment. Android
combines OS features like efficient shared memory,
preemptive multi-tasking, Unix user identifiers (UIDs)
and file permissions with the type-safe Java language
and its familiar class library. The resulting security model
is much more like a multi-user server than the sandbox
found on the J2ME or Blackberry platforms. Unlike a
desktop computer environment where a user’s
applications all run under the same UID, Android
applications are individually siloed from each other.

Android applications run in separate processes
under distinct UIDs each with distinct permissions.
Programs can typically neither read nor write each
other’s data or code, and sharing data between
applications must be done explicitly. The Android GUI
environment has some novel security features that help
support this isolation [10].

III. Limitations of Current Security
Model

Android is based on open source framework
and it comes with a pre-built suite of applications like
dialer, address book, browser, etc. Developers can
code their own applications and publish to the Android
market after a self-signing phase that does not require
any certifying authority i.e., developer can use self-
created certificates to sign their applications. This helps
in providing a wide range of applications and services to
the device-holders. Since there is no support for root
Certification Authorities in Android (Android is based on
open source framework, while introducing root
certification mechanisms contradicts the openness of
Android) it is very difficult to scrutinize and/or block
applications coming from unreliable sources. There is a
higher possibility that an average Android user will easily
be tricked by unsafe applications and will avoid the
warning messages at time of installation.

Figure 3

: Security Architecture of Android

The permission model is the core mechanism

for securing access to various resources in Android.

Although the permissions are categorized to different

protection levels such as Normal, Dangerous,

Signature
and Signature-Or-System but the

assignment of these
protection levels is

left to the

developer’s will and own
understanding. This leads to

a number of vulnerabilities
in the permission model.

When an application is
installed on Android, the

Android framework prompts
the user with a list of

required permissions, the user may
grant all of the

permissions in order to install the
application or deny

the permissions to decline the
installation.

Practically, there are a number of issues in
such a

model: 1) The user must grant all of the required

permissions in order to install the application, 2)

once
the permissions are granted; there is no

mechanism for
further restricting an application to

use the granted
permissions, 3) there is no way of

restricting access to
the resources based on dynamic

constraints as the
permission model is based on

install-time check only, 4)
granted permissions can

only be revoked by uninstalling
the application. There

are four security loopholes that
endanger the

information stored in a Smartphone [18]:

•

The capability to sniff the data transmitted by any

network where the device is connected.

•

The lack of strong security control of user´s private

information that permits malware to access the

information stored in the device.

Evaluating Smartphone Application Security: A Case Study on Android

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

10

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

These are the most common security problems
in the

smart phones. Powerful hardware and advanced

operating system with flexible APIs [23], [24] not only

increase capability and functionality of smartphones

but
also present rising security threats to

smartphones.
Other features of smartphones also

exacerbate threats
to smartphones: higher bandwidth

not only accelerates
the Internet access, but also

speeds up virus
transmission; multiple peripheral

interfaces not only
increase Smartphone connectivity,

but also provide
much more avenues for virus

injection. Compared with
personal computers,

smartphones also have always-on
& always-connected

mobility and are therefore hard to
reinstall.

Therefore, disabling or making smartphones
nonfunctional

as a result of attacks will have much

greater impact and prove more costly than in the

case of
personal computers. A threat means potential

violation
of Smartphone security, which can be

clustered into two
categories according to its cause:

vulnerabilities [5] and
attacks [6]. Vulnerabilities

mean weakness of
smartphones and inabilities to

withstand hostile
environment effects. Attacks are

any attempts to
intentional destroy

unauthorized

use, maliciously modify
or illegally obtain

Smartphone assets. Generally,
attackers bypass or

exploit deficiencies of Smartphone
security

mechanisms to initiate negative activities. That
is,

vulnerabilities are the internal attributes of

smartphones, while attacks are the outside offensive

activities to smartphones. As a matter of fact, most

attacks exploit vulnerabilities of smartphones.

a)

Vulnerabilities

As comparatively complicated devices,
smartphones

inevitably have numerous vulnerabilities,
which can

lead to insecurity or be exploited by malicious

persons to initiate attacks. Smartphone

vulnerabilities
typically include system defects,

insufficient
management of APIs, deficiency of user

awareness and
unsecure wireless channels, shown in

Fig.4.

i.

Deficiency of User Awareness

Some applications are

installed without user
confirmation or with limited

information. Based on these
situations, attackers can

give deceptive information for
applications infected

by malicious codes. Users may
install them without

accurate or sufficient information. In
addition, some

sensitive operations, such as sending
and receiving

messages, deleting important files,
activating

wireless interfaces, can also be executed
secretly.

Consequently, Smartphone users cannot know
about

occurrences of malicious security-sensitive
operations

until the negative effects start appearing.

ii.

System Defects

It is nearly impossible to detect and

rectify all
defects in Smartphone hardware and

software. Some
immediately non-conforming defects

can be observed
soon, but most other defects cannot

be found for a
certain time. Even if they are

discovered, these defects,
especially hardware

defects are hard to be remedied. As
a result, system

defects can cause Smartphone
abnormalities and

malfunctions.

Furthermore, malicious
persons

generally take advantage of existing system
defects

to initiate attacks and compromise Smartphone

systems.

iii.

Unsecure Wireless Channels

In wireless

environments including cellular
networks, user data

and control signals transmitted
between smartphones

and network devices can be
easily captured. If these

data and signals are
compromised, the transmitted

information will be
exposed.

iv.

Insufficient API Management

The most distinct

characteristic of smartphones
is flexible APIs, which

are used for application
development [22] and

installation. However, insufficient
API management is

also the main reason for malicious
codes. Generally,

Smartphone APIs are clustered into
open APIs for

third-party application developments and
controlled

APIs for remote maintenance. Controlled APIs
have

higher privileges, which can be used for remote

system update, file erasure and information retrieval.

If
malicious persons obtain controlled APIs, they can

initiate negative activities such as backdoor attacks.

Even some open APIs may have inappropriate

privileges
so that they might be utilized to acquire

certain
privileges and initiate attacks.

b)

Attacks

It is well known that smartphones have much

valuable user data, especially financial data and

identification information. Driven by economic

benefits,
many hackers have focused on smartphones

and
initiated multifarious attacks, shown in Fig.3:

• Saved information is not stored encrypted within
media.

• The lack of configurable firewalls integrated into the
operating systems.

Evaluating Smartphone Application Security: A Case Study on Android

Figure 4 : Vulnerabilities of Smartphones
© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

11

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

i. Physical Control

Due to portability and mobility, smartphones are
likely to be lost or stolen. Then, sensitive information
stored in smartphones including address book,
communication records, usernames and passwords,
etc. can be accessed directly. Incorrect disposals of old
and damaged devices will cause similar problems.

ii. Spam
Spam is generally sent in SMS, MMS and email.

VoIP and Instant Messaging (IM) have also become
common ways for spamming. Spam may generally
cause virus infection, economic loss, or worse
influences.

iii. Malware
Malware [4], [5] is becoming the main threat to

smartphones. Flexible APIs not only enrich application
development, but also facilitate malware development.
Meanwhile, powerful connectivity also aggravates
malware spreading. In addition, smartphones can be
infected by malicious codes during synchronization with
personal computers or virus-infected storage media.
Furthermore, malware can also be spread in a variety of
ways, including Internet downloading, messaging
services and Bluetooth communications. In reality, users
are not always aware of downloaded applications’
functions. Even if applications have acquired explicit
user consent, users may be unaware that the
applications are executing malicious code.

iv. Backdoor
Backdoor attacks mainly result from system

bugs and disclosure of controlled APIs. Some operating
systems have security loopholes such as insufficient
authentication and inappropriate privileges. Based on
these vulnerabilities, attackers can bypass security
policies to access smartphones. In addition, if attackers
have controlled APIs, they can also access smartphones
like legitimate entities.

v. Peripheral Interfaces Attacks
Smartphones usually have many peripheral

interfaces, such as Wi-Fi, Bluetooth, USB, etc. While
peripheral interfaces can

increase smartphones

communication capabilities,

unfortunately, they also
become a popular steppingstone

for outside attacks.

 vi.

Radio and Wireless Attacks
 Due to the openness of

wireless communi-

cations, attackers can easily initiate

wireless attacks,
which can be clustered into two

categories:

active

attacks (spoofing, corruption, blocking,

modifying, etc.)

and passive attacks (sniffing,

eavesdropping, etc.).
Generally, passive attacks are

used as a prelude to

active attacks, by acquiring

necessary information such

as addresses and to

identify vulnerabilities of potential

targets.

IV.

Related Research Work

a)

Kirin
 Enck, et al. [22] have proposed a framework

 known as Kirin –

install-time certification mechanism

–
 that allows the mobile device to enforce a list of

pre-

defined security requirements prior to

installation
process of an application. During

installation of an

application the Android framework

informs the user
regarding the resources that can be

accessed by the

application but it cannot reflect the

possibility of using

different combinations of

permission in a malicious
manner. The Kirin

framework is contacted when

installation process for

an application package is
initiated. Kirin utilizes the

application’s manifest file

where all the required

permissions are listed and uses

the action string along

with the permissions to construct

a set of Prolog facts

Although Kirin is one of the first

security policy

extension for Android platform, it suffers

from the

common limitation of Smartphone security
systems

i.e. the policy expressibility is not sufficient

 enough

to express certain policies. Furthermore, the
policies

used by the Kirin framework are based on

blacklisting

and must be defined upfront. This means

that certain

set of permissions would be considered as

dangerous

by the policy writer but any combination of

these

permissions that is not explicitly termed as
dangerous

is treated safe by default.

b)

SCanDroid

 Fuchs, et al. [23] proposed SCanDroid
 framework for Android to perform information flow
 analysis on applications in order to understand the

flow

of information from one component to another
 component. Consider a case where an application
 request permission to access multiple data stores

i.e.,

public data store and private data store. The

application

requires permission for reading the data

from the private

store and writing data to the public

store. SCanDriod

analyzes the information flow of the

application and
report whether the application will

transfer the

information in the private store to the

public store or not.

However, SCanDroid also suffers

from the same
limitation of security policy

expressibility. In order to

Evaluating Smartphone Application Security: A Case Study on Android

Figure 5 : Attacks to Smartphones

consider some information flow to be dangerous, the

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

12

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

 policy writers must define

certain constraints prior to
executing the policy.

Similarly, if an information flow is

not explicitly

added to the set of constraints the
framework will

consider it to be safe.

 c)

Saint
 Ongtang, et al. [13] proposed Saint –

a

 framework that provides security policy constraints in

a

more expressive manner by defining install-time
 permission granting policies and runtime policies for
 inter-component communication. The framework

places

a number of dependency constraints on the

permissions

requested by the applications. These

constraints may

include the name of application,

versions, signatures
and set of other permissions. The

effectiveness of Saint

is based on its runtime policies

for which reference
monitors are used in the Android

framework. The

runtime policies are used to specify

constraints for both

the caller and callee

applications. These constraints
include permissions,

configurations, signatures and/or

the context in

which the application is used e.g., time,

location etc.

The framework enables an application to

protect and

restrict its interface from being used by
another

application. However, this framework is not

usercentric

as it gives the option of policy specification

to

the application developers and not to the user. In our

 opinion, as the owner of the device, the decision to
 grant or deny access to the device resources should
 remain with the user and

not with the application

 developers.

d)

Apex
 Apex [24] is an extension to the Android

 permission model that is more user-centric in

allowing

applications to access the device resources.

Apex
allows users to specify detailed runtime

constraints to

restrict the use of sensitive resources

by applications. It

is designed to overcome the

limitation that the Android

framework grants all the

permissions to an application,

which the application

requests at install time. At install

time the only way

to deny the permissions requested by

an application

is to abort the installation. In the same

way, the only

way of revoking permissions once they are

granted to

an application is to uninstall the application.

 Contrary to this, Apex enables users to define

conditions

that must be fulfilled by an application in

order to grant

requested permissions to it. This

means that it allows a

subset of the requested

permissions to be granted to

the application at

install-time. This way, user can start

using the

application with a limited

number of
permissions. The

user may extend the granted

permissions at a later

stage. However, there are some

limitations in the

Apex framework. In the current Android

architecture,

the application developers assume that all

the

permissions that their application requests will be

 present in the manifest file. The developers often do

not

handle the unexpected security exceptions that

are
thrown when an application requests to access

some

resource(s) but the application does not have

the
required permissions to access it. If these

exceptions

are not properly handled –

as may be the

case in
general –

then we assume that most of the

Android

applications will not catch the exceptions

and the
exception will reach to the end of the call

stack resulting

in the termination of the thread.

e)

Porscha
 Ongtang, et al. [25] have proposed Porscha

–

a

framework that enforces Digital Rights

Management
(DRM) policies –

designed specifically for

SMS, MMS

and Email services allowing the content

owners to
restrict access to their content by

specifying access

control policies based on certain

conditions like location

and number of times to view

a particular content etc.

However, it is designed to

facilitate different enterprises

and government

organizations with strictly controlled
access policies.

f)

CRePE

g) XManDroid

Bugiel, et al. [27] have proposed XManDroid –
extending monitoring on Android – to alleviate the
problem of application-level privilege escalation attacks
on Android. It analyzes the intercomponent
communication mechanism among different
applications in Android to ensure that these
communication links comply with the predefined security
policy. One of the major obstacles for the XManDroid is
to define and maintain useful policies as well as policy
exceptions. Some similar countermeasures against such
malicious applications have already been proposed.
Enck et al proposed “TaintDroid”, a system-wide
dynamic taint tracking system, in which multiple sources
of sensitive data are tainted and the taint is used as a
marker capable of real-time tracking of sensitive data
[5]. They implemented “TaintDroid” and the evaluation
results suggest that the overhead time for taint tracking
is about 29% at most.

Takemori et al proposed the “white-list”
measure which allows only secure and necessary

Evaluating Smartphone Application Security: A Case Study on Android

applications to work [6]. In the white-list all approved

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

13

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

Conti, et al. [26] have proposed CRePE – a
framework that enforces context-related fine-grained
access control policies. It allows users to define policies
that enable/ disable certain functionalities such as GPS,
read SMS or Bluetooth discovery, based on the context
of the device (e.g., location, noise, temperature, time,
and nearby devices etc.). Furthermore, the context may
also be defined by a trusted third party in scenarios
where enterprise wide policy need to be deployed for all
employees having Android smartphones. However, this
framework only focuses on enabling/disabling of certain
features of applications and cannot cope with the
vulnerabilities that are formed by the permission usage
across different applications.

 applications are shown. In order to prevent malicious
 applications from intruding, any unlisted application

will

be immediately deleted even if it is installed.

Kawabata

et al pointed out the risk that attackers

could execute

Java method by using JavaScript

downloaded from the

server and it may in turn cause

malicious behavior [7].

To counter this, they

proposed to conduct a static
analysis for Android

applications with JavaScript to

ascertain its threat

level.

 Chin et al mentioned vulnerability of
interapplication

Communication in Android [8]. They

 pointed out that some malicious components can
 eavesdrop and tamper with the “Intent” while

sending

and receiving a message between

applications. They

surveyed 100 applications and

revealed that they
undoubtedly have such

vulnerabilities. To realize this

security goal without

adding unnecessary burden to
developers, Harunobu

Agematsu proposed to prepare a

dedicated API called

"ADMS API" and to create
"Knowledge Database" which

security

manager could

use to judge malicious

behavior [4].

 The United States National Security Agency has
 recently announced the commencement of the
 SEAndroid (Security Enhanced Android) project as an
 addition to the Android kernel [20]. Similar to the

well

known

and widely deployed SELinux Linux kernel

patch,

the SEAndroid project aims to establish a fine

grained

Mandatory Access Control model. It is further

adjusted

and extended to meet the requirements

which arise on

the Android platform, e.g., to secure

inter process
communication [21]. Once integrated

into Android,

SEAndroid may indeed prevent some of

the attacks
presented. SEAndroid is still in a very

early development

stage. It is unknown when or if

SEAndroid will be
integrated into the default code

base of the operating

system.

V. Summary and Conclusion
We have elaborated the limitations in the current

Android security model in detail and in previous section
we have presented the existing research proposals for
improving overall Android security model. In this section
we detail some of the security requirements that need to
be taken into consideration while designing security
mechanisms for smartphones in general and Android in
particular. In order to alleviate the limitations and further
strengthen the Android security model, one of the most
important security concerns for the current smartphones
is the lack of a model that allow users to specify, at a
fine-grained level, which of the phone’s resources
should be accessible to third party applications. To
design policies that are fine-grained in expressibility and
are targeted to cater application-specific requirements is
one of the biggest challenges in proposing new security
enhancements. It requires a pre-design analysis of real
applications to gather a larger collection of likely

 scenarios where the fine-grained policies are

applicable.

While designing a new framework, it

should be capable

of specifying a set of detailed

runtime constraints to
restrict the use of sensitive

resources by applications.

For example, the user may

want to restrict certain
applications to access a

particular resource in a

particular context (e.g.,

time, location, and maximum
number of usage etc.)

without uninstalling the

application. This could be

achieved by designing a
framework that

allows

granting selective permissions at

install time as well

as monitor the use of these
 permissions at runtime by

employing certain usage

control mechanisms. The

growing number of malware

vulnerabilities has

augmented serious concerns over
security models for

the smartphones. The recent attacks

discussed in

[17], [19], [20] have shown how easily
some of the

Android security features can be overturned

by the

malware developers. While designing new
framework

or proposing enhancement to the Android

security

model, we should consider that the model
should not

be by-passable by the sophisticated

malware and/or

the applications installed on the device

as well as

new applications. The framework should be

designed

in such a manner that it can validate that the

system

is not tampered with. It should be able to
prevent

information leakage from the device in scenarios

 where a legitimate application is replaced with a

similar

one containing Trojans that spy on user’s

sensitive
information such as location, or, logs the

phone calls

and transfers that information to a

remote server.

References

Références

Referencias

1.

Google bets on Android future.

http://news.bbc.co.

 uk/2/hi/technology/7266201.stm
 2.

Hongwei Luo†‡, Guili He†, Xiaodong Lin§, and

 Xuemin(Sherman) Shen‡ “Towards

Hierarchical
Security

Framework for Smartphones” First IEEE

International Conference

on Communications in
China: Communications Theory and

Security (CTS)

2012.
 3.

P. Ferrill, “Exploring the android api,” Pro Android
Python with

SL4A, pp. 113–138, 2011.

 4.

Harunobu Agematsu, Junya Kani, Kohei Nasaka,
Hideaki

Kawabata “A proposal to realize the

provision of secure

Android applications” IEEE 2012

Sixth International

Conference on Innovative Mobile

and Internet Services in

Ubiquitous Computing.

 5.

J. Jamaluddin, N. Zotou and P. Coulton, “Mobile
phone

vulnerabilities: a new generation of malware,”

in Consumer

Electronics, 2004 IEEE International
Symposium on. IEEE, 2004,

pp. 199–202.

 6.

William Enck, Peter Gilbert, Byung-Gon Chun,
Landon P.

Cox,

Jaeyeon Jung, Patrick McDaniel,

Anmol N. Sheth :

“TaintDroid: An Information-

Flow

Tracking System for Realtime

Privacy Monitoring on

Evaluating Smartphone Application Security: A Case Study on Android

Smartphones”, Proceedings of the 9th USENIX

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

14

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

 Symposium on Operating Systems Design and
 implementation (OSDI’10), Canada, 2010.

 7.

Keisuke Takemori, Hideaki Kawabata, Takamasa
Isohara, Ayumu

Kubota, Jyunichi Ikeno: "Restriction

framework for Android

application -Whitelist-based

installation", IPSJ (The Information

Processing
Society of Japan) SIG (The Special Interest Group)

 technical reports, 2011-CSEC-53-2, pp.1-6, 2011.5
(in Japanese).

 8.

Hideaki Kawabata, Takamasa Isohara, Keisuke
Takemori, Ayumu

Kubota: "Threat of Script abuse

Android Permissions and Static

Analysis", IPSJ SIG

technical reports, 2011-CSEC-53-3, pp.1-6,

2011.5

(in Japanese).
 9.

A. Felt, M. Finifter, E. Chin, S. Hanna, and D.
Wagner, “A survey

of mobile malware in the wild,” in

Proceedings of the 1st ACM

workshopon Security

and privacy in smartphones and mobile

devices.
ACM, 2011, pp. 3–14.

 10.

Ruben Jonathan Garcia Vargas “Security Controls
for

Android” 2012 IEEE Fourth International

Conference on

Computational Aspects of Social
Networks (CASoN) 215.

 11.

R. Rogers, J. Lombardo, Z. Mednieks, and B.
Meike, Android

application development:

Programming with the Google SDK.

O’Reilly Media,

Inc., 2009.
 12.

C. Guo, H. Wang, and W. Zhu, “Smart-phone
attacks and

defenses,” in HotNets III, 2004.

 13.

C. Dagon, T. Martin, and T. Starner, “Mobile Phones
as

Computing Devices: the Viruses Are Coming,”

IEEE

Pervasive Computing, vol. 3, no. 4, 2004, pp.

11–15.
 14.

M. Goadrich and M. Rogers, “Smart smartphone
development: ios

versus android,” in Proceedings of

the 42nd ACM technical

symposium on Computer

science education. ACM, 2011, pp. 607–612.
 15.

SELinux project, “SEAndroid”, August 2012.

 16.

S. Salah, S. Abdulhak, H. Sug, D. Kang, and H. Lee,

 “Performance analysis of intrusion detection
systems for

smartphone security enhancements,” in

Mobile IT Convergence

(ICMIC), 2011 International

Conference on. IEEE, 2011, pp. 15–19.
 17.

M. Pelino, Predictions 2010: Enterprise Mobility
Accelerates

Again, Forrester, 2009.

 18.

Angel Alonso Parrizas, SANS Institute, “Securely
deploying

Android devices”, September 2011.

 19.

Jeter, L. Mani, M, Reinschmid, T., University of
Colorado, “SmartPhone Malware: The danger and
protective strategies”, 2011

August.[20] Android

Open Source Project, Google, “Android

Security
Overview”, 2011.

 20.

S. Smalley, “SE Android release.” SELinux Mailing
List, Mailing

List Archives (marc.info), January 2012.

 ttp://marc.info/?l=selinux&m=132588456202123&w
=2.

21. National Security Agency, “SEAndroid Project
Page,”January012.http://selinuxproject.org/page/SE
Android.

22. W. Enck, M. Ongtang, and P. McDaniel, “On
lightweight mobile phone application certification,” in
Proceedings of the 16th ACM conference on
Computer and Communications Security. ACM,
2009, pp. 235–245.

23. A. Fuchs, A. Chaudhuri, and J. Foster, “Scandroid:
Automated security certification of android
applications,” Manuscript, Univ. of Maryland,
http://www.cs.umd.edu/˜avik/projects/scandroidasc
aa.

24. M. Nauman, S. Khan, and X. Zhang, “Apex:
Extending android permission model and
enforcement with user-defined runtime constraints,”
in Proceedings of the 5th ACM Symposium on
Information, Computer and Communications
Security. ACM, 2010, pp. 328–332.

25. M. Ongtang, K. Butler, and P. McDaniel, “Porscha:
Policy oriented secure content handling in android,”
in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 221–230.

26. M. Conti, V. Nguyen, and B. Crispo, “Crepe:
Context-related policy enforcement for android,”
Information Security, pp. 331–345, 2011.

27. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.
Sadeghi, “Xmandroid: A new android evolution to
mitigate privilege escalation attacks,” TR-2011-04,
Technische Universit¨at Darmstadt, April. 2011.,
Tech. Rep.

Evaluating Smartphone Application Security: A Case Study on Android

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

15

(
DDDD D DDD

)
Y
e
a
r

01
3

2
E

	Evaluating Smartphone Application Security:A Case Study on Android
	Author's
	Keywords
	I. Introduction
	II. Security Framework of Smartphone
	III. Limitations of Current SecurityModel
	a) Vulnerabilities
	b) Attacks

	IV. Related Research Work
	a) Kirin
	b) SCanDroid
	c) Saint
	d) Apex
	e) Porscha
	f) CRePE
	g) XManDroid

	V. Summary and Conclusion
	References Références Referencias

