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Abstract

 
-
 

We present the results of a study comparing three strongly connected components 
algorithms. The goal of this work is to extend the understandings and to help practitioners choose 
appropriate options. During experiment, we compared and analysed strongly connected 
components algorithm by using dynamic graph representation (adjacency list). Mainly we focused on 
i. Experimental Comparison of strongly connected components algorithms. ii. Experimental Analysis 
of a particular algorithm.

  Our experiments consist large set of random directed graph with N number of vertices V and 
edges E to compute graph performance using dynamic graph representation. We implemented 
strongly connected graph algorithms, tested and optimized using efficient data structure. The article 
presents detailed results based on significant performance, preferences between SCC algorithms 
and provides practical recommenddations on their use. During experimentation, we found some 
interesting results particularly efficiency of Cheriyan-Mehlhorn-

 
Gabow's as it is more efficient in 

computing strongly connected components then Kosaraju's algorithm. 
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An Extended Experimental Evaluation of SCC 
(Gabow's vs Kosaraju's) based on Adjacency List 

Saleh Alshomrani α & Gulraiz Iqbal σ 

Abstract - We present the results of a study comparing three 
strongly connected components algorithms. The goal of this 
work is to extend the understandings and to help practitioners 
choose appropriate options. During experiment, we compared 
and analysed strongly connected components algorithm by 
using dynamic graph representation (adjacency list). Mainly 
we focused on i. Experimental Comparison of strongly 
connected components algorithms. ii. Experimental Analysis of 
a particular algorithm. 

Our experiments consist large set of random directed 
graph with N number of vertices V and edges E to compute 
graph performance using dynamic graph representation. We 
implemented strongly connected graph algorithms, tested and 
optimized using efficient data structure. The article presents 
detailed results based on significant performance, preferences 
between SCC algorithms and provides practical recommend-
dations on their use. During experimentation, we found some 
interesting results particularly efficiency of Cheriyan-Mehlhorn-
Gabow's as it is more efficient in computing strongly 
connected components then Kosaraju's algorithm.   
Keywords : graph algorithms, directed graph, SCC 
(strongly connected components), transitive closure. 

I. Introduction 

raphs are widely used in computer, mathematics 
as well in chemistry, biology and physics. Pair 
wise relation between objects e.g. Computer 

networks (Switches, routers and other devices are 
vertices and edges are wire / wireless connection 
between them), electrical circuits (vertices are diodes, 
transistors, capacitors, switched etc. and edges are wire 
connection between them), World Wide Web (web 
pages are vertices and hyperlink are edges) and 
Molecules (vertices are atoms and edges are bond 
between them) all benefits from the pair wise          
model [5, 6, 16]. There are some additional examples of 
common graph based data.  

• Traffic Networks, Locations are vertices and routes 
are vertices in traffic networks. 

• Scientific citation Network, Papers are vertices and 
edges are citation between papers. 

• Computer Network, PC's are vertices and network 
connections / devices are edges.  

• Social Network sites, People are vertices and their 
acquaintances are edges.   

 
 

   
  

 

Graph represent a collection of elements 
(Vertices or Nodes) V and connection between those 
elements are links known as edges E. Edges often have 
an associated weight and direction where edges weight 
might carry important data strength, importance or cost 
of an edge.   

The sections of this paper are divided as 
following. The introduction section provides an overview 
of the relevant research in this area along with graph 
notation and its application. Section 2 explains the 
extensive literature review such as current java graph 
libraries available, graph representation techniques and 
basic graph algorithms and scc graph algorithms. In 
section 3, we discuss the implementation, and section 4 
of the model is based on our experiments. Finally 
section 5 and 6 presents conclusions and some 
important future directions respectively.  

a) Notation & Basic definition of Directed Graph 

A directed graph G is a finite set of vertices V 

and set of directed edges E that forms the pair (V, E) 

and E ⊆ V × V  is a set of directed graph. If (v, u) ∈ E, 
then u is called immediate successor of v, and v is 
called immediate predecessor of u. 

Undirected graphs may be observed as a 
special kind of directed graphs, where directions of 
edges are unimportant (v, u) ∈ E ↔ (u, v) ∈ E 

[2, 6]. A 
directed graph G = (V, E) is called strongly connected if 
there is a path between v to u and u to v 

[6].
 

II.
 

Literature Review
 

The first task is to design and develop a flexible 
graph library such that the graph algorithm can be 
implemented and tested and their performance is 
analyzed using the library benchmark. Many graph 
libraries are available in java as well in other languages. 
Most of the java libraries use sequential approaches 
which are slower over large graphs. In

 

[3]

 
Kurt, Stefan, 

and Peter mention optimization technique. We have also 
adopted their technique and compared our results. 
Later on, we will compare our algorithm with other 
libraries to make it computationally fast. 

 

•
 

Annas, is an open source Java framework suitable 
for developers and researchers in the field of graph 
theory, graph structure, algorithms and distributed 
systems. It has many features such as support for 
directed & undirected graphs, multi graph, fully 

G 
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generic and has capability to export DOT, XML and 
adjacency matrix files [13]. 

• Jung, The java universal network / graph framework 
is an open source library which provides extensive 
modeling, analysis and visualization tool for the 
graph or network. JUNG architecture has flexible 
support to represent the entities and their relations, 
such as directed and undirected graph, hyper 
graphs, and graphs with parallel edges. It also 
includes graph theory, data mining, social network, 
optimization and random graph generator [12].  

• JGraphT, is an open source Java graph library using 
structured approach to implement graph algorithms. 
Most of the library classes are generic for the ease 
of users. In this library several graph algorithms are 
implemented using structured approach [11]. 

• JDSL is an open source data structure library in java 
using structured approach. It's a collection of java 
interfaces and classes that implement fundamental 
data structure. Advance and complex graph 
algorithms are not available in JDSL library. One of 
the powerful and safe operations on internal data 
structure representation is accessors 

[17]. 
 

During our work we used the existing libraries to 
implement different strongly connected components 
algorithms.  

 

a)
 

Graph Representation
 

There are many possible ways to represent a 
graph in computer program but according to 
Mark.C.Chu-Carroll, there are two standard techniques 
to represent graphs in computer.

 

i.
 

Adjacency Matrix / Matrix base Representation
 

An adjacency matrix is N×N matrix of 0/1 
values, where a vertex Vi,j

 
is 1 only if there is an edge 

between Vi

 
and Vj otherwise it is 0. If Graph is undirected 

then the matrix is symmetric Vi,j

 
= Vj,i. In case of directed 

graph then Vi,j=1 means that there is an edge from Vi

 
to 

Vj

 

[10]. Adjacency matrix is useful to add an edge. It 
requires O(1) time which is equal to the

 
time for the 

verification of an edge between two vertices but an extra 
computational effort is required. Adjacency matrix 
required extra memory to store large graphs. Few 
algorithms require knowledge of their adjacent vertices 
which results O

 
(|V|)

 
complexity

 

[10, 16].
 

ii.

 

Adjacency list / List based representations

 

An alternative representation for a graph G (V, 
E) is based on adjacency list. For each vertex we keep a 
list of all the vertices adjacent to the current vertex. We 
say that vertex Vi

 

is adjacent to vertex Vj

 

if (Vi, Vj)

 

∈

 

E. It 
requires less memory and in some particular situations it 
outperforms adjacency matrix such as it gets the list of 
adjacent vertices with in O (1). 

 

In our experiments we 
use adjacency list with a few improvements to avoid 
iterative procedure. In our implementation we maintain a 

list of all nodes adjacent to the current node. The time 
complexity for adjacency list is O (n+m) [10, 16]. 

The adjacency matrix is more effective when 
edges don't have data associated with them. In case of 
sparse graph adjacency matrix performance is poor and 
huge amount of memory is wasted. Adjacency list is 
efficient in case of sparse graph, it stores only the edges 
present in the graph and can store data associated to 
edges. Although there is no clear suggestion which 
graph representation is better, we selected adjacency 
list representation for our experiments [10]. 

b) Strongly Connected Components 

Let G = (V, E) be a directed graph, where C is a 
strongly connected components (SCC) of V. C is 
strongly connected if a maximal set of vertices after 
every two vertices (u, v) ∈ C are mutually reachable. 
There is a path from vertex u to v and v to u or if a sub 
graph is connected in a way that there is a path from 
each node to all other nodes. If a graph has the same 
property, then the graph is strongly connected 

[6. 16].   

Strongly connected components can be 
computed using different approaches as introduced by 
Tarjan's, Gabow and Kosaraju's. Tarjan's and Gabow 
algorithm require only one DFS, whereas Kosaraju's 
algorithm requires two DFS. In this paper we included 
Kosaraju's algorithm. The asymptotic analysis of such 
algorithm on dynamic graph representation algorithm is 
O(|v|+|E|) and O (|V|2) on adjacency matrix based 
implementation. As our implementation is based on 
adjacency list, it will take linear time to compute SCC 
which is similar to Tarjan's and Gabow's algorithm on 
dynamic graph representation. Our previous 
experiments indicate that Tarjan's algorithm is slower 
than Gabow's algorithm [16].  

c)
 

Depth First Search Algorithm
 

Depth first search is a technique to explore a 
graph using stack as the data structure. It starts from 
the root of the graph, explore its first child, explore the 
child of next vertex until it reaches the target matrix or to 
the final matrix which has no further child.

 
Then, back 

tracking is used to return the last vertex which is not yet 
completely explored. Modifying the post-visit and pre-
visit, DFS is used to solve many important problems and 
it takes O (|V|+|E|) steps.

 

i.
 

Pseudo-code: DFS
 

1.
 

DFS (v ): visits all the vertices reachable from v
 
in 

depth-first order.
 

2.
 

        Mark v as visited
 

3.
 

        for each edge v
 
→u :

 

4.
 

                      If u
 
is not visited

 

5.
 

                                        Call DFS (u)
 

d)
 

Kosaraju's
 
Algorithm

 

Kosaraju's strongly connected components 
algorithm is based on a trick that takes the directed    
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(depth first search), initially with an empty stack of 
vertices V and pushing vertices onto the stack

 
as 

recursion which started from vertices V and after 
completion of traversal vertices V will be available in the 
stack. To obtain reverse graph, all the edges of graph 
are reversed. It starts with the top vertex on the stack 
and traverses from that vertex. All vertices are reachable 
from that vertex such that it forms strongly connected 
components.   By removing SCC from the stack and 
repeating the process with the new obtained top of the 
stack, stack will be empty and a list of SCC is collected. 

 

i.
 

Pseudo-code: SCC
 

Input
 
:
 
DAG G= (V, E)

 

Output
 
:
 
Set of strongly connected components

 

Let S
 
be an empty stack

 

While S does not contain all vertices 
 

 
Choose an arbitrary vertex v

 
not in S

 
 

Start DFS (V)
 

            Push (u)
 

on S
 

Reverse the direction of all edges to obtain 
transpose graph.

 

For vertex v
 

with label n….1
 

and find all 
reachable vertices from v

 
and group them as an SCC.

 

e)
 

Cheriyan-Mehlhorn-Gabow Algorithms
 

Gabow strongly connected component is also 
similar to Kosaraju's algorithm. It accepts a directed 
graph as an input and result contains a collection of all 
possible strongly connected components. It also uses 
depth first search to explore all the nodes of the directed 
graph. Gabow algorithm maintains two stacks; one of 
them contains a list of nodes which are not yet 
computed as strongly connected components and other 
contains a set of nodes that do not belong to various 
strongly connected components. A counter is used to 
count number of visited nodes, which is used to 
compute preorder of the nodes [2, 3, and 4].

 

i.

 

Pseudo-Code: SCC

 

Input

 

:

 

DAG G= (V, E)

 

Output

 

:

 

Set of strongly connected components

 

1.

 

Lest S

 

and B

 

are empty stacks.

 

2.

 

Set the pre-order number v to C, and increment C.

 

3.

 

Push v

 

on S

 

and B.

 

4.

 

Por each edge v →u:

 

5.

 

If pre-order number of u

  

has not assigned.

  

6.

 

Start DFS(u).

 

7.

 

Else if u

 

has not yet been assigned to a scc.

 

8.

 

Repeatedly pop vertices from B

 

until the top 
element has a pre-order number less than or 
equal to pre-order number of u.

 

9.

 

If v

 

is the top element of B.

 

10.

 

Pop vertices from S

 

until v

 

has been popped and 
assign the popped vertices to a new component.

 

11.

 

Pop v

 

from B.

 
 
 

III. Implementation 

In our implementation we used only dynamic 
graph data structure that used linked lists for the 
adjacency list. The graph generator class makes sure 
that each vertex is stored in consecutive location in the 
adjacency list, as a fact dynamic implementation 
consumes more space then static graph data structure. 
The graph structure package contains interfaces and 
abstract classes to provide interface to different types of 
graphs such as Directed Graph. All classes mentioned 
in our method are Generic and user can use them by 
their own style. Graph package also contains many 
interfaces for different graphs and interfaces for the 
different algorithms describing that describe prerequisite 
method for the algorithms. The undirected graph is not 
currently used in our method, but it can be considered in 
future.  

We have used a lot of interfaces and abstract 
classes which helps in implementation of the graph 
classes. The directed graph interface defines many 
methods such that each node represents a unique data 
member of generic type and two nodes can't be added 
to graph if they representing the same node. The 
second attempt will be ignored and also multiple edges 
between two nodes are not allowed. An abstract 
Node<E> class node that also serves as an interface 
for the vertex of DirectedGraph<E> interface, each 
node maintains a list of its successors and 
predecessors.  Abstract Node<E> class also defines a 
set of protected methods that can be used to add and 
remove adjacent nodes.  They should only be used by 
implementers of the DirectedGraph<E> interface. A 
public integer data member num is introduced to avoid 
externally constructed mappings between the node and 
some integer (e.g. a dfs

GraphGenerator class implementing the 
interface of directed graph is specially designed for 
testing and benchmarking. Initializing the graph 
generator class by providing an instance of a class 
implementing the directed graph interface, all graphs 
generated are the instances of that class. This class is 
used to generate random, acyclic, dense, sparse and 
complete graphs.   

 number). It should only be used 
internally and never be a part of any public interface 
since its interpretation might be changed from one 
algorithm to another.  

IV. Experiments 

In our experiments we used GraphGenerator 
class to generate sparse and dense graph. Graph with 
minimal edges E=100 considered as a sparse graph 
and graph with maximum edges E = 500 is a dense 
graph. We designed benchmark which generates six 
graphs of same size as input and measure the run time 
computing strongly connected components of given 
graphs; we computed average time to obtain the 

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 X
I 
V
er
sio

n 
I 

  
  
 

  

55

  
 

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

graph G as an input and performs a recursive DFS 

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List



 

 

performance of specific algorithm on a specific number 
of nodes and edges. We also calculated standard 
deviation that indicates upper bounds and lower bounds 
to visualize the variations and outliers in the data set 
using error bars on chart.  Analysis of random graphs is 
also not easy because they contain random nodes, 
edges and dynamic memory.     

In our experiments we used dynamic graph 
data structure using linked list for the adjacency list. We 
use intel® Core™ i5-2410M CPU @2.30GHz with 4 GB 
of memory for computing our algorithms.  

We have used eclipse version Helios Service 
Release 2 as IDE for java developers in our experiments. 
We increased the heap size by providing the argument   
-Xms128m -Xmx1550m -XX: +UseParallelGC.  For 
recursive calls stack size is also important. In some 
scenarios such as on a large number of vertices and 
edges, stack over flow error occurs.  

a) Experiments on Kosaraju's Algorithm  
In these experiments, a set of random graph for 

each graph (Dense and Sparse) with minimum edges 
E=100 for sparse graph and maximum edges E=500 
for dense graph is generated. Figure 1 shows the 
running time difference between dense and sparse 
graph on N number of nodes. 

Kosaraju's algorithm compute strongly 
connected components efficiently with increase in 
number of nodes or increase in number of edges. So 
edges have a direct impact on its running time. 

i. Average Computation Time   
Figure 1 presents the results generated by one 

benchmark methods. It is clear from the figures that with 
increase in the number of nodes and edges, Kosaraju's 
strongly connected components algorithm takes more 
time to run.  

 

Figure 1 : Average completion time (y-axis) and average 
number of nodes (x-axis) of Kosaraju's, showing running 
time difference on Dense and Sparse in dynamic graph 

representation 

ii. Average Memory Consumption  

Figure 2 also presents the results generated by 
our benchmark methods. It's clear from the figure that 

with increase in the number of nodes and edges, 
Kosaraju's strongly connected component algorithm 
takes more memory to run.  

 
  

 

 

b) Experiments on Gabow's Algorithm  
We had the same set of experiments for 

Gabow's algorithm, for each graph (Dense and Sparse). 
We generated six random graph with minimum edges 
E=100 for sparse graph and maximum edges E=500 
for dense graph.  

We computed their average completion time 
and memory storage as the Figure 3 & 4 show the 
difference between dense and sparse graph on N 
number of nodes. Gabow's algorithm compute strongly 
connected components efficiently when numbers of 
edges are lower. So edges have a direct impact on its 
running time and memory. 

i. Average Computation Time 
In Figure 4, line chart is used to present the 

results generated by our benchmark which show that 
with increase in the number of nodes and edges 
Gabow's SCC algorithm takes more time to run.  

 

Figure 3 : Average completion time (y-axis) and average 
number of nodes (x-axis) of Gabow's, showing running 
time difference on Dense and Sparse in dynamic graph 

representation 
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Figure 2 : Average memory (y-axis) and average number 
of nodes (x-axis) of Kosaraju's, showing running 

memory consumption difference on Dense and Sparse 
in dynamic graph representation
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ii. Average Memory Consumption  

 
Figure 4 : Average memory (y-axis) and average number 
of nodes (x-axis) of Gabow's, showing running memory 

consumption difference on Dense and Sparse in 
dynamic graph representation 

c) Comparison on Completion Time  
The same data is used to compute average run 

time for each node. Also data is combined to get a 
unique data that is used to compare Kosaraju's and 
Gabow's algorithms. In Figure 5 & 6 average completion 
time is computed on sparse graph (E=100) and dense 
graph (E=500) for both Kosaraju's and Gabow's 
algorithm. Figure 5 & 6 show the statistics obtain during 
experiments on both algorithms with outliers identified. 
We ignored the outlier values shown in figure 5 & 6. 
Performance of both algorithms is remarkable; as 
Gabow's algorithm take less completion time and 
variation then Kosaraju's algorithm.  Kosaraju's algorithm 
is simple in implementation.  

 

Figure 5 : Average completion time (y-axis) and average 
number of nodes (x-axis) of Kosaraju's and Gabow's 
SCC algorithms, showing running time difference on 

dense in dynamic graph representation  

 

Figure 6 : Average completion time (y-axis) and average 
number of nodes (x-axis) of Kosaraju's and Gabow's 
SCC Algorithm, showing running time difference on 

Sparse in dynamic graph representation 

d) Comparison on Completion Memory  

 

Figure 7 : Average memory (y-axis) and average number 
of nodes (x-axis) of Gabow's and Kosaraju's, showing 
running memory consumption difference on Dense in 

dynamic graph representation 

 

Figure 8
 
:
 
Average memory (y-axis) and average number 

of nodes (x-axis) of Gabow's and Kosaraju's, showing 
running memory consumption difference on

 
Sparse in 

dynamic graph representation
 

Results and figures obtained from the bench-
mark, it's concluded that memory consumption is similar 
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for both Kosaraju's and Gabow's algorithms but their 
runtime is different. 

V. Conclusions 

In our research, we analyzed & compared 
Kosaraju's and Gabow's strongly connected component 
algorithms to find their suitability for various 
applications. We produced dense and sparse graphs 
randomly to compute memory difference of the both the 
algorithms. We found that Gabow algorithm is shorter, 
simpler and more elegant. Kosaraju's algorithm takes 
more time then to Gabow's algorithm on both dense and 
sparse graph.  

VI. Future Work 
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There are some limitations in our experiments. 
In a limited data set, we produced six graphs with 
N=3900, using sparse graph E=100 and dense 
E=500 to compute average run time memory and 
average completion time. In future we will develop a 
large graph with increase in the stack size and java VM 
heap size. 

In this research, we have focused on Kosaraju's 
and Gabow's algorithms only and data structure used is 
adjacency list. In future, we would implement Brute's 
algorithm to compute strongly connected components 
using a hybrid algorithm and as well involving other data 
structures for graph. 
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