
© 2013. Saleh Alshomrani & Gulraiz Iqbal. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Network, Web & Security
Volume 13 Issue 11 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Extended Experimental Evaluation of SCC (Gabow's vs
Kosaraju's) based on Adjacency List

 By Saleh Alshomrani & Gulraiz Iqbal

 King Abdulaziz University, Saudi Arabia

Abstract

-

We present the results of a study comparing three strongly connected components
algorithms. The goal of this work is to extend the understandings and to help practitioners choose
appropriate options. During experiment, we compared and analysed strongly connected
components algorithm by using dynamic graph representation (adjacency list). Mainly we focused on
i. Experimental Comparison of strongly connected components algorithms. ii. Experimental Analysis
of a particular algorithm.

 Our experiments consist large set of random directed graph with N number of vertices V and
edges E to compute graph performance using dynamic graph representation. We implemented
strongly connected graph algorithms, tested and optimized using efficient data structure. The article
presents detailed results based on significant performance, preferences between SCC algorithms
and provides practical recommenddations on their use. During experimentation, we found some
interesting results particularly efficiency of Cheriyan-Mehlhorn-

Gabow's as it is more efficient in

computing strongly connected components then Kosaraju's algorithm.

Keywords

: graph algorithms, directed graph, SCC (strongly connected components), transitive

closure.

GJCST-E

Classification

:

C.2.6

 An Extended Experimental Evaluation of SCC Gabows vs Kosarajusbased on Adjacency List

 Strictly as per the compliance and regulations of:

An Extended Experimental Evaluation of SCC
(Gabow's vs Kosaraju's) based on Adjacency List

Saleh Alshomrani α & Gulraiz Iqbal σ

Abstract - We present the results of a study comparing three
strongly connected components algorithms. The goal of this
work is to extend the understandings and to help practitioners
choose appropriate options. During experiment, we compared
and analysed strongly connected components algorithm by
using dynamic graph representation (adjacency list). Mainly
we focused on i. Experimental Comparison of strongly
connected components algorithms. ii. Experimental Analysis of
a particular algorithm.

Our experiments consist large set of random directed
graph with N number of vertices V and edges E to compute
graph performance using dynamic graph representation. We
implemented strongly connected graph algorithms, tested and
optimized using efficient data structure. The article presents
detailed results based on significant performance, preferences
between SCC algorithms and provides practical recommend-
dations on their use. During experimentation, we found some
interesting results particularly efficiency of Cheriyan-Mehlhorn-
Gabow's as it is more efficient in computing strongly
connected components then Kosaraju's algorithm.
Keywords : graph algorithms, directed graph, SCC
(strongly connected components), transitive closure.

I. Introduction

raphs are widely used in computer, mathematics
as well in chemistry, biology and physics. Pair
wise relation between objects e.g. Computer

networks (Switches, routers and other devices are
vertices and edges are wire / wireless connection
between them), electrical circuits (vertices are diodes,
transistors, capacitors, switched etc. and edges are wire
connection between them), World Wide Web (web
pages are vertices and hyperlink are edges) and
Molecules (vertices are atoms and edges are bond
between them) all benefits from the pair wise
model [5, 6, 16]. There are some additional examples of
common graph based data.

• Traffic Networks, Locations are vertices and routes
are vertices in traffic networks.

• Scientific citation Network, Papers are vertices and
edges are citation between papers.

• Computer Network, PC's are vertices and network
connections / devices are edges.

• Social Network sites, People are vertices and their
acquaintances are edges.

Graph represent a collection of elements
(Vertices or Nodes) V and connection between those
elements are links known as edges E. Edges often have
an associated weight and direction where edges weight
might carry important data strength, importance or cost
of an edge.

The sections of this paper are divided as
following. The introduction section provides an overview
of the relevant research in this area along with graph
notation and its application. Section 2 explains the
extensive literature review such as current java graph
libraries available, graph representation techniques and
basic graph algorithms and scc graph algorithms. In
section 3, we discuss the implementation, and section 4
of the model is based on our experiments. Finally
section 5 and 6 presents conclusions and some
important future directions respectively.

a) Notation & Basic definition of Directed Graph

A directed graph G is a finite set of vertices V

and set of directed edges E that forms the pair (V, E)

and E ⊆ V × V is a set of directed graph. If (v, u) ∈ E,
then u is called immediate successor of v, and v is
called immediate predecessor of u.

Undirected graphs may be observed as a
special kind of directed graphs, where directions of
edges are unimportant (v, u) ∈ E ↔ (u, v) ∈ E

[2, 6]. A
directed graph G = (V, E) is called strongly connected if
there is a path between v to u and u to v

[6].

II.

Literature Review

The first task is to design and develop a flexible
graph library such that the graph algorithm can be
implemented and tested and their performance is
analyzed using the library benchmark. Many graph
libraries are available in java as well in other languages.
Most of the java libraries use sequential approaches
which are slower over large graphs. In

[3]

Kurt, Stefan,

and Peter mention optimization technique. We have also
adopted their technique and compared our results.
Later on, we will compare our algorithm with other
libraries to make it computationally fast.

•

Annas, is an open source Java framework suitable
for developers and researchers in the field of graph
theory, graph structure, algorithms and distributed
systems. It has many features such as support for
directed & undirected graphs, multi graph, fully

G

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

53

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

Authors α σ : Department of Information Systems, Faculty of
Computing and Information Technology, King Abdulaziz University,
Jeddah, Saudi Arabia. E-mail : sshomrani@kau.edu.sa

generic and has capability to export DOT, XML and
adjacency matrix files [13].

• Jung, The java universal network / graph framework
is an open source library which provides extensive
modeling, analysis and visualization tool for the
graph or network. JUNG architecture has flexible
support to represent the entities and their relations,
such as directed and undirected graph, hyper
graphs, and graphs with parallel edges. It also
includes graph theory, data mining, social network,
optimization and random graph generator [12].

• JGraphT, is an open source Java graph library using
structured approach to implement graph algorithms.
Most of the library classes are generic for the ease
of users. In this library several graph algorithms are
implemented using structured approach [11].

• JDSL is an open source data structure library in java
using structured approach. It's a collection of java
interfaces and classes that implement fundamental
data structure. Advance and complex graph
algorithms are not available in JDSL library. One of
the powerful and safe operations on internal data
structure representation is accessors

[17].

During our work we used the existing libraries to
implement different strongly connected components
algorithms.

a)

Graph Representation

There are many possible ways to represent a
graph in computer program but according to
Mark.C.Chu-Carroll, there are two standard techniques
to represent graphs in computer.

i.

Adjacency Matrix / Matrix base Representation

An adjacency matrix is N×N matrix of 0/1
values, where a vertex Vi,j

is 1 only if there is an edge

between Vi

and Vj otherwise it is 0. If Graph is undirected

then the matrix is symmetric Vi,j

= Vj,i. In case of directed

graph then Vi,j=1 means that there is an edge from Vi

to

Vj

[10]. Adjacency matrix is useful to add an edge. It
requires O(1) time which is equal to the

time for the

verification of an edge between two vertices but an extra
computational effort is required. Adjacency matrix
required extra memory to store large graphs. Few
algorithms require knowledge of their adjacent vertices
which results O

(|V|)

complexity

[10, 16].

ii.

Adjacency list / List based representations

An alternative representation for a graph G (V,
E) is based on adjacency list. For each vertex we keep a
list of all the vertices adjacent to the current vertex. We
say that vertex Vi

is adjacent to vertex Vj

if (Vi, Vj)

∈

E. It
requires less memory and in some particular situations it
outperforms adjacency matrix such as it gets the list of
adjacent vertices with in O (1).

In our experiments we
use adjacency list with a few improvements to avoid
iterative procedure. In our implementation we maintain a

list of all nodes adjacent to the current node. The time
complexity for adjacency list is O (n+m) [10, 16].

The adjacency matrix is more effective when
edges don't have data associated with them. In case of
sparse graph adjacency matrix performance is poor and
huge amount of memory is wasted. Adjacency list is
efficient in case of sparse graph, it stores only the edges
present in the graph and can store data associated to
edges. Although there is no clear suggestion which
graph representation is better, we selected adjacency
list representation for our experiments [10].

b) Strongly Connected Components

Let G = (V, E) be a directed graph, where C is a
strongly connected components (SCC) of V. C is
strongly connected if a maximal set of vertices after
every two vertices (u, v) ∈ C are mutually reachable.
There is a path from vertex u to v and v to u or if a sub
graph is connected in a way that there is a path from
each node to all other nodes. If a graph has the same
property, then the graph is strongly connected

[6. 16].

Strongly connected components can be
computed using different approaches as introduced by
Tarjan's, Gabow and Kosaraju's. Tarjan's and Gabow
algorithm require only one DFS, whereas Kosaraju's
algorithm requires two DFS. In this paper we included
Kosaraju's algorithm. The asymptotic analysis of such
algorithm on dynamic graph representation algorithm is
O(|v|+|E|) and O (|V|2) on adjacency matrix based
implementation. As our implementation is based on
adjacency list, it will take linear time to compute SCC
which is similar to Tarjan's and Gabow's algorithm on
dynamic graph representation. Our previous
experiments indicate that Tarjan's algorithm is slower
than Gabow's algorithm [16].

c)

Depth First Search Algorithm

Depth first search is a technique to explore a
graph using stack as the data structure. It starts from
the root of the graph, explore its first child, explore the
child of next vertex until it reaches the target matrix or to
the final matrix which has no further child.

Then, back

tracking is used to return the last vertex which is not yet
completely explored. Modifying the post-visit and pre-
visit, DFS is used to solve many important problems and
it takes O (|V|+|E|) steps.

i.

Pseudo-code: DFS

1.

DFS (v): visits all the vertices reachable from v

in

depth-first order.

2.

 Mark v as visited

3.

 for each edge v

→u :

4.

 If u

is not visited

5.

 Call DFS (u)

d)

Kosaraju's

Algorithm

Kosaraju's strongly connected components
algorithm is based on a trick that takes the directed

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

54

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List

(depth first search), initially with an empty stack of
vertices V and pushing vertices onto the stack

as

recursion which started from vertices V and after
completion of traversal vertices V will be available in the
stack. To obtain reverse graph, all the edges of graph
are reversed. It starts with the top vertex on the stack
and traverses from that vertex. All vertices are reachable
from that vertex such that it forms strongly connected
components. By removing SCC from the stack and
repeating the process with the new obtained top of the
stack, stack will be empty and a list of SCC is collected.

i.

Pseudo-code: SCC

Input

:

DAG G= (V, E)

Output

:

Set of strongly connected components

Let S

be an empty stack

While S does not contain all vertices

Choose an arbitrary vertex v

not in S

Start DFS (V)

 Push (u)

on S

Reverse the direction of all edges to obtain
transpose graph.

For vertex v

with label n….1

and find all
reachable vertices from v

and group them as an SCC.

e)

Cheriyan-Mehlhorn-Gabow Algorithms

Gabow strongly connected component is also
similar to Kosaraju's algorithm. It accepts a directed
graph as an input and result contains a collection of all
possible strongly connected components. It also uses
depth first search to explore all the nodes of the directed
graph. Gabow algorithm maintains two stacks; one of
them contains a list of nodes which are not yet
computed as strongly connected components and other
contains a set of nodes that do not belong to various
strongly connected components. A counter is used to
count number of visited nodes, which is used to
compute preorder of the nodes [2, 3, and 4].

i.

Pseudo-Code: SCC

Input

:

DAG G= (V, E)

Output

:

Set of strongly connected components

1.

Lest S

and B

are empty stacks.

2.

Set the pre-order number v to C, and increment C.

3.

Push v

on S

and B.

4.

Por each edge v →u:

5.

If pre-order number of u

has not assigned.

6.

Start DFS(u).

7.

Else if u

has not yet been assigned to a scc.

8.

Repeatedly pop vertices from B

until the top
element has a pre-order number less than or
equal to pre-order number of u.

9.

If v

is the top element of B.

10.

Pop vertices from S

until v

has been popped and
assign the popped vertices to a new component.

11.

Pop v

from B.

III. Implementation

In our implementation we used only dynamic
graph data structure that used linked lists for the
adjacency list. The graph generator class makes sure
that each vertex is stored in consecutive location in the
adjacency list, as a fact dynamic implementation
consumes more space then static graph data structure.
The graph structure package contains interfaces and
abstract classes to provide interface to different types of
graphs such as Directed Graph. All classes mentioned
in our method are Generic and user can use them by
their own style. Graph package also contains many
interfaces for different graphs and interfaces for the
different algorithms describing that describe prerequisite
method for the algorithms. The undirected graph is not
currently used in our method, but it can be considered in
future.

We have used a lot of interfaces and abstract
classes which helps in implementation of the graph
classes. The directed graph interface defines many
methods such that each node represents a unique data
member of generic type and two nodes can't be added
to graph if they representing the same node. The
second attempt will be ignored and also multiple edges
between two nodes are not allowed. An abstract
Node<E> class node that also serves as an interface
for the vertex of DirectedGraph<E> interface, each
node maintains a list of its successors and
predecessors. Abstract Node<E> class also defines a
set of protected methods that can be used to add and
remove adjacent nodes. They should only be used by
implementers of the DirectedGraph<E> interface. A
public integer data member num is introduced to avoid
externally constructed mappings between the node and
some integer (e.g. a dfs

GraphGenerator class implementing the
interface of directed graph is specially designed for
testing and benchmarking. Initializing the graph
generator class by providing an instance of a class
implementing the directed graph interface, all graphs
generated are the instances of that class. This class is
used to generate random, acyclic, dense, sparse and
complete graphs.

 number). It should only be used
internally and never be a part of any public interface
since its interpretation might be changed from one
algorithm to another.

IV. Experiments

In our experiments we used GraphGenerator
class to generate sparse and dense graph. Graph with
minimal edges E=100 considered as a sparse graph
and graph with maximum edges E = 500 is a dense
graph. We designed benchmark which generates six
graphs of same size as input and measure the run time
computing strongly connected components of given
graphs; we computed average time to obtain the

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

55

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

graph G as an input and performs a recursive DFS

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List

performance of specific algorithm on a specific number
of nodes and edges. We also calculated standard
deviation that indicates upper bounds and lower bounds
to visualize the variations and outliers in the data set
using error bars on chart. Analysis of random graphs is
also not easy because they contain random nodes,
edges and dynamic memory.

In our experiments we used dynamic graph
data structure using linked list for the adjacency list. We
use intel® Core™ i5-2410M CPU @2.30GHz with 4 GB
of memory for computing our algorithms.

We have used eclipse version Helios Service
Release 2 as IDE for java developers in our experiments.
We increased the heap size by providing the argument
-Xms128m -Xmx1550m -XX: +UseParallelGC. For
recursive calls stack size is also important. In some
scenarios such as on a large number of vertices and
edges, stack over flow error occurs.

a) Experiments on Kosaraju's Algorithm
In these experiments, a set of random graph for

each graph (Dense and Sparse) with minimum edges
E=100 for sparse graph and maximum edges E=500
for dense graph is generated. Figure 1 shows the
running time difference between dense and sparse
graph on N number of nodes.

Kosaraju's algorithm compute strongly
connected components efficiently with increase in
number of nodes or increase in number of edges. So
edges have a direct impact on its running time.

i. Average Computation Time
Figure 1 presents the results generated by one

benchmark methods. It is clear from the figures that with
increase in the number of nodes and edges, Kosaraju's
strongly connected components algorithm takes more
time to run.

Figure 1 : Average completion time (y-axis) and average
number of nodes (x-axis) of Kosaraju's, showing running
time difference on Dense and Sparse in dynamic graph

representation

ii. Average Memory Consumption

Figure 2 also presents the results generated by
our benchmark methods. It's clear from the figure that

with increase in the number of nodes and edges,
Kosaraju's strongly connected component algorithm
takes more memory to run.

b) Experiments on Gabow's Algorithm
We had the same set of experiments for

Gabow's algorithm, for each graph (Dense and Sparse).
We generated six random graph with minimum edges
E=100 for sparse graph and maximum edges E=500
for dense graph.

We computed their average completion time
and memory storage as the Figure 3 & 4 show the
difference between dense and sparse graph on N
number of nodes. Gabow's algorithm compute strongly
connected components efficiently when numbers of
edges are lower. So edges have a direct impact on its
running time and memory.

i. Average Computation Time
In Figure 4, line chart is used to present the

results generated by our benchmark which show that
with increase in the number of nodes and edges
Gabow's SCC algorithm takes more time to run.

Figure 3 : Average completion time (y-axis) and average
number of nodes (x-axis) of Gabow's, showing running
time difference on Dense and Sparse in dynamic graph

representation

-1

0

1

2

21
00

22
50

24
00

25
50

27
00

28
50

30
00

31
50

33
00

34
50

36
00

37
50

39
00

A v
er

ag
e

Co
m

pl
et

io
n

Ti
m

e
(m

s)

No. of Node created, Sparse E = 100
, Dense E = 500 Dense

0

500

1000

1500

2100240027003000330036003900

A v
er

ag
e

Co
m

pl
et

io
n

M
em

or
y

 (m
)

No. of Node created, Sparse E = 100
, Dense E = 500 Dense

-0.2
0

0.2
0.4
0.6

21
00

22
50

24
00

25
50

27
00

28
50

30
00

31
50

33
00

34
50

36
00

37
50

39
00

A v
er

ag
e

Co
m

pl
et

io
n

Ti
m

e
(m

s)

No. of Node created, Sparse E = 100
, Dense E = 500 Dense

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

56

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

Figure 2 : Average memory (y-axis) and average number
of nodes (x-axis) of Kosaraju's, showing running

memory consumption difference on Dense and Sparse
in dynamic graph representation

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List

ii. Average Memory Consumption

Figure 4 : Average memory (y-axis) and average number
of nodes (x-axis) of Gabow's, showing running memory

consumption difference on Dense and Sparse in
dynamic graph representation

c) Comparison on Completion Time
The same data is used to compute average run

time for each node. Also data is combined to get a
unique data that is used to compare Kosaraju's and
Gabow's algorithms. In Figure 5 & 6 average completion
time is computed on sparse graph (E=100) and dense
graph (E=500) for both Kosaraju's and Gabow's
algorithm. Figure 5 & 6 show the statistics obtain during
experiments on both algorithms with outliers identified.
We ignored the outlier values shown in figure 5 & 6.
Performance of both algorithms is remarkable; as
Gabow's algorithm take less completion time and
variation then Kosaraju's algorithm. Kosaraju's algorithm
is simple in implementation.

Figure 5 : Average completion time (y-axis) and average
number of nodes (x-axis) of Kosaraju's and Gabow's
SCC algorithms, showing running time difference on

dense in dynamic graph representation

Figure 6 : Average completion time (y-axis) and average
number of nodes (x-axis) of Kosaraju's and Gabow's
SCC Algorithm, showing running time difference on

Sparse in dynamic graph representation

d) Comparison on Completion Memory

Figure 7 : Average memory (y-axis) and average number
of nodes (x-axis) of Gabow's and Kosaraju's, showing
running memory consumption difference on Dense in

dynamic graph representation

Figure 8

:

Average memory (y-axis) and average number

of nodes (x-axis) of Gabow's and Kosaraju's, showing
running memory consumption difference on

Sparse in

dynamic graph representation

Results and figures obtained from the bench-
mark, it's concluded that memory consumption is similar

0
500

1000
1500

2100240027003000330036003900

Av
er

ag
e

Co
m

pl
et

io
n

M
em

or
y

(m
s)

No. of Node created, Sparse E = 100 … Dense

-0.5
0

0.5
1

1.5
2

21
00

22
50

24
00

25
50

27
00

28
50

30
00

31
50

33
00

34
50

36
00

37
50

39
00

A v
er

ag
e

Co
m

pl
et

tio
n

Ti
m

e
(m

s)

No. of Node created, Dense E = 500 Kosaraju

-0.1
0

0.1
0.2
0.3
0.4

21
00

22
50

24
00

25
50

27
00

28
50

30
00

31
50

33
00

34
50

36
00

37
50

39
00

A v
er

ag
e

Co
m

pl
et

io
n

Ti
m

e
(m

s)

No. of Node created, Sparse E = 100 Kosaraju

0

500

1000

1500

2100240027003000330036003900

A v
er

a g
e

Co
m

pl
et

io
n

M
em

or
y

(m
)

No. of Node created, Dense E = 500 Kosaraju

0

100

200

300

2100240027003000330036003900A v
er

a g
e

Co
m

pl
et

io
n

M
em

or
y

(m
)

No. of Node created, Sparse E = 100 Kosaraju

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

57

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List

for both Kosaraju's and Gabow's algorithms but their
runtime is different.

V. Conclusions

In our research, we analyzed & compared
Kosaraju's and Gabow's strongly connected component
algorithms to find their suitability for various
applications. We produced dense and sparse graphs
randomly to compute memory difference of the both the
algorithms. We found that Gabow algorithm is shorter,
simpler and more elegant. Kosaraju's algorithm takes
more time then to Gabow's algorithm on both dense and
sparse graph.

VI. Future Work

References Références Referencias

1.

J.E.

Hopcroft and R.E. Kosaraju. Dividing a graph

into triconnected compoents. SIAM Journal on
Computing. 2(3): 135-158, 1973.

2.

Jiri Barnat, Petr Bauch, Lubos Brim, and Milan
Ceska, Computing strongly connected components
in parallel on CUDA, IEEE 2011 International Parallel
& Distributed Processing Symposium.

3.

Kurt Mehlhorn, Stefan Naher and Peter Sanders,
Engineering DFS based Graph Algorithms, Partially
supported by DFG grant SA 933/3-1, 2007.

4.

H.N. Gabow. Path-based depth first search strong
and biconnected components, Information
Processing Letters, 74(3-4):107-114, 2000.

5.

Marije de Heus, Towards a Library of Parallel Graph
Algorithm in Java, 14th

Twente Student conference

on IT January 21st

2011.

6.

Robert Sedgewick, Kevin Wayne, The Text Book
Algorith 4th Edition http://algs4.cs.princeton.edu/

home/

retrieved on 04-2012.

7.

Stefan Steinhaus, The text book, Comparisons of
mathematical programs for data Analysis (Edition
5.04) July 2008.

8.

Jiri Barnat, Jakub Chaloupka, Jaco van de Pol,
Distributed algorithms for SCC decomposition,
Journal of Logic and Computation, volume 21(1),
2011, 23-44.

9. David Easley and Jon Kleinberg, Reasoning about a
highly connected world, Textbook, Cambridge
University Press, 2010.

10. Mark C. Chu-carroll, The website Science blog
http://scienceblogs.com/goodmath/2007/10/compu
ting_strongly_connected_c.php retrieved on 03-
2012.

11. Jgraph website, http://www.jgraph.com/ retrieved
on 03-2012.

12. JUNG (Java Universal Network / Graph Framework)
website, http://jung.sourceforge.net/ retrieved on
03-2012.

13. ANNAS website, https://sites.google.com/site/annas
project/ retrieved on 09-2012.

14. S. G. Shirinivas, S. Vetrivel and Dr. N. M. Elango,
Application of graph theory in computer science an
overview, International Journal of Engineering
Science and Technology, Vol. 2(9), 2010,
4610-4621.

15. Danny Holten, Petra Isenberg, Jarke J. van Wijk and
Jean-Daniel Fekete, An Extended Evaluation of the
Readability of Tapered, Animated, and Textured
Directed-Edge Representations in Node-Link
Graphs, Pacific Visualization Symposium (Pacific
Vis), 2011 IEEE.

16. Saleh Alshomrani, Gulraiz Iqbal, Analysis of Strongly
Connected Components (SCC) Using Dynamic
Graph Representation, IJCSI, Vol. 9, Issue 4, No 1,
July 2012.

17. Steven Skeina, The Stony brook algorithm
Repository, http://www.cs.sunysb.edu/~algorith/im
plement/jdsl/implement.shtml, retrieved on 03-2012.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

58

(
DD DD DDDD

)
Y
e
a
r

01
3

2
E

There are some limitations in our experiments.
In a limited data set, we produced six graphs with
N=3900, using sparse graph E=100 and dense
E=500 to compute average run time memory and
average completion time. In future we will develop a
large graph with increase in the stack size and java VM
heap size.

In this research, we have focused on Kosaraju's
and Gabow's algorithms only and data structure used is
adjacency list. In future, we would implement Brute's
algorithm to compute strongly connected components
using a hybrid algorithm and as well involving other data
structures for graph.

An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List

	An Extended Experimental Evaluation of SCC (Gabow's vs Kosaraju's) based on Adjacency List
	Author's
	Keywords
	I. Introduction
	a) Notation & Basic definition of Directed Graph

	II. Literature Review
	a) Graph Representation
	b) Strongly Connected Components
	c) Depth First Search Algorithm
	d) Kosaraju's Algorithm
	e) Cheriyan-Mehlhorn-Gabow Algorithms

	III. Implementation
	IV. Experiments
	a) Experiments on Kosaraju's Algorithm
	b) Experiments on Gabow's Algorithm
	c) Comparison on Completion Time
	d) Comparison on Completion Memory

	V. Conclusions
	VI. Future Work
	References Références Referencias

