
© 2013. Chinta Someswara Rao, K. Butchi Raju & Dr. S. Viswanadha Raju. This is a research/review paper, distributed under the terms
of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 11 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

String Matching Problems with Parallel Approaches –

An
Evaluation for the Most Recent Studies

 By Chinta Someswara Rao, K. Butchi Raju

& Dr. S. Viswanadha Raju

Andhra University, India

Abstract

-

In recent years string matching plays a functional role in many application like information

retrieval, gene analysis, pattern recognition, linguistics, bioinformatics etc. For understanding the
functional requirements of string matching algorithms, we surveyed the real time parallel string
matching patterns to handle the current trends. Primarily, in this paper, we focus on present
developments of parallel string matching, and the central ideas of the algorithms and their
complexities. We present the performance of the different algorithms and their effectiveness. Finally
this analysis helps the researchers to develop the better techniques.

Keywords

:

text processing, irs, string matching, parallel algorithms.

GJCST-C Classification :

I.1.2

String Matching Problems with Parallel Approaches An Evaluation for the Most Recent Studies

Strictly as per the compliance and regulations of:

String Matching Problems with Parallel
Approaches – An Evaluation for the Most

Recent Studies
Chinta Someswara Rao α, K. Butchi Raju σ & Dr. S. Viswanadha Raju ρ

Abstract - In recent years string matching plays a functional
role in many application like information retrieval, gene
analysis, pattern recognition, linguistics, bioinformatics etc.
For understanding the functional requirements of string
matching algorithms, we surveyed the real time parallel string
matching patterns to handle the current trends. Primarily, in
this paper, we focus on present developments of parallel
string matching, and the central ideas of the algorithms and
their complexities. We present the performance of the different
algorithms and their effectiveness. Finally this analysis helps
the researchers to develop the better techniques.
Keywords : text processing, irs, string matching, parallel
algorithms.

I. INTRODUCTION
he problem of string matching has been studied
from several decades. String matching problem is
all about searching a given pattern of interesting

length in a large text. The problem is very practical in its
nature: it occurs in many real-worlds applications such
as web search engines, linguistics, bioinformatics etc.
This is the reason why algorithms should be efficient
even if the speed and capacity of storage of computers
increase regularly. String matching performs important
tasks in many applications including information
retrieval; library systems, artificial intelligence, pattern
recognition, molecular biology, and text search and edit
systems. The challenge is that for the string matching to
be accurate, it needs to be able to search every byte of
every input data streaming for a potential match from a
large set of strings [1-7].

The main contributions of this work are
summarized as follows. This work offers a
comprehensive study as well as the results of typical
parallel string matching algorithms at various aspects
and their application on computing models. This work
suggests the most efficient algorithmic models and
demonstrates the performance gain for both synthetic
and real data. The rest of this work is organized as,
review typical algorithms, algorithmic models and finally
conclude the study.
Author α : Assistant Professor, Dept of CSE, SRKR Engineering
College, Bhimavaram, A.P., India.

E-mail : chinta.someswararao@gmail.com

Author σ : Associate Professor, Department of CSE, GRIET,
Hyderabad, A.P., India.

Author ρ : Professor & HOD, Department of CSE, JNTUH College of
Engineering, Kondagattu, Jagithyala, A.P., India.

II. OUR CONTRIBUTION

Thousands of papers, literally, have been
published about string matching, exploring the multitude
of theoretical and practical facets of this fascinating
fundamental problem. For example let us consider
text(T)length of n and pattern(P) length of m. suppose
there is an occurrence of P in T, it means the text string
ti,ti+1..ti+m-1 equal to P, so that H(ti,ti+1..ti+m-
1,P)=0. Many other algorithms have been published;
some are faster on the average, use only constant
auxiliary space, operate in real-time, or have other
interesting benefits. This work categorizes the
algorithms into some categories to emphasize the data
structure that drives the matching. These categories are
discussed here.

a) Intrusion Detection Systems (Ids)
Yongin-si et.al [8] proposed an algorithm that

maps target patterns onto parallel string matching
architectures in intrusion detection systems(IDS). In this
iterative pattern mapping, the sets of patterns that are
mapped onto string matchers are stored in ascending
order of the average pattern length in each turn. By
mapping a set of patterns for a string matcher onto the
string matchers repeatedly, the required number of
string matchers is reduced. Therefore, the proposed
iterative pattern mapping minimizes the total memory
requirement for parallel string matching architecture.

i. DFA Based Approaches
Issues in accelerating DFA-based multi-pattern

matching have received much attention in recent years
by several researchers. Here we discuss some of them.
Hongbin Lu et al.,[9] propose a memory-efficient
multiple-character-approaching architecture consisting
of multiple parallel deterministic finite automata (DFAs),
called TDP-DFA. By employing efficient representations
for the transition rules in each DFA, TDP-DFA
significantly reduces the complexity. They also present a
novel scheme to share the storage of transition rules
among multiple DFAs, substantially decreasing the total
storage cost, and avoiding the cost increase being
proportional to the number of DFAs. They evaluate this
design through theoretical analysis and comprehensive
experiments.

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Results show that TDP-DFA is able to meet the
critical requirement of OC-768 wire speed processing,
as well as constituting a promising way for scaling up to
cope with throughput over 100 Gb/s in the future.

Experimental Results: Using the pattern set
from Snort, they extract 2234 distinct substrings
containing 33 793 characters from the signature

database. In their prototype, the space for each state
field in a CDLE entry is 2 bytes, allowing the maximum
number of states up to 65 536. This is large enough
considering the maximum number they measured in real
cases is less than 6000. Similarly, the “Action ID” field in
an entry of the associated RAM also occupies 2 bytes. It
is shown in the Fig.1.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

SR
A

M
(B

yt
es

)

Time

s=10 s=20 s=30

Figure 1

:

Trade off for t

Yi-Hua E. Yang et al.,[10] proposed a novel
partitioning algorithm which converts an AC-DFA into a
"head" and a "body" parts. The head part behaves as a
traditional ACDFA that matches the pattern prefixes up
to a predefined length; the body part extends any head
match to the full pattern length in parallel body-tree
traversals. Taking advantage of the SIMD instructions in
modern x86-64 multi-core processors, they design
compact and efficient data structures packing multi-path
and multi-stride pattern segments in the body-tree.
Compared with an optimized AC-DFA solution, their
head-body matching (HBM) implementation achieves
1.2x to 3x throughput performance when the input
match (attack) ratio varies from 2% to 32%, respectively.
Their HBM data structure is over 20x smaller than a fully-
populated AC-DFA for both Snort and ClamAV
dictionaries.

The aggregated throughput of their HBM
approach scales almost 7x with 8 threads to over 10
Gbps in a dual-socket quad-core Opteron (Shanghai)
server.

b)

Parallel Processing based Approaches

K.L. Chung et al.,[11] presents an O(n) time
parallel algorithm for finding all initial palindromes and
periods of the string matching on an n × n
reconfigurable mesh(RM) where n is the length of the
string. They provide a partitionable strategy when the
RM doesn’t offer sufficient processers under the same

strategy. This overcomes the hardware limitation and is
very suitable for VLSI implementation.

Heikki Hyyro and Gonzalo Navarro [12]
presented a new bit-parallel technique for approximate
string matching. They build on two previous techniques.
The first one, BPM (Myers, 1999), searches for a pattern
of length m in a text of length n permitting k differences
in O (nwm //) time, where w is the width of the

computer word. The second one, ABNDM (Navarro and
Raffinot, 2000), extends a sublinear-time exact algorithm
to approximate searching. ABNDM relies on another
algorithm, BPA (Wu and Manber, 1992), which makes
use of an)//(nwmkO time algorithm for its internal

workings. BPA is slow but flexible enough to support all
operations required by ABNDM. They improve previous
ABNDM analyses, showing that it is average-optimal in
number of inspected characters, although the overall
complexity is higher because of the)/(wmkO

work

done per inspected character. They then show that the
faster BPM can be adapted to support all the operations
required by ABNDM. This involves extending it to
compute edit distance, to search for any pattern suffix,
and to detect in advance the impossibility of a later
match. The solution to those challenges is based on the
concept of a witness, which permits sampling some
dynamic programming matrix values to bound, deduce

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

2

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

average-optimal for m ≤ w, assuming the alphabet size
is constant. In practice, it performs better than the
original ABNDM and is the fastest algorithm for several
combinations of m, k and alphabet sizes that are useful,
for example, in natural language searching and
computational biology. To show that the concept of
witnesses can be used in further scenarios, they also
improve a recent variant of BPM. The use of witnesses
greatly improves the running time of this algorithm too.

M. Oguzhan Külekci [13] proposed a new bit-
parallel algorithm, given name BLIM (bit-parallel length
independent matching), and for exact pattern matching
that does not restrict the input pattern to be shorter than
the word size. The multiple pattern case is also
addressed, and it is shown that up to computer word
size number of patterns, whatever their lengths are, can
be searched simultaneously in a single bit-parallel
framework. Similar to other algorithms of this genre,
BLIM is also capable of handling fixed-length gaps and
character classes in the input strings as well. The
proposed algorithm is compared with the other
alternatives of its class, mainly the shift-or and BNDM
variants. Experimental results indicate that BLIM is
compatible with the previous bit-parallel algorithms with
an additional gain of overcoming the word size

new faster string matching algorithm, but a new
approach identifying the use of bits in a different
manner. Each bit in the proposed scheme represents an
event, and the observations performed during the
investigation alter these events according to the pre
computed masks. In the exact pattern matching
problem examined in this study, the events correspond
to the alignments of the patterns in a window, and the
observations are actually the characters accessed.

Jorg Nolte And Paul Horton [14] discuss an
experimental application that exploits TACO’s
distributed object groups and collective operations for
computing the similarity between groups of molecular
sequences, a computationally intensive core problem in
molecular biology research. In particular they show how
TACO’s distributed collections can be conveniently
combined with well known concepts found in the C++
standard template library (STL) to solve matching and
sorting problems effectively on distributed hardware
platforms. Figure 2 shows the results of the
measurements using both a binary tree (par. red-2) and
a 4-ary tree (par. red-4) topology. TACO’s
implementation is by all means in the competitive range
and the reduction on the 4-ary tree topology even
outperforms the MPI-based implementation.

0

50

100

150

200

250

300

50 100 150 200 250 300 350

Ti
m

e S
ec

on
ds

Group Size

par.red-2

mpi-bc- red

par.red-4

Figure 2 : TACO VS.MPI

c)

Aho Corasick based Approaches
 Many researchers propose the different

hardware architectures based on the Aho-Corasick
algorithm for accelerating string matching. Here we
discuss one of them.

 Kuo-Kun Tseng et al.,[15] propose a new
Parallel Automaton string matching approach and its
hardware architecture for content filtering coprocessor.
This new approach can

improve the average matching

time of the Parallel Automaton with Pre-Hashing and
Root-Indexing techniques. The Pre-Hashing technique
uses a hashing function to verify quickly the text against
the partial patterns in the Automaton, and the Root-

Indexing technique matches multiple bytes for the root
state in one single matching. A popular Automaton
algorithm, Aho-Corasick (AC) is chosen to be
implemented by adding the two techniques; they
employ these two techniques in a memory efficient
version of AC namely

Bitmap AC. For the average-case
time, their approach improves Bitmap AC by 494% and
224% speedup for URL and Virus patterns, respectively.
Since Pre-

Hashing and Root-Indexing techniques can
be concurrently executed with Bitmap AC in the

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

limitation. The main contribution of this study is not a or compute others fast. The resulting algorithm is

hardware, their proposed approach has the same worst-
case time as Bitmap AC.

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

Yunho Oh, Doohwan Oh and Won W. Ro

[16]

proposed a new parallel genome matching algorithm
using graphics processing units (GPUs). Their proposed
approach is based on the Aho–Corasick algorithm and it
was developed based on a consideration of the
architectural features of existing GPUs with a hundred or
more cores. Thus, they provide an appropriate task
partitioning method that runs on multiple threads and
they fully utilize the cache memory and the shared
memory structures available in GPUs. Especially, they
propose a tiled access method for rapid data transfer
from the global memory to the shared memory. They
also provide new models for cache-friendly state
transition table to improve performance of pattern
matching operations on GPUs. The maximum
throughput they achieved in various experiments was
15.3Gbps.

For the performance evaluation, they selected

five genome sequences and used the EST database
provided by the UC Santa Cruz Genome Browser

as the
pattern set. The details of the input sequences are
described in Table 2(a). In order to analyze

the
performance of modern GPU architectures, all
experiments were performed using an NVIDIA GTX 285
(GT200 architecture) and a GTX 480 (Fermi
architecture).

J. J. ASTRAIN et al.,[17] apply a genetic

algorithm to adjust the automaton parameters for
selecting the ones best fit to a particular application.
They have introduced a genetic algorithm to adjust the
parameters of a deformed fuzzy automaton. They
propose the use of genetic algorithms for the automatic
parameter tuning of a deformed fuzzy automaton and
they validate it for the approximate string matching
problem .This genetic approach overcomes the difficulty
of using common optimizing techniques like gradient
descent, due to the presence of non derivable functions
in the calculus of the automaton transitions.
Experimental results, obtained in a text recognition
experience, validate the proposed methodology.

Yoginder S Dandass et al.,[18] describes

techniques for accelerating the performance of the
string set matching problem with particular emphasis on
applications in computational proteomics. The process
of matching peptide sequences against a genome
translated in six reading frames is part of a
proteogenomic mapping pipeline that is used as a case-
study. The Aho-Corasick algorithm is adapted for
execution in field programmable gate array (FPGA)
devices in a manner that optimizes space and
performance. In this approach, the traditional Aho-
Corasick finite state machine (FSM) is split into smaller
FSMs, operating in parallel, each of which matches up
to

20 peptides in the input translated genome. Each of
the smaller FSMs is further divided into five simpler
FSMs such that each simple FSM operates on a single
bit position in the input (five bits are sufficient for

representing all amino acids and special symbols in
protein sequences). This bit-split organization of the
Aho-Corasick implementation enables efficient utilization
of the limited random access memory (RAM) resources
available in typical FPGAs. The use of onchip RAM as
opposed to FPGA logic resources for FSM
implementation also enables rapid reconfiguration of the
FPGA without the place and routing delays associated
with complex digital designs. Experimental results show
storage efficiencies of over 80% for several data sets.
Furthermore, the FPGA

implementation executing at 100
MHz is nearly 20 times faster than an implementation of
the traditional Aho Corasick algorithm executing on a
2.67 GHz workstation.

 d)

Finite Automata Based Approaches

Gerald Tripp [19] describes a finite state

machine approach to string matching for an intrusion
detection system. To obtain high performance, they
typically need to be able to operate on input data that is
several bytes wide. However, finite state machine
designs become more complex when operating on
large

input data words, partly because of needing to
match the starts and ends of a string that may occur
part way through an input data word. Here they use
finite state machines that each operates on only a single
byte wide data input. They then provide a separate finite
state machine for each byte wide data path from a multi-
byte wide input data word. By splitting the search strings
into multiple interleaved substrings and by combining
the outputs from the individual finite state machines in
an appropriate way

they can perform string matching in
parallel across multiple finite state machines. A
hardware design for a parallel string matching engine
has been generated, built for implementation in a Xilinx
Field Programmable Gate Array and tested by
simulation. The design is capable of operating at a
search rate of 4.7 Gbps with a 32-bit input word size.

Panagiotis D. Michailidis and Konstantinos

G.Margaritis[20] proposed a linear processor
architecture for flexible string matching. This architecture
is a bit-parallel realization of the non-deterministic finite
automation, which minimizes the amount of data flow
between adjacent cells. Initially a bit-level algorithm is
discussed which consists of two phases, i.e.
preprocessing and searching. Then, starting from the

data dependence graph of the searching phase
processor array architecture is derived. Further, the
preprocessing phase is also accommodated onto the
same processor array design.

Junchen Jiang et al.,[21] proposed a multi-

string matching acceleration scheme named Synergic
Parallel Compact Finite Automata (SPC-FA) Matching
System together with its conflict-free dispatching
algorithm and the corresponding memory optimization

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

4

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

mechanisms. Their scheme can be understood as
consisting of k SPC-FAs, each of which processes one

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

of every k characters from the input stream and can
achieve a speed up factor of k

13
10

with low memory

occupation.

e)

Prefix

based Approaches

Abdelghani Bellaachia and Iehab Al Rassan
[22] proposed a Tagged Sub-optimal code (TSC), a new
coding technique to speed up string matching over
compressed databases on personal digital assistants
(PDA). TSC is a variable-length sub-optimal code that
supports minimal prefix property. It always determines
its codeword boundary without traversing a tree or
lookup table. TSC technique may be beneficial in many
types of applications: speeding up string matching over
compressed text, and speeding decoding process. This
paper also presents two algorithms for string matching
over compressed text using TSC (SCTT) and the Byte
Pair Encoding (BPE) technique (SCTB). Several
experiments were conducted to compare the
performance of TSC, Byte Pair Encoding (BPE), and
Huffman code. Several PDA databases with different
record sizes were used: the well-known

Calgary dataset
and a set of small-sized PDA databases. Experimental
results show that SCTT is almost twice as fast as the
Huffman-based algorithm. SCTT has also the same
performance in search time as the search in
uncompressed databases and is faster than the SCTB

algorithm. For frequently updated PDA databases such
as phone books, to-do list, and memos, SCTT is the
recommended method regardless of the size of the
average record length, since the time required to
compress the updated records using BPE poses
significant delays compared to TSC.

Experimental Results: The experimental results
for Searching over Compressed Text using BPE (SCTB)
and Searching over Compressed Text using TSC (SCTT)
solutions are presented, which was shown in the figure
3. A library application was developed on a Palm OS
handheld device. The application supports basic
functions such as adding, deleting, or modifying an
article entry, where each entry is a record consisting of
author, title, and subject fields. Different sized database
records and different record numbers in each database
were loaded and implemented for testing purposes.
Both searching techniques were implemented in the
library application to allow searching while databases
were in compressed form. C language with CodeWarrior
compiler version 4.01 was the development environment
used for designing and implementing the library
application. Figure 3 shows the searching time using the
SCTT, SCTB, and Huffman-based methods. Results
show that SCTT is 88% faster than Huffman-based and
92% slower than SCTB-SO. Moreover, SCTT is 22%
slower than the SCTB-Linear solution.

 Figure 3

:

Searching Time on PDA

 Figure 4 shows the searching time using the
SCTT, SCTB, and Huffman-based methods compared
to a linear search over uncompressed databases for
small-sized records. Results show that SCTT is 85%
faster than Huffman-based and 6% faster than SCTB-
SO. In addition, SCTT is 15% faster than the SCTB-
Linear solution for small-sized records.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Se
ar

ch
 T

im
e

in
 M

ill
iS

ec
on

ds

Average Record Length

SCTT Linear SCTB-L SCTB-SO Huffman(SO)

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

Figure 4

:

Searching time on PDA for small-sized records

f)

Hardware Related based Approaches

Leena Salmela, Jorma Tarhio and Petri Kalsi
[23] proposed the improvements for FAAST algorithm, a
variation of Boyer-Moore string matching problem for k-
mismatches. FAAST is specifically tuned for small
alphabets. They further improve FAAST algorithm
gaining speedups in both preprocessing and searching.
They also present three variations of the algorithm for
the k-difference problem. They show that the searching
time of the algorithms is average-optimal and the
preprocessing also has a lower time complexity than
FAAST. Their experiments show that their algorithm for
the k-mismatch problem is about 30% faster than
FAAST and the new algorithms compare well against
other state-of-the-art algorithms for approximate string
matching.

Mihai Oltean[24] proposed a solution for finding
a pattern P of length m in text T of length n. They
describe a special device which can do string matching
by performing n–m + 1 text-to-pattern comparisons.
The proposed device uses light and optical filters for
performing computations. Two physical
implementations are proposed. One of them uses
colored glass and the other one uses

polarizing filters.

They have made an in-depth analysis of the strengths
and of the weaknesses of each method. At first sight
they can infer that polarizing filters are more stable than
colored glass for the string matching problem. The
physical implementation of the proposed devices might
be time consuming, so these methods might not bring
such a great benefit unless they find some real-world
cases where there are no other options for
implementation but the ones they have proposed.
However, the greatest benefit is that they have shown

that string matching can be efficiently done by using the
massive parallelism of the light.

Guang-Ming Tan et al.,[25] proposed an
attempt to design efficient multiple pattern searching
algorithms on multi-core architectures.

They observe an

important feature which indicates that the multiple
pattern matching time mainly depends on the number
and minimal length of patterns. The multi-core algorithm
proposed in this paper leverages this feature to
decompose pattern set so that the parallel execution
time is minimized. They formulate the problem as an
optimal decomposition and scheduling of a pattern set,
and then propose a heuristic algorithm, which takes
advantage of dynamic programming and greedy
algorithmic techniques, to solve the optimization
problem. Experimental results suggest that their
decomposition approach can increase the searching
speed by more than 200% on a 4-core AMD Barcelona
system.

Experimental Results:

The input text and
patterns are randomly generated. The length of the input
text is 10 million bytes; the lengths of patterns follow a
random distribution in a range [2; 200]. The number of
patterns is set to be {10 000; 20 000; 40 000}. They
examine the parallel algorithms on a commercial multi-
core processor,

AMD Barcelona. It is a quad-

core
processor which features a highly integrated design with
all four cores on a single die with shared resources.
Each core has its own private 128KB L1 cache and
512KB L2 cache. All four cores share a common L3
cache that is at least 2MB in size. The full system
provides an aggregate memory bandwidth of 21.4 GB/s
and 54.4 GFlops/s peak performances. The compiler
used in the experiment is GCC 4.1.

Fig.5 shows a

0

5

10

15

20

25

177 182 184 192 194 196

Se
ar

ch
 T

Im
e

in
 S

ec
on

ds

Average Record Length
SCTT Linear SCTB-L SCTB-SO Huffman(SO)

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

6

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

comparison suggests that their proposed parallel
optimization can increase the searching speed by more

than 200% and the performance advantage is higher
when the pattern number increases.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3

T
im

e(
S)

No. Patterns(x 104)

Naïve

Decomposition

Scheduling

Figure 5 : Comparison of execution time. X-axis is the number of patterns

Fig.6 plots the scalability of the final parallel
program with an increasing number of cores. The result

shows that the parallel program achieves sub-linear
speed up from 1 core to 4 cores.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

N
ai

ve

No.Cores

No.Patts=10000

No.Patts=20000

No.Patts=40000

Figure 6 : Scalability of the parallel programs for different problem sizes, x-axis is the number of cores

g) Other Approaches
Hung-Che Shen, and, Chungnan Lee [26]

proposed a “Whistle for Music” system which enables
users to retrieve MIDI format music by whistling a
melodic fragment. Three essential components are
query processing, MIDI preprocessing and an
approximate search engine. For query processing, they
have achieved a real-time and robust whistle-to-MIDI
converter. For feature extraction, the proposed MIDI
preprocessing can extract individual, local and global
melodic descriptions from MIDI files. In order to match
query with target, they extend an existing search engine
into a fast approximate melodic matching engine. Based

on the integration of those three components, the
system can return a list of MIDI files that are ranked by
how closely they match the whistling. The systematic
evaluation for the query-by- whistling system is finally
performed. Although the content is focused on MIDI
data, the unified algorithmic framework is suitable for a
wide range of applications in music information retrieval.
They have demonstrated three essential components: a
melody transcription (a query processing), a MIDI
preprocessing (feature extraction) and melodic AGREP
(a search engine). One major feature in their system
implementation is that “Whistle for music” is fast enough
for “searching while whistling.” The other feature is that

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

7

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

comparison of the parallel searching time. The

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

they provide detailed description of extracting multi-level
melodic descriptions from a MIDI database. In order to
provide a more sophisticated MIR system, they explore
the query representation by individual, local and global
descriptions. In addition, they have provided a helpful
sight whistling tutor for derive a high-quality query.
Finally, they have shown that the issue of scaling with
database size can be studied by simulation. Given error
distances between queries and targets, they can plot
the expected number of queries whose correct targets
will be ranked over a specific database size. The results
show that careful measurement and objective
comparisons can lead us to know the scaling trend
about query and target. One encouraging aspect is that
the performance can be predicted based on the
evaluation methods.

HU Yue et al.,[27] proposed a complete
automaton and its high-speed construction algorithm for
large-scale U-, V-, and U-V-uncertain multiple strings,
including two or more uncertain strings interlaced with
one another. The maximum number of parallel complete
automation of the V-uncertain string is also given. This
paper reveals that there are two kinds of pretermissions,
i.e., similarly-connected and interlaced string
pretermissions, and that mistake may appear in the
matching of the regular expressions, or states in the
automaton may increase in number, if the intersection of
the U-uncertain strings sets and the homologous
subsequent special point in the U-uncertain strings sets
are not eliminated from the whole system.

B. N. Araabi et al.,[28] presents a
syntactic/semantic string representation scheme as well
as a string matching method as part of a computer-

assisted system to identify dolphins from photographs
of their dorsal fins. A low-level string representation is
constructed from the curvature function of a dolphin’s fin
trailing edge, consisting of positive and negative
curvature primitives. A high-level string representation is
then built over the low-level string via merging
appropriate groupings of primitives in order to have a
less sensitive representation to curvature fluctuations or
noise. A family of syntactic/semantic distance measures
between two strings is introduced. A composite distance
measure is then defined and used as a dissimilarity
measure for database search, highlighting both the
syntax (structure or sequence) and semantic (attribute
or feature) differences. The syntax consists of an
ordered sequence of significant protrusions and
intrusions on the edge, while the semantics consist of
seven attributes extracted from the edge and its
curvature function. The matching results are reported for
a database of 624 images corresponding to 164
individual dolphins. The identification results indicate
that the developed string matching method performs
better than the previous matching methods including
dorsal ratio, curvature, and curve matching. The
developed computer-assisted system can help marine
mammalogists in their identification of dolphins, since it
allows them to examine only a handful of candidate
images instead of the currently used manual searching
of the entire database. The figure 7 describes the
percentage of test images with first correct match VS
number of database individuals examined before
catching the correct match.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Cu
m

ul
at

iv
e P

er
ce

nt
ag

e

No of Attempts

Hybrid matching
string matching
curve matching
curvature matching
DR matching

Figure 7

:

Dolphin photo identification

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

8

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

III.

CONCLUSIONS

In this study, we widely investigate the problem
of sequential and parallel approaches in the context of
string matching. An outline of string corresponding is
made, in which the special forms of parallel string
matching problem are also distinguished, and the
classifications of parallel string matching problem are
discussed.We importantly review different classifications
of parallel string matching algorithms. Based on this
study, a number of positive suggestions are made which
will cooperative to the researchers for developing better
techniques.

References Références Referencias

1.

Chinta Someswararao, K Butchiraju, S Viswanadha

 Raju, “Recent Advancement is Parallel Algorithms
for String matching on computing models -

A survey

and experimental results”, LNCS, Springer,

pp.270-

278, ISBN: 978-3-642-29279-8,

2011.

 2.

Chinta Someswararao, K Butchiraju, S Viswanadha
 Raju, “PDM data classification from STEP-

an object

oriented String matching approach”, IEEE
conference on Application of Information and
Communication Technologies, pp.1-9, ISBN:

978-1-

61284-831-0, 2011.
 3.

Chinta Someswararao, K Butchiraju, S Viswanadha

 Raju, “Recent Advancement is Parallel Algorithms
for String matching -

A survey and experimental

results”, IJAC, Vol 4 issue 4, pp-91-97, 2012.
 4.

Simon Y. and Inayatullah M., “Improving
Approximate Matching Capabilities for Meta Map
Transfer Applications,” Proceedings of Symposium
on Principles and Practice of Programming in Java,
pp.143-147, 2004.

 5.

Chinta Someswararao, K Butchiraju, S Viswanadha
 Raju, “Parallel Algorithms for String Matching

Problem based on Butterfly Model”, pp.41-56,
IJCST, Vol. 3, Issue 3, July –

Sept, ISSN 2229-4333,

2012.
 6.

Chinta Someswararao, K Butchiraju, S Viswanadha

 Raju,

“Recent Advancement is String matching
algorithms-

A survey and experimental results”,

IJCIS,Vol 6 No 3, pp.56-61, 2013.
 7.

S. viswanadha raju,”parallel string matching
algorithm using grid”, “international journal of
distributed and parallel systems” (ijdps) vol.3, no.3,
2012.

 8.

Yongin-si, Gyeonggi “An iterative Pattern Mapping
For parallel string matching Architecture In Intrusion
Detection Systems” , IEICE Electronics Express,

 Vol.9,

No.11, pp.985-989, 2012.

 9.

Lu, H., Zheng, K., Liu, B., Zhang, X., and Liu, Y. “A
memory-efficient parallel string matching
architecture for high-speed intrusion detection”,
Selected Areas in Communications, IEEE Journal
on,

pp.1793-1804, 2006.

10.

Yang, Y-HE, Viktor K. Prasanna, and Chenqian
Jiang. "Head-body partitioned string matching for
deep packet inspection with scalable and attack-
resilient performance." In

Parallel & Distributed
Processing (IPDPS), IEEE International Symposium
on, pp. 1-11, IEEE, 2010.

11.

K.L. Chung, Taipei and H.N.Chen, Taoyaun” Parallel
Finding All Palindromes and Periods of a String on
Reconfigurable Meshes”, Computing, pp.11-21,
1998.

12.

Heikki Hyyro and Gonzalo Navarro “Bit-Parallel
Witnesses and Their Applications to Approximate
String Matching”, Algorithmica, pp.203-221, 2004.

13.

M. Oguzhan Külekci” BLIM: A New Bit-Parallel
Pattern Matching Algorithm Overcoming Computer
Word Size Limitation”, Mathematics in Computer
Science, pp.407-420, 2010.

14.

Jorg Nolte and Paul Horton, “Parallel Sequence
Matching with TACO’s Distributed Object Groups –

A Case Study from Molecular Biology”, Cluster
Computing, pp.71-77, 2001.

15.

Tseng, Kuo-Kun, Ying-Dar Lin, Tsern-Huei Lee, and
Yuan-Cheng Lai. “A parallel automaton string
matching with pre-hashing and root-indexing
techniques for content filtering coprocessor”,

Architecture Processors, 2005. ASAP 2005. 16th
IEEE International Conference on application-
Specific Systems, pp. 113-118. IEEE, 2005.

16.

Yunho Oh, Doohwan Oh and Won W. Ro” GPU-
Friendly Parallel Genome Matching with Tiled
Access and Reduced State Transition Table”, Int J
Parallel Prog, pp.526-551, 2013.

17.

J. J. Astrain, J. R. Garitagoitia, J. R. Gonzalez De
Mendivil, J. Villadangos, F. Farin A “Approximate
String Matching Using Deformed Fuzzy Automata: A
Learning Experience”, Fuzzy Optimization and
Decision Making, pp.141-155, 2004.

18.

Yoginder S Dandass, Shane C Burgess, Mark
Lawrence, and Susan M Bridges “Accelerating
String Set Matching in FPGA Hardware for
Bioinformatics Research”, BMC Bioinformatics,
pp.1-11, 2008.

19.

Gerald Tripp, “A parallel “String Matching Engine for
use in high speed network intrusion detection
systems”, J Comput Virol, pp.21-34, 2006.

20.

Michailidis, Panagiotis D., and Konstantinos G.
Margaritis. “Bit-level processor array architecture for
flexible string matching”, In

proceedings of the 1st
Balkan Conference in Informatics, pp. 517-526.
2003.

21.

Jiang, Junchen, Yi Tang,

Bin Liu, Xiaofei Wang, and
Yang Xu., “Synergic Parallel Compact Finite
Automatons for Accelerating Multi-String Matching”,

Proceedings of the 5th ACM/IEEE Symposium on

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

9

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Architectures for Networking and Communications
Systems, pp.163-164, 2009.

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

22.

Abdelghani Bellaachia And Iehab Al Rassan” String
Matching Over Compressed Text on Handheld
Devices Using Tagged Sub-Optimal Code (TSC)”,
Real-Time Systems, pp. 227-246, 2005.

23.

Leena Salmela, Jorma Tarhio and Petri Kalsi
“Approximate Boyer-Moore String Matching for
Small Alphabets” Algorithmica, pp.591-609, 2010.

24.

Mihai Oltean” Light-based string matching”, Nat
Comput, pp. 121-132, 2009.

25.

Guang-Ming Tan, Ping Liu, Dong-Bo Bu and Yan-
Bing Liu” Revisiting Multiple Pattern Matching
Algorithms for Multi-Core Architecture”, Journal of
Computer Science and Technology, pp.

866-874,

2011.

26.

Hung-Cche Shen, Chung-Nan Lee, “Content-based
MIDI Music Retrieval and Computer-aided
Composition Based on Musical Whistling”, 2006.

27.

HU Yue, GAO QingShi, GUO Li, WANG PeiFeng”
Giant complete automaton for uncertain multiple
string matching and its high speed construction
algorithm”, Information Sciences, pp.1562-1571,
2011.

28.

B. N. Araabi, N. Kehtarnavaz, T. Mckinney, G.
Hillman, B. Wu Rsig” A String Matching Computer-
Assisted System for Dolphin Photoidentification”,
Annals of Biomedical Engineering, Vol. 28, pp.
1269–1279, 2000.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

10

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies

	String Matching Problems with Parallel Approaches – An Evaluation for the Most Recent Studies
	Author's
	Keywords
	I. INTRODUCTION
	II. OUR CONTRIBUTION
	a) Intrusion Detection Systems (Ids
	b) Parallel Processing based Approaches
	c) Aho Corasick based Approaches
	d) Finite Automata Based Approaches
	e) Prefixbased Approaches
	f) Hardware Related based Approaches
	g) Other Approaches

	III. CONCLUSIONS
	References Références Referencias

