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On the   Call Center Queue Modeling 
and Analysis 

Nwonye Chukwunoso

Abstract - The  model is the most widely applied 

queueing model in the mathematical analysis of call centers. 
The  model is also referred to as the Erlang Loss 

System. The Erlang loss model does not take into 
consideration system attributes such as blocking and busy 
signals, balking and reneging, retrials and returns. Although, 
the Erlang loss model is analytically tractable, it is not easy to 
obtain insight from its results.  

The need to develop a more accurate call center 
model has necessitated the modification of the Erlang loss 
model. In this research, we model and analyze a call center 
using the  model. The goal of this paper is to 

extend existing results and prove new results with regards to 
the monotonicity and limiting behaviour of the  
model with respect to the system capacity . 

I. Introduction 

he call center industry has grown explosively in the 
recent past and that has aroused the interest of 
researchers from different disciplines. 

Mandelbaum [11] have provided a comprehensive 
research bibliography with abstracts in diverse 
disciplines such as Operations research, Statistics, 
Engineering, and so on. Call Center research has been 
reviewed in the tutorial and survey paper by Gans et al. 
[6]. In this paper, our focus is on the computational rigor 
of the call center performance metrics using the 

model.  

a) Description of a Call Center 
A call center is a department of an 

establishment that attends to customers via telephone 
conversation often for the purpose of sales and product 
support, or that makes outgoing telephone calls to 
customers usually for the purpose of advertisement or 
telemarketing. Suppose the department also attends to 
e-mails, faxes, letters, and other similar written 
correspondence, then, it is called a contact center. 

Inbound call center only handle incoming 
telephone calls initiated by customers while out bound 
call centers only make outgoing telephone calls to 
customers. There are call centers that deal with both 
types of calls. In majority of the call centers, inbound 
calls   form   the   bulk   of  contacts  with  customers.  In  
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addition, inbound calls are more time consuming 
compared to other types of contacting options           
(e.g. e-mails, faxes, or letters) in terms of waiting times 
in the telequeue or sojourn times. Hence, we will only 
focus on inbound call centers. In an inbound call center, 
there is a group of agents (Customer Sales 
Representatives, CSRs) who provide the needed service 
through talking to customers on phones. In this paper, 
we shall use the terms “agents” and “CSRs” 
interchangeably. Agents are equipped with equipment, 
such as a Private Automatic Branch Exchange (PABX or 
PBX), an Interactive Voice Response Unit (IVRU or VRU), 
an Automatic Call Distributor (ACD), and computers 
[16]. See Figure 1.1 for details on the operational 
process and components of an inbound call center. 
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b)
 

The Operational Process of an Inbound Call Center 
 

At some point in our lives, we have all called a 
call center. We will describe the operational process and 
components of an inbound call center in line with the 
description in [6, 17]. The process is depicted in Figure 
1.1. Customers wanting to receive service from a call 
center, dial a special number provided by the call 
center.

 
The Public Service Telephone Network (PSTN) 

company then uses the Automatic Number Identification 
(ANI) number (the phone number from which the 
customer dials) and the customer's Dialed Number 
Identification Service (DNIS) number (the special 
number being

 
dialed) to connect the customer to the 

PABX privately-owned by the call center. The telephone 
lines (usually called trunk lines) connect the PABX to 
PSTN. If a trunk line is available, the customer seizes it; 
else the customer receives a busy signal and will be 
rejected. Hence, this customer is said to be blocked. 
Once the call is accepted, the customer will be 
connected through the PABX to the IVRU. The IVRU 
provides some automatic service for customers as well 
as several options for customers to choose from. Upon 
service completion at the IVRU, some customers leave 
the system and release the trunk lines. If the customer 
requires the service of an agent, the call will be passed 
from the IVRU to the ACD. The ACD

 
is a sophisticated 

instrument designed to route calls to agents based on 
the specific needs of calls. If no appropriate CSRs are 
available, the customer is informed to wait and join a 
queue at the ACD. The customer is said to be delayed. 
The ACD decides

 
the next customer to get service 

according to some preprogrammed queueing discipline 
(usually First Come First Served, FCFS). Delayed 
customers may decide to hang up and abandon (or 
renege) before they are served if they perceive that the 

service is not worth the wait. Such customers are said to 
be impatient. Patient customers (who do not abandon 
service) will eventually be connected to an agent. In 
serving a customer, the CSR works with a PC furnished 
with Computer-Telephony Integration (CTI), which is the 
technology that allows interactions on a telephone and a 
computer to be integrated. CTI will help ACD to route the 
call, help the CSR to get the caller's information from the 
database and hence facilitate the service process. At 
the completion of service and exit of the customer, the 
CSR still needs some wrap-up time to finish the whole 
service process and then may be available for the next 
customer. The service time is the sum of talk time and 
wrap-up time. Customers who abandoned and were 
blocked may try to call again after some random 
amount of time

 
and these calls are referred to as retrials. 

Customers who finished talking with anagent may also 
need further assistance and therefore call back. Hence 
they become return customers or feedback customers. 
Notice that these two types of customers are not shown 
in Figure 1.1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trunk Lines  

DNIS  

Customers  

Complete Service at IVRU  Impatient Calls  

ANI  

Blocked Calls  

PABX  IVRU  ACD  

CSRs  

Data 
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CTI  

PSTN  

Figure 1.1 : Operational process of an inbound call center 
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c) The Call Center as a Queueing System 
Figure 1.2 depicts the call center as a queueing 

system [7]. The number of agents (CSRs) and waiting 
spaces are denoted respectively by and . Hence 

there are  trunk lines at the call center with 

 waiting spaces. If an arriving call finds all  trunk 

lines occupied, it gets a busy signal and as such is 
blocked and cannot access the system. If there is an 
available truck line, the call is either connected to the 
system and seizes one of the free trunk lines or it balks. 
Suppose there is an available trunk line and at least a 
free agent, then the call is immediately serviced. 
Otherwise the call experiences delay and has to wait in a 
queue at the ACD for a CSR to become available. Calls 
at the ACD may become impatient and abandon 
(renege) the system before being served and thus 
release the trunk line. The ACD usually implements the 
FCFS queueing discipline. Upon service completion by 
a CSR, the call leaves the system and then releases 
both the trunk line and the CSR and these resources 
become available to other arriving calls. Return (or 
feedback) calls are calls that return after been served by 
an agent. Some of those calls who do not get served 
(blocked, abandon or balk) may call again and they 
become retrials. The remaining calls become lost calls.  

Suppose that the call arrivals follow a Poisson 
process with mean rate and that the service times of 

the calls are independent and identically distributed 
( ) exponential random variables with mean . 

Then we can model the system as a  

queueing system with features such as balking, 
abandonment, retrial, and feedback.  

d) Performance Evaluation of the Call Center Queueing 
Model 

In this paper, we will ignore features such as 
balking, abandonment, retrial, and feedback. Following 
the above assumptions, we will apply the  

model in analyzing the call center performance. The 
 queueing system has a closed-form 

solution for the system state (number of calls in the 
system), the queue length (number of calls in the queue) 
distribution and waiting time distribution. Then we can 
obtain system performance metrics such as average 
waiting time, average queue length, and probability of 
blocking. We will apply the performance analysis of the 

 queueing system to call center modeling 

and in turn show new results. The call center 
performance measures (metrics or indicators) provide 
useful information in the design and management of call 
centers. Performance measures are used in determining 
the service levels (or quality of service) in call centers. 

Not all queueing models can be analyzed 
exactly to obtain performance measures as  

model. For instance, if we include additional features 
such as Non-Poisson time varying arrival process, 
balking, abandonment, retrial, feedback, and non-
exponential service times, the model may become 
insolvable using traditional queueing techniques and 
other techniques have to be used to analyze the model 
such as simulation modeling. 

II. Modeling Call Centers as Single- 
Node Exponential Queueing 

Models 

In this section, we provide a detailed review of 
relevant single-node multiserver Markovian queueing 
models of call centers. Table 2.1 provides a list some 
main Markovian queueing models and their 

Departures

Abandon
Balk

Blocked

Returns

Feedback

Arrivals

Lost Calls

Retrials

Retrials

Lost Calls

Agents (CSRs)
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 1
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 Call Center as a Queueing System 
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Figure 1.2 : 



performance indicators. Our emphasis is on the 
computational rigor of the exact performance measures 

of these well-known models as well deriving new results. 

Notation

 

Models

 

Performance
 
Indicators

 

 

Delay Model (Erlang C)

 
 

(Erlang C formula)

 

TSF

 

; ASA

 

 

Blocking/Loss Model (Erlang B)

  

(Erlang B formula)

 

 

Blocking and Delay Model

  

TSF

 

; ASA

 

  

        TSF : Telephone Service Factor  ; ASA: Average Speed to Answer; AWT: Acceptable Waiting Time 

a) Model Assumptions 

The  is a generalization of the 

and models. In order to analyze a 

call center using the  Markovian queueing 

model, we assume that the inter arrival and service 
times are exponentially distributed random variables. 

Calls arriving at the call center are of a single 
type following a homogeneous Poisson process with 
rate  Callers are assumed to be patient and there is 
no form of impatience (balking or reneging). All agents 
(CSRs) are assumed to be statistically identical (i.e., 
equally skilled and provide service at the same rate). 
The service times are assumed to follow the exponential 
distribution with mean . Services are rendered 

according to the First-Come-First-Serve queueing 
discipline. There are  waiting spaces in the 

 queueing system. 

Let   be the number of calls in the system 

and  be the number of calls waiting in queue at 

time . Let  be the steady-steady 

sojourn time and waiting time in queue respectively. 
Since the models are Markovian, 

 can be obtained using 

the birth-death processes. Our focus is on steady-state 

distribution of  with 

corresponding variables , respectively. 

Let  denote 

the steady-state probability (if it exits) of the system 
being in state  (i.e. having  calls in the system). 

Applying the modeling techniques of the birth-death 
processes, we can obtain some interesting system 
performance measures such as 

.   

Due to the PASTA property, we have for the 
 model,  and in the 

cases of the , we have 

 and  

respectively. 

b) Review of the  Model and the Erlang B 
Formula 

In this section of the paper we will review the 
 Erlang B model paying attention to the 

aspects that are relevant to call center modeling. The 
 queue models a single-node system with  

truck lines and no waiting spaces. Figure 2.1 depicts the 
 queue and figure 3.2, its state transition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Blocked Calls 

Figure 2.1 : Description of the  Model and its parameters  
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Table 2.1 : Some Multiserver Markovian Queueing Models



 
 
 
 
 
 
 
 
 
 

Considering figures 2.1 and 2.2, it is obvious 
that 

 

is a finite birth-death process with birth rate 

 

 
and state-dependent death rate . 

 
By the application of the fundamental equation 

in queueing theory, the steady-state solution of the 

 

model using birth-death process is given by 

 

 
where  

 

is computed from . The 

solution is given by

 

 where 

 

is called the offered load which 

describes the demand made on the system.

 

i.

 

PASTA: Poisson Arrivals See Time Averages

 
An important feature of the Markovian queueing 

models is that the arrival process follows a Poisson 
process. Considering the Poisson arrival process, the 
distribution of customers

 

seen by an arrival to a 
queueing facility is, stochastically the same as the 
limiting distribution of customers at

 

that facility. In other 
words, once the queueing system has reached steady 
state, each arrival from a Poisson process finds the 
system at equilibrium. If 

 

is the probability that the 

system contains customers at equilibrium and 

 
denotes the probability that an arriving customer finds 

customers already present, then PASTA states that 

.

 

This implies that the Poisson process sees 

the same distribution as a random observer, i.e., at 
equilibrium, Poisson arrivals take a random look at the 
system. This result is a direct consequence of the 
memoryless property of the interarrival time distribution 
of customers to a queueing system fed by a Poisson 
process. In particular, it does not depend on the service 
time distribution. To prove the PASTA property, we 
proceed as follows. 

 Let

 
 

= Number of customers in the system at time 

 

   

  

 

= The event of an arrival in

 

 

Then 
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Figure 2.2 : Flow Rate [Multiple-Server Case( )]
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The crucial step in the above argument is 

 

This results from the fact that, since interarrival 
times possess the memoryless property, 

 is independent of the past history of 

the arrival process and hence independent of the 
current state of the queueing system. With the Poisson 
arrival process having a constant rate , the probability 

of having an arrival in  is equal to 

that the PASTA property only holds for Poisson arrival 
processes. 

The formula for  is called “Erlang Loss 

Formula” and is the fraction of time that all  servers are 

busy. It denotes the probability that an arrival call finds 
all the truck line busy, (i.e. the blocking probability,  ). 

It is written as s and is called “Erlang B 

formula”: 

 
Notice that the probability that an arrival is lost 

is equal to the probability that all channels are busy. 
Erlang loss formula is also valid for the 

 

queue. In other words, the steady-state probabilities are 
a function only of the mean service time, and not of the 
complete underlying cumulative distribution function. An 
efficient recursive algorithm for computing  is 

given by 

 
 
 
 

Recall that  is the offered load, we 

define as the carried 

load, where we obtain the last equality by Little’s law 
applying to number of busy servers and  is a random 

variable representing the number of busy servers in 
steady-state. 
The utilization  

 

is the fraction of time that a server is busy, where 

 

is called the traffic intensity. 
Hence we have that 

 
 

which defines a lower bound for 

 

Next, we show the monotonicity property of the 
 with respect to . 

 since 

 

We do not consider performance measures 
relating to waiting time and queue length since there is 
no waiting space in the  model. 

c)

 

Review of the Model and the Erlang C 
Formula  

The  queue can be used to model 
multiprocessor systems or devices that have several 
identical servers (or agents) and all jobs (or calls) 
waiting for these servers are kept in one queue. It is 
assumed that there are  agents each with a service 

rate of  jobs per unit time. The arrival rate is  calls per 

unit time. If any of the agents are idle, the arriving call 

is serviced immediately. If all agents are busy, the 
arriving calls wait in a queue. The state of the system is 

represented by the number of calls  in the system. The 
state transition diagram is shown in figure 2.4. It is easy 
to see that the number of jobs in the system is a birth-
death process with the following correspondence: 
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[1 ( 1, )] < 1 <

/ / // // /

(2.1) 

(2.2) (2.3) 

(2.4) 



 

 

 
 
 
 
 
 
 
 
 
 

Owning to the fact that the system is of infinite 
capacity, the carried load is equal to the offered load, 
i.e.,  so that the utilization  and as such, 
we require the stability condition  

 Given that the system is stable, the solution to 
the balance equations obtained from figure 2.4 is 

 
 
 
 

 
with  

 
 
 
 
 Since the arrival process follows the Poisson 
process, the PASTA property holds so that 

for . The steady-state probability of 
waiting of an arriving call is given by the Erlang C 
formula: 

 

So that   
 
 

The relationship between  and 
 

is given by 

 

Further simplification using (2.2) yields 

 

From equation 2.5, we it is obvious that 

, hence by the application of equation 2.8, 

we obtain . Using in 

equation 2.5 we obtain a new expression for  in terms 

of  as follows: 

 
 
 
 
 
 

The new expression for  and the above 
formula for is computationally more efficient, 
especially for calculating  because it does not 

involve factorials. 
i.

 

The Waiting Time Distribution of the M/M/c   
Model 

To compute the Telephone Service 
Factor , we need to compute 

 which is the steady-state probability of 

waiting time in queue less than or equal to . 

 

 

 

 

Figure 2.4 :  Flow Rate [Multiple-ServerCase( )] 
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Using the PASTA property, we can write  

which is the steady-state probability of an arriving call 
meeting  calls in the system. Since the service times 

are exponentially distributed and , the completion 

time of  calls (denoted by)  has an Erlang 

distribution  with survival function 

given by 

Then we have that   

 

Note that . By the 

application of Little’s law, we have 

 

Because of the closed-form solutions of most 
the performance indicators of the  model, it is 

commonly used in performance modeling and analysis 
of call centers. In the application of  model in 

call center analysis, it is usually assumed that the arrival 
and service rate are piece-wise constant and time-
independent. Using the parameters of each interval, the 

 is applied to each time interval. The 

 

model is not a realistic tool for modeling call centers due 
to the following reasons:  

It assumes there is no blocking since it has infinite 
buffer capacity. 

 
It does not consider the impatience (balking and 
reneging) attributes of customers. 

d)

 
Review of the  Model 

When the waiting room in a queueing system 
has a capacity limit we get a finite queue. In most 
situations, a finite queue occurs more naturally than a 
queue with a waiting room of infinite size. However, as 
the capacity limit gets larger, the behavior of the system 
approximates that of an infinite-capacity system, and in 
such cases we are justified in ignoring the size limit. A 
call center with a finite buffer and several agents is a 
good example of a finite queueing system. In this 
section we will review the  model and prove 

new monotonicity properties of performance measures 
with respect to . 

 
 
 
 
 
 
 
 
 
 
 

Blocked Calls 

 

 Description of the     Model and its parameters  Description of the     Model and its parameters 
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Using the concept of total probability, we have that > = > | ( )== ( + 1 > )=( ) = = + 1( + 1, )
( ) = ( > ) = ( + 1 > ) = ( ) !=0

> = ( )!=0 = ! (1 ) 0= ( )
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= 0 = 1 ( , )
= = ( , )1

/ // /
/ / / / / / /

( )

(2.10) 

(2.11) 

/ / /Figure 2.5 : 



 
 
 
 
 
 
 
 

The  queue is similar to the 

 queue except that the number of buffers is 

finite. After  buffers are full, all arrivals are 

lost. We assume that is greater than or equal to ; 

otherwise, some servers will never be able to operate 
due to a lack of buffers and the system will effectively 
operate as a  queue. 

The state transition diagram for a 
queue is shown in Figure 2.6. The system 

can be modeled as a birth-death process using the 
following respective arrival and service rates: 

 

 

Solving the balance equations derived from the 
state diagram, we obtain the following state 
probabilities. 

 
 
 
 
 
 
 with 

 
and 

 

i. The  Waiting Time Distribution 
In this section, we shall provide a mathematical 

derivation of the waiting time distribution of the 
 model. Due to the finiteness of the capacity 

of the  system, deriving the waiting time 

distribution of the  model is complicated 

because it results to finite series and also the arrival 

process is truncated by the system size . The arrival 

process no longer follows the Poisson process and has 
necessitated the need to derive the arrival point 
probabilities,  since . In this derivation of , 

we shall apply the well-known Bayes’ theorem. 

 

 

 

 

Taking limits of both sides and using the fact that the probability of an arrival in  is  

we have that  
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Figure 2.6 :  Flow Rate [Multiple-ServerCase( )] >/ / /
(2.12) 



 
 

 
 which defines the probability of a call meeting   calls in 
the system upon arrival given that it is not blocked. Here 
we have used the fact that 

 

 
Using equation (2.12), we can write   which 

implies that . Then we can express  in 

terms of  as follows:  

Then for 

 

 
 

 
 

 
 

For 
 

 

In same way, for 

 

 

 

and  

 
 

Now, let us consider computing  and in the case 

where
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lim0 = = ( ( , + ])( ( , + ])=0 = lim0 + ( )+ ( )1=0
= lim0 + ( )+ ( )1=0 = 1 , 0 1

  

lim0 ( ) = 0 = ! 0  0= !

= !! , 0,

1 = !!=0 + = +1
= !!=0 + = +1

1 = 1( , ) + (1 )1 1

= (1 ) ( , )1 + ( , )(1 )1,
1,

1,

( ) = = = (1 ) ( , )1 + ( , )(1 )
( ) = 1

= = 1
= = 1 1 = 1 1 (1 ) ( , )1 + ( , )(1 )
( ) = (1 ) ( , )1 + ( , )(1 )

( ) = 1 ( ) ( ) = (1 ( , ))(1 )1 + ( , )(1 )
( ), ( ) ( )= 1.



 

 
 

 
 

 
 

 
 

Theorem  2.1  

Suppose  then the  model reduces to the  model with 

Proof 
If , 

          

 
 

 

 

Theorem 2.2 
In the limit, as , we have the following results: 
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For , implies that  so that we have  = 1 =
= !!=0 + = +1

1 = 1( , ) + 1 = ( , )1 + ( ) ( , )
( ) = = = = ( , )1 + ( ) ( , )

( ) = 1
= = 1

= = 1
= = ( ) = ( ) ( , )1 + ( ) ( , )

( ) = 1 ( ) ( ) = 1 ( , )1 + ( ) ( , )
= / / / / / /( ) = ( , ), ( ) = 0 and ( ) = 1 ( , ).

= ( ) = = = = ( , )1 + ( ) ( , ) = ( , )(1)1 + (0) ( , ) = ( , )
( ) = (1 ) ( , )1 + ( , )(1 ) = (0) ( , )1 + ( , )(0) = 0

( ) = 1 ( ) ( ) = 1 0 ( , ) = 1 ( , )

1. lim ( ) = 1 , > 11, = 1( , ), 0 < < 1
2. lim ( ) = 1 1 , 10, 0 < 1

3. lim ( ) = 0, 11 ( , ), 0 < 1



Proof 

1. For , 

 
For , 

 
For

 So that 

 2.

 
For , 

 Since     

For , 

 
For

 

 

 

 

 

3.

 

For , 
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0 < < 1( ) = (1 ) ( , )1 + ( , )(1 ) ( , )1 + ( , ) = ( , )
( ) = ( ) ( , )1 + ( ) ( , ) = ( , )1( ) + ( , ) 1= 1

( ) = ( 1) ( , )+ ( , )( 1) 1 = ( 1) ( , )11 1 + ( , )( 1)1 = 1
lim ( ) = 1 , > 10 < < 1( ) = = = (1 ) ( , )1 + ( , )(1 ) 0

0 , 0 < < 1.= 1 ( ) = = ( , )1 + ( ) ( , ) 0

> 1,

> 1,

( ) = = ( 1) ( , )+ ( , )( 1) 1 = ( 1) ( , )
1 + ( , )( 1)

= ( 1) ( , )1 + ( , )( 1) ( 1) ( , )( , ) = 1 1
> 1( ) = 1 ( , ) ( 1)1 + ( , )(1 ) = 1 ( , ) ( 1)

+ ( , )( 1) 1
= (1 ( , ))( 1)

1 ( , ) + ( , )( ) 0



 

 

 

For , 

 

 
 

 
 

For , 

 

Before we proceed to derive the formula for 
computing an important performance measure , 

we shall prove some new results that will be useful in the 
course of our derivations and computations. 

For , 

 

 

 

 

 

 

 

But  
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0 < < 1( ) = 1 ( , ) (1 )1 + ( , )(1 ) 1 ( , ) (1 )1 + ( , )(1 )= 1 ( , )= 1 ( ) = 1 ( , )1 + ( ) ( , ) 0
1
( | ) = > 0 = 1

= = 11= = 11 1
=

= 11 ( ) = ( )1 ( )
= 1 + ( , )(1 )1 + ( , )(1 1) ( , )(1 )1 + ( , )(1 )

( | ) = > 0 = ( , )(1 )1 + ( , )(1 1)
( | ) = = 0 = 1

=0 = 1 ( | )
= (1 )[1 ( , )]1 + ( , )(1 1)

For , = 1
( | ) = ( )1 ( ) = ( ) ( , )1+( ) ( , )1 ( , )1+( ) ( , )

= ( ) ( , )1 + ( , )[ 1]



 

 

 

Now, using the principles of conditional probability, we can write 

 

 

 

 

 

 

For , 

 

 

 

 

 

 

 
 

Then for , we have that 

 

 

Where we have used the fact that[15] 
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> | > 0 = > ; > 0> 0 = >> 0
> = > | > 0 > 0

> = > | > 0 ( | )1 > | > 0 = > | 1
= > | = + ; 1 ( = + | 1)+1

=0
= ( ) !=0

1
=0 1 + + + 1

= ( ) ! 1 + + + 11
=

1
=0

> | > 0 = ( ) ! 11
=0 = ( ) ! 111

=01
> = ( | ) ( ) ! 111

=0 , 0
( = + | 1) = 1 + + + 1 , 0 1

For , we also have that = 1
> = ( | ) ( ) ! 11

=0

(2.13)

(2.14)

(2.15)



 

 

In same line of reasoning, we derive the mathematical formula for computing the Average Speed to Answer 
(ASA) as follows: 

 

 

 

 

 

 

 

 

By the application of Little’s law, we have that 

III.

 

Limiting Behaviour of the   
Model Performance Indicators 

In this section of the paper we shall prove some 
limiting properties of the model with respect 

to . 

Theorem 3.1 
Given that  and other model parameters 

remain constant,  is an increasing function 

of . 

 

Proof 
First, we need to show that 

 is an increasing 

function of : 

 
 
 
 
 
 
 
 
 

For , 
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= = >0= ( | ) 1 ( ) !0
1

=0
= ( | ) (1 )1

=0
= ( | ) 1 (1 + (1 )( ))(1 )(1 )
= ( , )(1 )1 + ( , )(1 1) 1 1 + (1 )( )(1 )(1 )

= (1 (1 + (1 )( )) ( , )(1 + ( , )(1 1))(1 )
= (1 ( ))

( > )
/ / / ( | )

0 < < 1
( | ) = ( , )(1 )1 + ( , )(1 1) = ( , )1(1 1) + ( , )

< ( , )1 + ( , ) , Since 1 + ( , ) > 1(1 1) + ( , )



 

 
 

 
 

For , 

 

 
 

 
 

Now that we have established the fact that 
 is an increasing 

function of , we will proceed to show that  

 

is an increasing function of , given that  and other 

model parameters remain constant. 

Recall from equation 2.13; for 

 

 
 

and from equation 2.15; for , we have 

 

We are only left to show that  

 

 
 

are increasing functions of . 
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= 1 ( | ) = ( ) ( , )1 + ( , )[ 1] = ( , )1 + ( , )[ 1]
( , )1 + ( , ) < 1, since 1 + ( , ) > ( , )

( | ) ( > )0 < < 1
> = ( | ) ( ) ! 111

=0 , 0
= 1

> = ( | ) ( ) ! 11
=0

( ) ( ) ! 111
=0 ( ) ( ) ! 11

=0
For , ( + ) ( ) ! 1 +1 ++ 1

=0
( + ) = ( ) ! 1 +1 + +1

=0 + ( ) ! 1 +1 ++ 1
=

> ( ) ! 111
=0 = ( )

since  ( ) ! 1 +1 ++ 1
= > 0 1 +1 + + 11



 
 

 
 

In same way,  

 
 

 

 

since  

 

 
 

IV.

 

Conclusions 

In this paper, we have discussed in detail the 
modeling of a call center as single-node using the 
Markovian queueing techniques. We considered the 

Erlang B Loss model and the  

Erlang C model as well as the more general 
model. Our emphasis is on the derivation of 

the exact performance measures of these well-known 
models. Considering the  model, we 

expressed the system performance measures in terms 
of Erlang B formula, which facilitates the computation as 
well as the analysis. Using the results emanating from 
the analysis, we showed the monotonicity properties for 
performance measures with respect to  and . 
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