
© 2013. K. Mahalakshmi & Dr. R. Prabhakar. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 8 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Performance Evaluation of Non Functional Requirements
 By K. Mahalakshmi & Dr. R. Prabhakar

Surya Group of Institutions, India

Abstract - Requirement engineering (RE) concerns goal identification by a system, operationalization
of such goals into services and constraints, and assigning responsibilities, needs to agents including
humans, devices/software. RE processes include negotiation, documentation, domain analysis,
specification, elicitation, assessment, and evolution. It is difficult and critical to get high quality
requirements. The paper gives a synopsis of the field of requirements engineering. RE is defined, and
a brief history of main concepts and techniques is presented. The result got by using the method is
very promising. It was evaluated extensively on Non Functional Requirements (NFR) dataset obtained
from PROMISE repository, which is publicly accessible.

Keywords : requirement engineering, functional require-ments, non function requirements,
performance.

GJCST-C Classification : H.3.4

Performance Evaluation of Non Functional Requirements

Strictly as per the compliance and regulations of:

Performance Evaluation of Non Functional
Requirements

K. Mahalakshmi α & Dr. R. Prabhakar σ

Abstract - Requirement engineering (RE) concerns goal
identification by a system, operationalization of such goals into
services and constraints, and assigning responsibilities, needs
to agents including humans, devices/software. RE processes
include negotiation, documentation, domain analysis,
specification, elicitation, assessment, and evolution. It is
difficult and critical to get high quality requirements. The paper
gives a synopsis of the field of requirements engineering. RE
is defined, and a brief history of main concepts and
techniques is presented. The result got by using the method is
very promising. It was evaluated extensively on Non Functional
Requirements (NFR) dataset obtained from PROMISE
repository, which is publicly accessible.
Keywords : requirement engineering, functional require-
ments, non function requirements, performance.

I. Introduction

equirements engineering (RE) [1] is activities set
concerning identifying/communicating a
software-intensive system’s purpose and

contexts of use. So, RE spans users real-world needs,
customers, and other constituencies affected by
software systems and capabilities/opportunities
provided by software-intensive technology. An abstract
description of how a specific organization conducts
activities, resource usage focused and dependencies
between activities is a process model. Methods and
process models difference is that while methods focus
on technical activities (activities content), process
models focus on activities management (how activities
can be measured/improved).

A software system’s success measure [2] is the
degree to which it meets its intended purpose.
Generally, software systems requirements engineering
discovers that purpose through identification of
stakeholders, their needs and documenting them in a
process amenable to analysis, communication, and
implementation. There are many difficulties in this.
Stakeholders (paying customers, users and developers)
could be numerous and distributed. “Requirements
engineering is that branch of software engineering
dealing with real-world goals for, functions of, and
constraints on software systems. It concerns these

Author

α

: Associate professor,

Dept. of CSE, Surya Group of
Institutions,

Tamil Nadu, India.

E-mail

: mailtok_mahalakshmi@rediffmail.com

Author

σ

: Emeritus Professor,

Dept. of CSE, Coimbatore Institute of

Technology,

Tamil Nadu, India.

factors, relationship to precise software behavior and to
its evolution with time across software families.”

A requirement is a condition/capability to be

met/fulfilled by a system satisfying a contract, specifi-
cation, standard, or formally imposed documents.
Requirements for

a system should be verifiable,
consistent, correct, and traceable. RE specifies, under-
stands, elicits, and validates customers/users
requirements. It identifies technological restrictions
through which an application should be built/run. An
iterative/co-operative process, it aims to analyze a
problem, document results in various formats,
evaluating results precision.

RE iterative process includes 3 activities [3]:



Requirements elicitation



Requirements specification



Requirements validation

The process starts with requirements elicitation.

A developers’ set collect users and customers
information. Information is got from documents, legacy
applications, interviews used in preparation of
requirements catalogue. Finally, requirements validation
finds out if there are inconsistencies/mistakes/undefined
requirements. Specification-validation is iterative being
executed many times in complex projects.

Activities which are basic to all RE processes [4]:



Elicitation

:

Identify information sources about
system and discover requirements from them.



Analysis

:

Understand requirements, their overlaps,
and conflicts.



Validation

:

Reverting to system stake holders to
see if requirements are what they need.



Negotiation

:

Inevitably stakeholders’ views will
differ from proposed requirements creating
conflicts. Try to reconcile such views generating
consistent requirements set.



Documentation

:

Write requirements in a way that
stakeholders/software developers understand.



Management

:

Control requirements changes that
will arise.

R

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 1 : The requirements engineering activity cycle

Requirements are software system’s
foundation. Functional requirements indicate what a
system can do, data requirements indicate what it can
store while quality requirements indicate how quickly
/easily it performs.

a) Functional Requirements

Functional requirements [5] capture a system’s
intended behavior which could be expressed as
services, tasks or functions the system has to perform. It
is useful to distinguish between baseline functionality
required for a system to compete in that product
domain, in product development. Features differentiate
a system from competitors’ products, and from the
company’s own product line/family variants. Features
may be added functionalities, or differ from basic
functionality along some quality attribute (performance
or memory utilization). Functional requirements of early
(nearly concurrent) releases need to be considered.
Later releases can be accommodated through
architectural qualities like extensibility and flexibility.

b)

Non Functional Requirements

A semantic definition would be “any
requirement that is not functional" [6]. Non-functional
requirements are those which cannot be categorized in
Functional, Data or Process requirements. Generally,



They are

requirements



They are not functional, data or process
requirements

Non-functional requirements define overall
qualities/attributes of the system that results. Non-
functional requirements restrict product under
development, development process, specifying external
constraints to

be met by that product.

Some of the non-functional

requirements are,

⇒

Availability Requirements

⇒

Capacity Requirements

⇒

Performance Requirements

⇒

Reliability Requirements

⇒

Security Requirements

Figure 2 : Classification of Non-functional requirements

To measure ad hoc information retrieval
effectiveness requires a test collection of three things:

1. A document collection.

2. Information needs test suite, expressible as queries.

3. A relevance judgments set, usually a binary
assessment of either relevant or non-relevant for a
query-document pair.

Usual approaches to information retrieval
system evaluation include relevant and non-relevant
documents notion. Regarding user information need, a
test collection document is provided a binary
classification either as relevant/non relevant. This
decision is called the gold standard or ground truth
relevance judgment.

NFR Locator extracts NFR sentences in
unconstrained natural language documentation. The
process takes project related natural language
document as input. The former parses natural language
into an internal representation based upon relevant
features, to classify sentences into particular NFR
categories or returns “not applicable” when it does not
specify a NFR [7].

Step 1 : Parse Natural Language

The process enters text into a system, parsing it
and converting parsed representation into NFR
Locator’s sentence representation (SR). SR represents
every sentence as directed graph where vertices are
words and edges the relationships between them.

Step 2 : Classify Sentences

Once parsing and initial sentence analysis is
finished, a k-NN classification algorithm classifies every
sentence into one/more NFR categories. Sentences
classified other than “not applicable” appear on
generated reports for use outside the system. A k-NN
classifier predicts classification by taking a majority vote
of existing k nearest neighbors’ classification to the item
under test.

II.
 Related Works

Non-functional requirements identification is
important for development/deployment of software

Performance Evaluation of Non Functional Requirements

© 2013 Global Journals Inc. (US)

16

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

(
DDDD D DDD

)
C

products. Customers software product acceptance
depends on non-functional requirements incorporated in
the software. It should identify all non-functional
requirements of stakeholders. Many approaches are
unavailable for this. Rao and Gopich and [8] suggested
a 4 layered analysis approach to identify non-functional
requirements. The approach has advantages over non-
layered approach. Rules were proposed for use in each
layer as part of the approach which was successfully
applied on 2 case studies. The identified non-functional
requirements were validated through the use of a check
list. Also, a metric ensured computation of
completeness of the identified non-requirements.

Functionality and non-functional characteristics
determine a software system’s utility. Also usability,
flexibility, performance, interoperability and security add
to the score. There is currently a lop-sided emphasis on
software functionality, though it was not useful or usable
without non-functional characteristics. Chung and do
Prado Leite [9] reviewed state of the art on treating non-
functional requirements (NFRs), when providing
prospects for future directions.

Liu et al [10] proved that continuous
randomization spectrum existed where most existing
tree randomizations operated around the spectrum’s
two ends leaving a major portion of the spectrum
unexplored. The authors proposed A base learner VR-
Tree generating trees with variable-randomness. VR-
Trees spanned from conventional deterministic trees to
complete-random trees by using a probabilistic
parameter. Using VR-Trees as base models, the
spectrum of randomized ensembles was explored along
with Bagging and Random Subspace. It discovered that
spectrum’s two halves have distinct characteristics;
understanding which led to the proposal of a new
approach to build better decision tree ensembles. It was
named Coalescence, as it coalesces many points in
spectrum’s random-half. Coalescence behaves like an
experts committee to cater to unforeseeable conditions
in training data. Coalescence performed better than the
spectrum’s any single operating point, without needing
to tune in to a specific randomness level. The proposed
empirical study ranks Coalescence top among
benchmarking ensemble methods including Random
Forests, Random Subspace and C5 Boosting.
Coalescence was significantly better than Bagging and
Max-Diverse Ensemble when compared with other
methods. Though Coalescence was not greater than
Random Forests, it identified conditions under which
one can perform better than the other.

Pavlovski and Zou [11] proposed application of
2 new artifacts to model linked with a business process.
This was operating condition denoting a business
process constraint. Control case defined controlling
criteria to mitigate the risk associated with an
operational condition. Modeling constraints thus was an
opportunity to capture such business process

characteristics early in a systems development cycle.
This contributes to a model providing a more through
overall business process representation. The methods
assist in risk mitigation and facilitate non-functional
requirements early recovery during systems
development.

Though all systems have non-functional
requirements (NFRs), they are not clearly stated in
formal specification requirements. Further, NFRs may
be externally imposed through government
regulations/industry standards. Slankas and Williams
[12] examined document types (data use agreements,
installation manuals, regulations, proposals requests,
requirements specifications, and user manuals)
containing NFRs categorized in 14 NFR categories
(capacity, reliability, and security) measuring how to
effectively identify/classify NFR statements in those
documents. In documents evaluated, NFRs were
present. Using a NFR word vector representation, a
support vector machine algorithm performed twice as
effectively compared to the same input on a multinomial
Naïve Bayes classifier. The k nearest neighbor classifier
with a unique distance metric had an F1 measure of
0.54, outperforming in experiments, optimal Naïve
Bayes classifier which had a F1 measure of 0.32. It was
also found that stop word lists beyond common
determiners lacked minimal performance effect.

Asghar and Umar [13] discussed/critically
evaluated RE challenges highlighted by researchers and
provided a model encapsulating 7 major challenges
recurring in a RE phase. The challenges were further
categorized as problems. Further, the model was linked
to earlier research elaborating challenges not specified
earlier. Anticipating RE challenges could help RE
engineers prevent software tower from destruction.

RE is an effective phase in software
development aiming to collect good requirements from
stakeholders correctly. It is important for an organization
to develop quality software products satisfying user
needs. RE for software development is a complex
exercise taking into account product demands from
many viewpoints, roles, responsibilities, and objectives.
Hence, it is necessary to apply RE practices in all
software development phases. Pandey et al [14]
proposed an effective RE process model to produce
quality software development requirements.
Requirement management/planning were executed
independently for effective requirements management. It
was iterative for better RE and maintenance later.
Successful implementation of the proposed RE process
has good impact on quality software production.

III. Methodology

For classifier validation, NFR dataset available
in the promise data repository [15] was used. It consists
of 15 requirement specifications of MS student projects

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Performance Evaluation of Non Functional Requirements

with a total of 326 NFRs and 358 FRs. NFR categories

included availability, scalability, usability and security.
Features extraction was from each requirement
document using word occurrence criteria. Extracted
data was used to investigate bagging and boosting
methods.

 a)

Boosting
 Boosting [16] is a method to improve learning

algorithms accuracy. Given a training set of labeled
examples, {(x 1; y 1); (x 2; y2),…,(xm; ym)}, where each xi
is drawn from an underlying distribution D on a universe
X, and yi ∈

{+1,-1}, a learning algorithm produces a

hypothesis h : X 

{+1,-1}. Ideally, h

“describes” not

just given samples, but also underlying distribution.
Boosting converts a weak learner, producing a
hypothesis that is slightly better than random guessing,
into a

strong/accurate learner. Many boosting

algorithms share a basic structure. First, the sample set
is given an initial (typically uniform) probability
distribution. Computation proceeds in rounds. In each
round t: (1) base learner is run on current distribution Dt,
producing a classification hypothesis ht; and (2) the
hypotheses h1,…,

ht reweight samples, defining Dt+1.

The process halts after predetermined rounds or when
combining of hypotheses is accurate. Main design
decisions on how to modify probability

distribution from

one round to next, and how to combine hypotheses
{ht}t=1,..,T

to form a final output hypothesis.

 Bagging [17] is based on bootstrapping and
aggregating. Bootstrapping is based on random
sampling with replacement. Hence, taking a bootstrap
replicate Si

= (X i

1

,X i

2

, ...,X i

n) of the training set S =
(X1,X2, ...,Xn), sometimes has less misleading training
instances in bootstrap training set. Thus, a classifier
constructed on such training sets provides better
performance. Aggregating means combining classifiers,

 Bagging provides good results when unstable learning
algorithms (decision trees) are used as base-level
classifiers, with small changes in training sets resulting
in different classifiers.

 b)

The bagging algorithm
 Input

: Training examples S, Bag size B

 Output

:

Ensemble E

 E 

0

 for i = 1 to B do

 Si



BootstrapSample (S)

 Ci



ConstructClassifier (S i)

 E 

E ∪

{Ci}

 end for

 return E

 c)

Random Forest

 Random forests [18] are a recursive partitioning
method suiting small n large p problems. They involve a
classification ensemble (aka: set) or regression trees
calculated on random data subsets, using a randomly
restricted and selected predictor’s subset for splits in
each classification tree.

The posterior probability that a random tree

predicts class j at X, given the training data (xi, yi), i =
1,…,

n, is

 () ()(),jQ X P h X jθ θ= =

Note that h depends on training data. In

practice, Qj is estimated using

 () ()()
1

1ˆ ,
N

j k
k

Q X I h X j
N

θ
=

= =∑

where I denotes indicator function. The

ensemble predicts class at X by

 () ()arg max jj
h X Q X=
 

d)

REP TREE

Reptree uses regression tree logic to create
multiple trees in varied iterations. It then selects the best
from generated trees which is then considered as
representative. In tree pruning the measure used is
mean

square error on the tree’s predictions.

IV.

Experimental Results

The classification accuracy and the Root Mean

Squared Error (RMSE) are shown in Table 1.

Table 1

:

Classification and RMSE of the technique
under consideration

Classifiers

Classification
accuracy %

Root mean
squared error

59.29

0.23

62.82

0.2174

70.83

0.197

82.37

0.1562

59.94

0.228

60.42

0.2232

71.47

0.1972

78.37

0.1739

In table 1, the performance variations of

classifiers have been shown. The Classification
Accuracy and RMSE results of the classifiers are shown
in Figure 3 & 4.

Performance Evaluation of Non Functional Requirements

© 2013 Global Journals Inc. (US)

18

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

(
DDDD D DDD

)
C

Bagging with
Reptree

Bagging with
Random Forest

Bagging with
Reptree and
resampling

Bagging with
Random Forest
and resampling

Logitboost with
Reptree

Logitboost with
decision stump

Logitboost with
Reptree and
resampling

Logitboost with
decision stump and
resampling

Figure 3 : Classification Accuracy

Figure 4 : Route Mean Squared Error

V. Experimental Results

RE activities occur across multiple phases. Of
the 7 suggested activities, only elicitation is performed
clearly in all projects. Interpreting & Structuring, and
Negotiation were also performed in the projects, but
they varied between implicit and explicit performance.
When RE was considered as a continual task through
the project, RE process model was iterative. RE
activities occurred across multiple phases, making
process models appear iterative. Boosting and Bagging
classifiers were used in experiments with Reptree,
Random forest and resampling. The results showed the
performance variation between classifiers. Bagging with
Random Forest and resampling achieves the best
performance accuracy of 82.37%.

References Références Referencias

1. Easterbrook, S. (2004). What is Requirements
Engineering?

2. Nuseibeh, B., & Easterbrook, S. (2000, May).
Requirements engineering: a roadmap.
In Proceedings of the Conference on the Future of
Software Engineering (pp. 35-46). ACM.

3. Escalona, M. J., & Koch, N. (2004). Requirements
engineering for web applications-a comparative
study. J. Web Eng., 2 (3), 193-212.

4. Sommerville, I. (2005). Integrated requirements
engineering: A tutorial. Software, IEEE, 22(1), 16-23.

5. Malan, R., Bredemeyer, D., & Consulting, B. (1999).
Functional requirements and use cases. functreq.
pdf, 39k) June.

6. Beauchamp, G. (2009). ‘Business Analysis -
Delivering the Right Solution for the Right
Problem. Smart BA (February 20, 2007). www.
smart-ba. com/articles/ba_chain_of_reasoning. pdf.

7. John, S. and Laurie, W. (2013). Automated
Extraction of Non-functional Requirements in
Available Documentation.

8. Rao, A. A., & Gopichand, M. (2012). Four Layered
Approach to Non-Functional Requirements
Analysis. arXiv preprint arXiv:1201.6141.

9. Chung, L., & do Prado Leite, J. C. S. (2009). On
non-functional requirements in software
engineering. In Conceptual modeling: Foundations
and applications (pp.363-379). Springer Berlin
Heidelberg.

10. F T Liu, K M Ting, Y Yu, Z H Zhou. Spectrum of
Variable-Random Trees. Journal of Artificial
Intelligence Research 32 (2008) 355-384.

11. Pavlovski, C. J., & Zou, J. (2008, January). Non-
functional requirements in business process
modeling. In Proceedings of the fifth Asia-Pacific
conference on Conceptual Modelling-Volume
79 (pp. 103-112). Australian Computer Society, Inc..

12. John, S. & Laurie, W. (2013). Automated Extraction
of Non-functional Requirements in Available
Documentation, IEEE.

13. Asghar, S., & Umar, M. (2010). Requirement
engineering challenges in development of software
applications and selection of customer-off-the-shelf
(COTS) components. International Journal of
Software Engineering, 1(1), 32-50.

14. Pandey, D., Suman, U., & Ramani, A. K. (2010,
October). An effective requirement engineering
process model for software development and
requirements management. In Advances in Recent
Technologies in Communication and Computing
(ARTCom), 2010 International Conference on
(pp. 287-291). IEEE.

15. Selvakumar, J., & Rajaram, M. (2011). Performance
Evaluation of Requirements Engineering
Methodology for Automated Detection of Non
Functional Requirements. International Journal, 3.

16. Dwork, C., Rothblum, G. N., & Vadhan, S. (2010,
October). Boosting and differential privacy.
In Foundations of Computer Science (FOCS), 2010
51st Annual IEEE Symposium on (pp. 51-60). IEEE.

17. Pance, P. & Saso, D. (2007). Combining Bagging
and Random Subspaces to Create Better
Ensembles. Springer-Verlag Berlin Heidelberg.

18. S.K. Jayanthi and S. Sasikala. (2013). Reptree
Classifier For Identifying Link Spam In Web Search
Engines. Ictact Journal On Soft Computing, 3(2).

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Performance Evaluation of Non Functional Requirements

This page is intentionally left blank

Performance Evaluation of Non Functional Requirements

© 2013 Global Journals Inc. (US)

20

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

(
DDDD D DDD

)
C

	Performance Evaluation of Non Functional Requirements
	Author,s
	Keywords
	I. Introduction
	a) Functional Requirements
	b) Non Functional Requirements

	II. Related Works
	III. Methodology
	a) Boosting
	b) The bagging algorithm
	c) Random Forest
	d) REP TREE

	IV. Experimental Results
	V. Experimental Results
	References Références Referencias

