
© 2013. Harwinder Kaur & Dalwinder Singh Salaria. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Neural & Artificial Intelligence
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Bayesian Regularization Based Neural Network Tool for Software
Effort Estimation

 By Harwinder Kaur & Dalwinder Singh Salaria
 Lovely Professional University, India

Abstract - Rapid growth of software industry leads to need of new technologies. Software effort estimation is
one of the areas that need more concentration. Exact estimation is always a challenging task. Effort Estimation
techniques are broadly classified into algorithmic and non-algorithmic techniques. An algorithmic model
provides a mathematical equation for estimation which is based upon the analysis of data gathered from
previously developed projects and Non-algorithmic techniques are based on new approaches, such as Soft
Computing Techniques. Effective handling of cost is a basic need for any Software Organization. The main
tasks for Software development estimation are determining the effort, cost and schedule of developing the
project under consideration. Underestimation of project done knowingly just to win contract results into loses
and also the poor quality project. So, accurate cost estimation leads to effective control of time and budget
during software development. This paper presents the performance analysis of different training algorithms of
neural network in effort estimation. For sake of ease, we have developed a tool in MATLAB and at last proved
that Bayesian Regularization [20] gives more accurate results than other training algorithms.

Keywords : effort estimation, levenberg-marquardt (trainlm), back propagation, bayesian regularization
(trainbr), gradient descent (traingdx), MATLAB.

GJCST-D Classification : I.2.5 , I.2.6

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

Strictly as per the compliance and regulations of:

Bayesian Regularization Based Neural Network
Tool for Software Effort Estimation

Harwinder Kaur α & Dalwinder Singh Salaria σ

Abstract - Rapid growth of software industry leads to need
of new technologies. Software effort estimation is one of the
areas that need more concentration. Exact estimation is
always a challenging task. Effort Estimation techniques are
broadly classified into algorithmic and non-algorithmic
techniques. An algorithmic model provides a mathematical
equation for estimation which is based upon the analysis of
data gathered from previously developed projects and Non-
algorithmic techniques are based on new approaches, such
as Soft Computing Techniques. Effective handling of cost is a
basic need for any Software Organization. The main tasks for
Software development estimation are determining the effort,
cost and schedule of developing the project under
consideration. Underestimation of project done knowingly just
to win contract results into loses and also the poor quality
project. So, accurate cost estimation leads to effective control
of time and budget during software development. This paper
presents the performance analysis of different training
algorithms of neural network in effort estimation. For sake of
ease, we have developed a tool in MATLAB and at last proved
that Bayesian Regularization [20] gives more accurate results
than other training algorithms.

 effort estimation, levenberg-marquardt
(trainlm), back propagation, bayesian regularization
(trainbr), gradient descent (traingdx), MATLAB.

I. Introduction

oftware effort estimate is one of the noticeable
& mind catching field. But since it was started, it is
challenging factor for software industry and

Academia to realize the exact estimation of software
development. In today’s fast changing world, success in
managing projects is a critical factor for the success of
the entire organization. Estimation that either
overestimated or underestimated both is very critical. In
case of Overestimating time and effort (or budget), due
to a presumed lack of resources or because the
projected completion is too late, can convince
management not to approve projects that may
otherwise contribute to the organization. On the other
hand, underestimation may result in approval of
projects that will fail to deliver the expected product
within the time and budget available. There

Author

α : Student, Dept. of CSE Lovely Professional University

Phagwara , Punjab (India)-144411.

E-mail : Final destiny 210@gmail.com

Author σ : Assistant Professor, Dept. of CSE Lovely Professional
University Phagwara, Punjab (India)-144411.

are many factors that influence the Software
estimation, some of them are: uncertainty, level of detail
of preparing the project plan, managerial factors, lack of
past data, pressure to lower estimation and estimator
experience [1]. In spite of the critical role of accuracy,
examples of incorrect estimation abound, especially in
IT projects, resulting in enormous waste of time and
money. Some techniques which were used in the past
are not in use during present time, like SLIM [14],
checkpoint [2], Seer [2]. In all the way of work time,
many of new advance roads have been suggested for
effort estimation like Genetic programming [11], Fuzzy
logic [10], Neural Network [15], data mining [9], etc.

One cannot state that one model give better
accuracy above all. Each and every give different level
of accuracy in different Environment. But in recent days,
Neural Network gains main attention due to many flavor
of algorithm available for it. The main focus of this
paper is to investigate the accuracy of estimation using
neural network approach based on three different
training algorithms: Levenberg-Marquardt (trainlm) [20],
Back propagation [20], Bayesian Regularization
(trainbr) [20] and this has been done with the help of
tool generated by us in MATLAB.

This paper comprises as follow: section II
describes the some former effort estimation models and
review of related work to Neural Network, section III
includes introduction of Neural Network and training
algorithms used for this paper, in section IV problem is
stated, section V describes methodology used, section
VI includes experimental results and comparisons. In
last conclusion and future scope is given.

II. Review of Literature

The period of Effort Estimation was started from
the expert judgments, which is based on the
experiences of experts. But it is only proceed as pillar
when current project & pertinent Past projects are
similar. Choices of effort estimation techniques footstep
from COCOMO [14] to AI approaches [2]. In 1970, Larry
Putnam developed the method SLIM [14], based on the
Rayleigh function and the influence used to Rayleigh
curve was Manpower Buildup Index (MBI and
Productivity Factor (PF) [2]. Linear programming was
key work to drive effort estimation in SLIM [14] and
depend upon the source line of code.

In 1981 developer Barry Boehm developed
COCOMO as constructive cost model [4]. Which is one

S

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

45

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

Keywords :

E-mail : Ds_salaria@yahoo.com

of an easy going & understandable model, could call
the effort & time period of project. Due to some
problems and some misses found in COCOMO, later on
Barry Bohem developed the advance road of this model
i.e. COCOMO 2.0 [7]. As growth of software industry
rising tremendously and previous version was not up to
need.

After that, Howard Rubin proposed the
ESTIMAC model to estimate effort at conception stage
[4]. Equations used in this model are not available,
because it was a proprietary model. ESTIMAC is high
level model but doesn’t provide accurate solution [3].
Six critical estimation dimensions identified by Rubin for
this model are: effort hour, staff size, cost, hardware
resource requirement, risk, portfolio impact [2]. But
these methods (COCOMO, SLIM, ESTIMAC) are based
on Line of code (LOC). The main problems in Line of
Code methods are: lack of universally accepted
definition for exactly what line code really is? Other side
line of code is language dependence.

So, in 1979 at IBM, developer Allan Albrecht
developed measurement method called Function point
[3] in order to reduce the issues related with LOC
methods. Function point defines the complexity of
software system in terms of functions that system
delivers to user. It comprise linear combination of five
basic software components (input, output, master files,
interfaces, inquiries) consider to be low, average, high
[3]. In 1990, GC Low and DR. Jeffery also concluded in
their paper that Function point method is more
consistent then the line of code measure [6]. But on the
other side, function point method is unable to deal with
Uncertain, imprecise and incomplete data.

Many researcher’s use different Neural Network
with different datasets in order to generate more
accurate result for effort estimation. The main advantage
of neural network is its ability to handle non-linear data
and confidence in decision making. In 1995, Krishna
moorthy Srinivasan and Douglas Fisher applied the
machine learning approach for Software Effort
Estimation [16]. They applied the Back propagation
algorithm on COCOMO dataset, along with
configuration of 33 neuron of input layer, 10 neurons
for hidden layer and 1 output neuron. Actually they had
done three experiments on different datasets. They
concluded that Back propagation competitive again
traditional approaches but quite sensitive.

In one paper written by Ali Idri, et al. [17] in
2002, in which he uses COCOMO-81 dataset and three
layered back-propagation ANN, concluded that
accuracy provide by back propagation is acceptable.

In 2005, N Tadayon compares the three models
COCOMO II, Neural Network and expert judgments to
state the strength of different estimation techniques [13].
In 2006, according to Barcelos Tronto et.al Neural
Network approach provides better tune result than the
linear regression [18]. In his methodology, he used the
Back propagation as training algorithm on COCOMO
dataset.

In 2010, Iman Attarzadeh, proposed new model
of COCOMO II using neural network, and comcluded
that neural network approach gives best accuracy than
COCOMO II.

Mrinal Kantri, et al. [19] implemented a back-
propagation ANN of 3-3-1 architecture on Lopez Martin
dataset consist of 41 projects.

Table I : Summary of Datasets and Neural Network used

Author’s Name

Year

Dataset

Project

Training

Algorithm

ANN Layers

Conference/

Journal
Krishnamoorthy

et.al

1995

COCOMO

63

BPA

33-10-1

IEEE

Ali Idri, et al.
2002

COCOMO

63

BPA

13-13-1

IEEE

N Tadayon 2005 - - BPA - IEEE
Barcelos Tronto

et.al

2006

COCOMO

68

BPA

1-9-4-1

IEEE

Attarzadeh

2010

COCOMO, Ar
tifical

100

BPA

24 input
neuron

IEEE

Mrinal Kantri
2011

Lopez martin

41

BPA

3-3-1

IEEE

There are many other techniques such as
ordinary least square (OLS) [2], Case based reasoning
[12], Date mining [9], Bayesian COCOMO II [2], Genetic
Programming [5] etc. also used for the effort estimation
but not discussed in this paper.

III.

Introduction to Neural Network

and Training Algorithms

A Neural Network is massively distributed
processor made up of simple processing elements
called neuron, which model some functionality like
human brain [15]. The use

of Neural Network offers the

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

46

(
DDDD

)
Y
e
a
r

01
3

2
D

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

some useful properties and capabilities: - Nonlinearity,
Adaptivity, Evidential Response, Confidence in decision
made. A primary advantage of learning systems is that
they are nonparametric; predictive models can be
tailored to, the data at a particular site [8].

Figure 1 : Model of Neural Network

Figure 1 represents the model of neural
network. A set of synapses or connecting links is
characterized by a weight or strength of its own. A signal
xj at the input of synapse j connected to neuron k is
multiplied by the synaptic weight wkj. An adder for
summing the input signals. An activation function for
limiting the amplitude of output of a neuron.

By adjusting of number of neurons in hidden
layer, input layer and choosing of better algorithm for
training data and testing phase will give result with high
level of accuracy. Training a neural network model refers
to choosing one model from the set of permitted models
that reduces the cost criterion. Basically, training is of
two types Supervised and Unsupervised [15]. In case of
Supervised, desired input and output is given to network
but in case of unsupervised only desired inputs are
given. The network itself makes the decision of output.
There are plenty of the training algorithms available in
neural network. In this paper three algorithms are used:
Leven berg-Marquardt (trainlm) [20], Back propagation
algorithm [20], and Bayesian Regularization [20].

Leven berg-Marquardt (trainlm) [20] is a
network training function that updates weight and bias
values according to Leven berg-Marquardt optimization
[20]. This is a simple method for approximating a
function. trainlm is highly recommended as a first-choice
supervised algorithm. One of the main drawbacks of the
Leven berg-Marquardt algorithm is that, for certain
problems it needs the large storage of some matrices.

Back propagation [20] learning updates the
network weights and biases in the direction in which the
performance function decline most quickly, the negative
of the gradient [20]. There are too many flavors of Back
propagation. For this study, Gradient descent with
momentum and adaptive learning rate back propagation
(traingdx) is used. The function traingdx combines
adaptive learning rate with momentum training. It is a
simple method with no specialization needed. But due
to low prediction capability, results are not accurate.
This has been shown in Experiment section.

One of the problems that occur during above
neural network training algorithms is over fitting. Due to

this, error in early stage is very small, but, when new
data is presented to the network the error is large. The
solution to this problem is Bayesian regularization
(trainbr) [20]. trainbr updates the weight and bias values
according to Levenberg-Marquardt [20] optimization. It
minimizes a grouping of squared errors and weights,
and generates a network that generalizes well. The
process is called Bayesian regularization. It is suitable
method for estimation when large number of inputs is
used for best output. Till now, Levenberg-Marquardt and
Back-propagation algorithm used by many researchers
for training phase.

IV. Problem Statement

The main aim of any software development
organizations is to finish the project within acceptable or
customary schedule and budget. Budget is mainly
driven by labor cost and time and together they form a
measure called effort. From quality point of view
estimating effort is one of the major important factors.
Because estimation either it be over estimate or under
estimate, produces worst results. In case of over
estimation of time and effort project completion is too
late due to lack of resources, which refuses the
management to approve that favored project. On the
other hand, under estimation may result in approval of
projects that will fail to deliver the expected product
within the time and budget available [1]. So, there is a
need of accurate estimation effort technique at early
stages of software development. In this research, the
main aim is to improve software effort estimation by
using different training algorithms of Neural network.

The main reason for using such a learning
system for this problem is to keep the estimation
process up-to-date by incorporating up-to-date project
data. At last Comparison is drawn between training
algorithms used in this research to state that Bayesian
Regularization gives much accurate estimation. One
algorithmic approach, COCOMO is also compared with
all three algorithms.

V. Proposed Methodology

 Following are the steps used for Effort
Estimation:

a) Data Collection
The dataset used in this work is NASA93

(http://promisedata.googlecode.com) a public
available data set consisting of a total of 93 projects at
the time of this study.

b) Division of Data
 Data set is divided into two parts: Training and
Testing. For our work we divide the data into 85-15%
ratio i.e. 80 rows for training and 13 for testing. These 13
rows are randomly choose by formula (ceil (1+(93-
1)*rand(13,1))), available in MATLAB. From this, for

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

47

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

http://promisedata.googlecode.com/�

testing row number 15,40,92,74,91,94,5,80,59,64,71,63,
38 are chosen.

c) Cost Drivers
Cost drivers for this work choose from the cost

drivers designed for COCOMO II. Table II represents,
Cost drivers for COCOMO.

Table II : Cost-drivers of COCOMO model

Attribute Type Description
RELY Product Required system reliability
CPLX Product Complexity of system modules
DOCU Product Extent of documentation required
DATA Product Size of database used
RUSE Product Required percentage of reusable

components
TIME Computer Execution time constraint
PVOL Computer Volatility of development platform
STOR Computer Memory constraints
ACAP Personnel Capability of project analysts
PCON Personnel Personnel continuity
PCAP Personnel Programmer capability
PEXP Personnel Programmer experience in project

domain
AEXP Personnel Analyst experience in project

domain
LTEX Personnel Language and tool experience
TOOL Project Use of software tools
SCED Project Development schedule compression
SITE Project Extent of multisite working and

quality of inter-site communications

d) Tool Generation
For the sake of ease, tool is generated with the

help of MATLAB. This has been shown in Figure II.

e) Preparation of Neural Network
Depending upon the architecture the Neural

Network is of two types: feed-forward and Feed-back. A

feed-forward, is the architecture in which the network
has no loops. But feed-back neural network is
architecture in which loops

occurs in the network.

Figure II : Tool developed with the help of MATLAB

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

48

(
DDDD

)
Y
e
a
r

01
3

2
D

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

For our work, we use feed-forward network with
three different training algorithms: LM, BPA, BR. The
Neural Network is implemented using 12 neurons for
input layer, 12 for hidden layer and 1 for output layer.

f) Performance Criteria
Mean Magnitude Relative Error: MMRE is

frequently used to evaluate the performance of any
estimation technique. It seems obvious that the purpose
of MMRE is to assist us to select the best estimation
approach. It measures the percentage of the absolute
values of the relative errors, averaged over the N items
in the "Test" set and can be written as [18]:

MMRE = {actual effort} - {estimated effort}|}\ {actual
effort}

VI. Experimental Results and Comparison

Neural Network trained by three different
training algorithms, with same dataset i.e. NASA93.
Table III summarizes the result obtained by COCOMO
model and three different training algorithms.

Table III : Effort Estimation by using different training algorithms in Neural Network
and COCOMO model

Row No. Expected COCOMO LM BPA BR
15 48 85.9557 53.7929 1737.61 61.9294
40 114 66.9477 186.747 1702.08 121.206
92 240 85.9557 117.681 1694.9 85.847
74 4178.2 1649.24 1730.38 1843.92 4058.46
91 1772.5 539.26 1400.97 1829.47 2902.12
94 1924.5 393.61 2524.9 1830.02 1201.62
5 25.2 38.2213 260.445 1731.69 83.0016

80 703 904.279 367.178 1836.86 562.929
59 4560 6718.84 1347.35 1945.73 4471.23
64 150 115.445 270.15 1048.19 61.3017
71 72 155.732 85.29 1759.78 106.606
63 160 270.499 294.428 1056.21 61.7749
38 444 463.311 150.555 1706.99 338.233

Figure III : Column chart for effort estimation

Table IV : Comparison between different training algorithms

Performance
Criteria

 COCOMO

 LM

 BPA

 BR

 MMRE

 0.52

 1.23

 12.18

 0.48

In the testing phase the calculated efforts and
errors using different training algorithms and COCOMO
is shown in table III and table IV respectively. Figure III
clearly present Bayesian Regularization is more accurate
than others. As evident from the table III, the predicted
values of the Bayesian Regularization efforts is very
close to the expected or actual values as compare to
LM, Back propagation and COCOMO.

VII. Conclusion

Effort Estimation is one of the crucial tasks in
software project management. This simulation with
NASA93 dataset has been carried out using tool created
with the help of MATLAB. Neural Network is trained
using “trainlm”, “traingdx” and “trainbr” algorithm. The
result from our simulation shows that Bayesian

0

2000

4000

6000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13Ef
fo

rt
 in

 p
er

so
n-

m
on

th

Projects

Expected Values

Observed by COCOMO

Observed by LM

Observed by BPA

Observed by BR

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

49

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

Regularization gives the best performance, among the
other training algorithms. We have experimented with 15
attributes of the COCOMO and further investigation can
be done with other attributes and also concentration
needed for process maturity.

References Références Referencias

1. Morgenshtern, Ofer, Tzvi Raz, and Dov Dvir.
"Factors affecting duration and effort estimation
errors in software development projects."
Information and Software Technology 49, no. 8
(2007): 827-837.

2. Boehm, Barry, Chris Abts, and Sunita Chulani.
"Software development cost estimation
approaches—A survey." Annals of Software
Engineering 10, no. 1 (2000): 177-205.

3. Matson, Jack E., Bruce E. Barrett, and Joseph M.
Mellichamp. "Software development cost estimation
using function points." Software Engineering, IEEE
Transactions on 20, no. 4 (1994): 275-287.

4. Kemerer, Chris F. "An empirical validation of
software cost estimation models."Communications
of the ACM 30, no. 5 (1987): 416-429.

5. Burgess, Colin J., and Martin Lefley. "Can genetic
programming improve software effort estimation? A
comparative evaluation." Information and Software
Technology 43, no. 14 (2001): 863-873.

6. Low, Graham C., and D. Ross Jeffery. "Function
points in the estimation and evaluation of the
software process." Software Engineering, IEEE
Transactions on 16, no. 1 (1990): 64-71.

7. Boehm, Barry, Bradford Clark, Ellis Horowitz, Chris
Westland, Ray Madachy, and Richard Selby. "Cost
models for future software life cycle processes:
COCOMO 2.0." Annals of software engineering 1,
no. 1 (1995): 57-94.

8. Srinivasan, Krishnamoorthy, and Douglas Fisher.
"Machine learning approaches to estimating
software development effort." Software Engineering,
IEEE Transactions on 21, no. 2 (1995): 126-137.

9. Dejaeger, Karel, Wouter Verbeke, David Martens,
and Bart Baesens. "Data mining techniques for
software effort estimation: a comparative study."
Software Engineering, IEEE Transactions on 38, no.
2 (2012): 375-397.

10. Nisar, M. W., Wang, Y. J., & Elahi, M. (2008,
October). Software development effort estimation
using fuzzy logic-A survey. In Fuzzy Systems and
Knowledge Discovery, 2008. FSKD'08. Fifth
International Conference on (Vol. 1, pp. 421-427).
IEEE.

11. Shan, Y., McKay, R. I., Lokan, C. J., & Essam, D. L.
(2002, July). Software project effort estimation using
genetic programming. In Communications, Circuits
and Systems and West Sino Expositions, IEEE 2002

International Conference on (Vol. 2, pp. 1108-1112).
IEEE.

12. Shepperd, M., Schofield, C., & Kitchenham, B.
(1996, May). Effort estimation using analogy. In
Proceedings of the 18th international conference on
Software engineering (pp. 170-178). IEEE Computer
Society.

13. Tadayon, N. (2005, April). Neural network approach
for software cost estimation. In Information
Technology: Coding and Computing, 2005. ITCC
2005. International Conference on (Vol. 2, pp. 815-
818). IEEE.

14. Boehm, B.W. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, N.J. 1981.

15. Simon Haykin, “Neural Networks: A Comprehensive
Foundation”, Second Edition, Prentice Hall, 1998.

16. Srinivasan, K., & Fisher, D. (1995). Machine learning
approaches to estimating software development
effort. Software Engineering, IEEE Transactions on,
21(2), 126-137.

17. Ali Idri and Taghi M. Khoshgoftaar& Alain
Abran,”Can Neural Networks be easily Interpreted in
Software Cost Estimation”, IEEE Transaction, 2002,
page: 1162-1167.

18. I.F. Barcelos Tronto, J.D. Simoes da Silva, N. Sant.
Anna, “Comparison of Artificial Neural Network and
Regression Models in Software Effort Estimation”,
INPE ePrint, Vol.1, 2006.

19. Mrinal Kanti Ghose, Roheet Bhatnagar and
Vandana Bhattacharjee, “Comparing Some Neural
Network Models for Software Development Effort
Prediction”, IEEE, 2011.

20. http://automatika.etf.bg.ac.rs/files/predmeti/os4nm/
Materijali/03_BackPropagation/MATLAB_nnet_Back
Propagation.pdf

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

50

(
DDDD

)
Y
e
a
r

01
3

2
D

Bayesian Regularization Based Neural Network Tool for Software Effort Estimation

	Bayesian Regularization Based Neural Network Tool for SoftwareEffort Estimation
	Authors
	Keywords
	I. Introduction
	II. Review of Literature
	III.Introduction to Neural Networkand Training Algorithms
	IV. Problem Statement
	V. Proposed Methodology
	a) Data Collection
	b) Division of Data
	c) Cost Drivers
	d) Tool Generation
	e) Preparation of Neural Network
	f) Performance Criteria

	VI. Experimental Results and Comparison
	VII. Conclusion
	References Références Referencias

