
© 2013. Md. Anisur Rahman & Md. Sahadat Hossain. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Comprehensive Concurrency Control Technique for Real-Time
Database System

 By Md. Anisur Rahman & Md. Sahadat Hossain
 Dhaka University of Engineering & Technology Gazipur, Bangladesh

Abstract - Real-time database must maintain the Temporal Consistency of the data which cannot be
achieved with the conventional concurrency control techniques as they focus only on the consistency
of the data. Different protocols exhibit good performance on different situations. But a single
technique is inadequate to meet the demand of real-time database. To improve the concurrency
control technique for real-time transactions, this paper will present a comprehensive technique that
coordinates multi-version, OCC Sacrifice, Speculative Concurrency Control and 2PL-HP protocols.
The presented technique uses best suited protocol based on the contention of transactions. Thus it
can significantly improve the concurrency of transactions as well as increase the number of
transactions.

Keywords : multi-version, speculative concurrency control, real-time transaction, temporal
consistency.

GJCST-C Classification : H.2.8

A Comprehensive Concurrency Control Technique for Real-Time Database System

Strictly as per the compliance and regulations of:

A Comprehensive Concurrency Control
Technique for Real-Time Database System

Md. Anisur Rahman α & Md. Sahadat Hossain σ

Abstract - Real-time database must maintain the Temporal
Consistency of the data which cannot be achieved with the
conventional concurrency control techniques as they focus only
on the consistency of the data. Different protocols exhibit good
performance on different situations. But a single technique is
inadequate to meet the demand of real-time database. To
improve the concurrency control technique for real-time
transactions, this paper will present a comprehensive technique
that coordinates multi-version, OCC Sacrifice, Speculative
Concurrency Control and 2PL-HP protocols. The presented
technique uses best suited protocol based on the contention of
transactions. Thus it can significantly improve the concurrency
of transactions as well as increase the number of transactions.
Keywords : multi-version, speculative concurrency
control, real-time transaction, temporal consistency.

I. Introduction

eal-time database systems are identified as
having timing constraints and can be found in
applications such as defence systems, Internet

and multimedia applications, industrial automation,
programmed stock trading and air traffic control etc.

The timing constraints of real-time database are
typically specified in the form of deadlines that require a
transaction to be completed by a specified time. Failure
to meet a deadline can cause the results to lose their
value, and in some cases a result produced too late
may be useless or even harmful. So unlike traditional
database Real-time databases (RTDBMS) must
maintain Temporal Consistency of data. Temporal
Consistency requires two main requirements:
Absolute validity and relative consistency. Absolute
validity is the notion of consistency between
environment and its reflection in the database.
Relative consistency is the notion of consistency of
the data that are used to derive new data. The
correctness of the system depends not only on the
logical results but also on the time used to produce
these results, as the transactions for their concurrent
implementation has own timing constrains and
dependence. That is Real-time systems are to ensure
completion of more transactions within the deadline.

The conventional pessimistic concurrency
control mechanism based on locking e.g. two phase
locking with higher priority (2PL-HP) can assure the
transactions serializability [1], so as to strongly assure

Author α : Department of CSE, Dhaka University of Engineering &
Technology Gazipur, Bangladesh.
E-mails : anisur.rahman.duet@gmail.com, sahadat39@yahoo.com

the consistency of data. However, because of a high
rate of restart of transactions, it cannot satisfy the
need of the real-time database systems very well. The
optimistic concurrency control techniques assume
that the probability of any two concurrent transactions
requesting the same data is not often. So it allows all
operations to be performed directly whenever
transactions request. But these transactions must pass
through the validation checking before they are allowed
to be committed to database.

The Multi-version Time-stamp Ordering (MVTO)
technique is one type of optimistic concurrency
control (OCC)mechanism which provides a large degree
of concurrency for the transactions by maintaining
multiple versions of data items [1]. So it is more
appropriate for real-time database systems where the
transaction has a low rate of restart and delay of cut-off
time but a high degree of concurrency. It ensures
transactions serializability using Time-stamp
Ordering mechanism.

In OCC Broadcast Commit (OCC-BC) protocol,
which is another OCC method, when a transaction
commits, it notifies its intentions to all other currently
running transactions [5]. Each of these running
transactions carries out a check to test whether it has
any conflicts with the committing transaction. If
any conflicts are detected, the transaction carrying out the
check immediately aborts itself and restarts. Note that
there is no need for a committing transaction to check
for conflicts with already committed transactions,
because if it were in conflicts with any of the
committed transactions, it would have already been
aborted. Thus, in OCC-BC once a transaction
reaches its validation phase, it ensures its
commitment. Compared to OCC Forward protocol,
it encounters earlier restarts and less wasted
computations. Therefore this protocol should perform
better than the OCC-forward protocol in meeting task
deadlines. However, a problem with this protocol is
that it does not consider the priorities of transactions.
On the other hand, it may be possible to achieve
better performance by explicitly considering the
priorities of the transactions.

OCC Sacrifice (OCC -S) is another type of
Optimistic method that considers the priority of a
transaction in the validation check phase to
determine which transaction(s) should be restarted
[5]. Transaction with higher priority commits and

R

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

causes to restart conflicting transactions. This method
reduces wasted computation providing early restart of
conflicting transactions.

In Speculative Concurrency Control (SCC)
technique, conflicts are checked at every read and write
operation. Whenever conflicts are detected a new
version of each of the conflicting transactions is
initiated. The primary version executes as any
transaction would execute under an OCC protocol,
ignoring the conflicts that develop. Meanwhile the new
version executes as any transaction would do under
a pessimistic protocol-subjected to locking and
restarts. Improving the concurrency control protocol,
this paper will present a new concurrency control
method which adopts multi-version, OCC Sacrifice, SCC
or 2PL-HP depending on the contention of transaction in
the system. In this way, it can effectively improve the
concurrency of transactions and increase the amount
of the transactions completed within the deadline. The
feasible analysis denotes that this new method is
better than the traditional one on performance.

II. The Description of the Proposed
Technique

Several concurrency control techniques exhibits
better performance in different idiographic situations. In
some cases locking protocols shows better performance
but fails to meet the requirement in some other cases. So
we have classified the type of transactions as well as
consider the actual condition of the contention based on
the time required to executer that transaction.
Transactions in the Real-time database can be split into
three categories according to Multi-version Time-
stamp Ordering concurrency control method depending
on the type of operations they performs [1]. They are:

a) Read-Only Transactions (Txn-R)
This type of transaction always read the data

elements that is the maximum Timestamp with a less
than or equal Txn-R in Time-stamp TS (Txn-R). That is
Txn-R gets the most recent version of the data before
it, so reading-reading conflicts or reading -writing
conflicts do not occur, and Txn-R are always succeeded.

b) Write-Only Transactions (Txn-W)
For this transaction type, the old data elements

are not modified. Just a new version of data element will
be created which is given by Txn-W as timestamp TS
(Txn-W). So writing-writing conflicts do not occur and
Txn-W will not be blocked by another transactions.

c) Update transactions (Txn-U)
This type of transaction not only

reads the data elements but also writes a new version
of data elements. So, writing-writing conflicts
between update transactions most likely to be occurred
Now, it is necessary to resolve the conflicts between
the update transactions effectively to provide

enhanced concurrency. The proposed method
considers the contention of transactions in order to
adopt best suited technique for that situation.

Contention is the number of transactions that
are running in the system or waiting in concurrency
control queue of Transaction manager to be executed.
Conflicts among Update transactions (Txn-U) are
resolved according to following rules:

If Contention is low, adopt OCC Sacrifice
method. Allow all transactions (Txn-U) to be executed
freely without any checking. When a transaction Txn-
Ui reaches its validation stage, Txn-Ui checks for the
conflicts with currently executing Txn-Us by means of the
Read-set and Write-set of transactions. In the real-time
database system Execution-Time (ET) of a transaction is
predictable [1]. Let Conflict -Set (CS) be the set of Txn-
Us that are conflicting with Txn-Ui. Now Txn-Ui restarts
with rolling back its operations already performed, If
ET(Txn- Ui) < ∑ j ET(Txn- Uj) , For all Txn-Uj ϵ CS;
otherwise Txn-Ui commits and For all Txn- Uj ϵ CS
restart with updated data item.

If Contention is medium, adopt SCC method.
When a transaction Txn-Ui begins to execute, it issues
Exclusive Write (EW) lock on data object. If it
completes the work with an data object D, it produces
a new-image of that object Dn and converts EW lock into
Speculative-Write (SPW) lock. After producing Dn,
Txn-Ui allows any transaction Txn-Uj requesting
for D to get speculative execution Txn-Uj begins
speculative execution with new-image Dn and old
image Do. After the completion of its operation, Txn-Uj
commits speculative execution with Dn or Do according
to the abort or commit of Txn-Ui respectively.

If Contention is high, adopt 2PL-HP that ensures
more transactions to be completed within the deadline.
The transaction priority P (Txn-U) is principally
determined by deadline of the transactions. So as in
Real time database system we can have the deadline of
the transactions and take it as the priority for that
transaction. That is for all Txn-Uj, Txn-Uj ϵ T, whenever
deadline (Txn-Ui) > = deadline (Txn-Uj), then P (Txn-
Ui) < = P(Txn-Uj), the higher-priority transaction will get
the priority of execution. When a transaction Txn-Uj

begins to execute, it tries to issue write lock on data
object D. If D is already occupied by another transaction
Txn-Ui , Txn-Ui have to sacrifice and restart. If P (Txn-
Uj) > P(Txn-Uj) otherwise Txn-Uj waits for D to be free
by the completion or abort of Txn-Ui.

III. Analysis of the Performance

Through the comparison

testing between

the new and traditional method, Fig.1 and Fig.2
shows how transactions different inter-arrival time
affects the transactions restart. Analyzing the
comparison figure Fig.1, It can be easily understood
that, as the interval between transaction arrival

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

2

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

A Comprehensive Concurrency Control Technique for Real-Time Database System

increases, Contention decreases, the rate of
restart of transaction becomes small due to the
less opportunity of conflicts. But when the interval is
not long, Contention increases the new method is
considerably better than conventional one. The
performance of real-time database systems has a
fundamentally different target compared with
the traditional database systems. The real-time
database systems require the more number of
transactions to be completed within the deadline of
the transactions rather than the number of concurrent
transaction for execution to maintain the largest
concurrency. The new method makes read-only
and write- only transactions never fail and avoids
their unnecessary restart using multi-version method. It
effectively saves the systems expense and improves
the systems through put. As for the update
transactions, the new technique makes the same
data element to be operated by more transactions
without interfering by another one by using suitable
method to resolve conflicts, according to the
contention of transactions in the system. This method
can adaptively use the optimistic mechanism and
speculation based mechanisms for the implementation
of the resolution of conflicts and creates a new
version of data elements to improve the concurrency
degree of transaction and the amount of transactions
completed before deadline. In summary, in different
contention size, the new method can flexibly take
advantage of the traditional concurrency control
mechanism with multiple versions, OCC
Sacrifice, Speculative Concurrency Control and 2PL-
HP; it can get better the concurrency of the system,
save effectively the expense of the system. Compared
with the traditional concurrency control mechanisms, the
improved one is better on performance.

Figure 1 : Restarts vs. Average interval of arrival (For 10
Transactions)

IV. Conclusions

As the real-time database systems have a tight
time constraints for the transactions as well as data, and
the very well. So there is a demand of comprehensive
traditional concurrency control mechanisms cannot
satisfy their needs method to meet the requirements of
the real time database system. By improving the
concurrency control protocols, this paper has
presented a comprehensive concurrency control
technique that highly reduces the rate of abortion as
well as considers the timing constraints of the
transactions. With a strong self-adaptability, this
method is able to use best suited method among
different concurrency control mechanisms according to
different situations of contention in the system. It can
also effectively improve the performance of system
providing higher concurrency considering deadline. The
next step is to do further test and evaluation so that the
other protocols can be justified with respect to
comprehensive method that would be a good
verification which is left as well as verification in the
actual environment so as to refine and improve
the algorithm.

References Références Referencias

1. S P. Wu, Z. Pang, “Research on the Improvement of
the Concurrency Control Protocol for Real-Time
Transaction”, Proceedings of International
Conference on Machine Vision and Human-
Machine Interface, pp. 146-148, 2010.

2. K. M. Prakash Lingam, “Freezing as a correctness
measure for multi-version time-stamp ordering
protocol”, Proceedings of 2nd International
Conference on Computer Engineering and
Technology, vol.3, pp.312-316, 2010.

3. M. Hedayati, S. H. Kamali, R. Shakerian, M. Rahmani
, “Evaluation of performance concurrency control
algorithm for secure firm real-time database
systems via simulation model”, Proceeding
of the International conference on Networking and
Information Technology, pp. 260-264, 2010.

4. M. Laiho , F. Laux, “Implementing Optimistic
Concurrency control for persistence Middleware
using row version verification”, Proceeding of the
Second International Conference on Advances
in databases, knowledge and Data Applications, pp.
45-50, 2010.

5. Rajib Mall, IISC, Bangalore “Real Time
systems: Theory and Practice” , Ch-7, ISBN
10:8131771016

6. H. G. Molina, J. D. Ullman, J. Widom, “The
Implementation of Database System”, China
Machine Press, 2002:369-377.

7. X. M. Yang, Y. X. Jun, “The comparative study on the
implementation of concurrency control”, Computer
Application Research, 2006, (6):19-22.

A Comprehensive Concurrency Control Technique for Real-Time Database System

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

8. C.Park, S.Park, S H. Son “Multi-version locking
protocol with Freezing for secure Real-Time
Database Systems”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, no.5,
pp.1141-1154, Oct -2002.

9. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil and D.
Shasha, “Making snapshot isolation serializable,”
ACM Trans. Database Syst., vol. 30,no. 2, pp. 492-
528, 2005.

10. S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan, “Automating the detection of
snapshot isolation anomalies,” Proceedings of
the VLDB’07, 2007, pp. 1263-1274.

11. C. Park and S. Park, “Alternative Correctness Criteria
for Multi-version Concurrency Control and a Locking
Protocol via Freezing,” Proc. Int'l Database Eng. and
Applications Symp. pp. 73-81, Aug. 1997.

12. P.A. Bernstein and N. Goodman, “Multi-version
Concurrency Control-Theory and Algorithms,” ACM
Trans. Database Systems, vol. 8, no. 4, pp. 465-483,
Dec. 1983.

13. P. Bernstein, V. Hadzilacos, and N. Goodman,
“Concurrency Control and Recovery in Database
Systems,” Addison-Wesley, 1987.

14. C. Park, S. Park, S H. Son, “Multi-version Locking
Protocol with Freezing for Secure Real-Time
Database Systems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 14, no. 5,
pp. 1141-1154, Oct. 2002.

A Comprehensive Concurrency Control Technique for Real-Time Database System

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

4

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

	A Comprehensive Concurrency Control Technique for Real-TimeDatabase System
	Authors
	Keywords
	I. Introduction
	II. The Description of the ProposedTechnique
	a) Read-Only Transactions (Txn-R)
	b) Write-Only Transactions (Txn-W)
	c) Update transactions (Txn-U)

	III. Analysis of the Performance
	IV. Conclusions
	References Références Referencias

