
© 2013. K Butchi Raju, Chinta Someswara Rao & Dr. S. Viswanadha Raju. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Hardware & Computation
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Frame work for Parallel string Matching- A Computational
Approach with Omega Model

 By K Butchi Raju, Chinta Someswara Rao & Dr. S. Viswanadha Raju
GRIET, India

Abstract- Now a day’s parallel string matching problem is attracted by so many researchers because
of the importance in information retrieval systems. While it is very easily stated and many of the
simple algorithms perform very well in practice, numerous works have been published on the subject
and research is still very active. In this paper we propose a omega parallel computing model for
parallel string matching. Experimental results show that, on a multi-processor system, the omega
model implementation of the proposed parallel string matching algorithm can reduce string matching
time by more than 40%.

Keywords: string matching; parallel string matching; computing model; omega model.

GJCST-A Classification : C.1.4

AFrameworkforParallelstringMatching-AComputationalApproachwithOmegaModel

Strictly as per the compliance and regulations of:

Abstract-

Now

a day’s parallel string matching problem is
attracted by so many researchers because of the importance
in information retrieval systems. While it is very easily stated
and many of the simple algorithms perform very well in
practice, numerous works have been published on the subject
and research is still very active. In this paper we propose a
omega parallel computing model for parallel string matching.
Experimental results show that, on a multi-processor system,
the omega model implementation of the proposed parallel
string matching algorithm can reduce string matching time by
more than 40%.

Keywords:

string matching; parallel string matching;
computing model; omega model.

I.

INTRODUCTION

tring matching has been one of the most
extensively studied problems in computer
engineering since it performs important tasks in

many applications like information retrieval (IRS), web
search engines, error correction and several other fields
[1-12]. Especially with the introduction of search engines
dealing with tremendous amount of textual information
presented on the World Wide Web, so this problem
deserves special attention and any improvements to
speed up the process will benefit these important
applications [1-12].

As current free textual databases are growing
almost exponentially with the time, the string matching
problem becomes impractical to use the fastest
sequential algorithms on a conventional sequential
computer system [1-12]. To improve the performance of
searching on large text collections, some researchers
developed special purpose algorithms called parallel
algorithms that parallelized the entire database
comparison on general purpose parallel computers
where each processor performs a number of
comparisons independently. In Parallel processing the
text string T and pattern P are assumed and that two
input words have already been allocated in the
processors in such a way that each processor stores a
single text symbol, and some processors additionally a
single pattern symbol. The input words are stored
symbol-by-symbol in consecutive processors numbered
according to

the

snake - like row - major indexing,

that

Author

α

:

Associate Professor, Department of CSE, GRIET,
Hyderabad, AP, India.

Author

σ

:

Assistant Professor, Dept of CSE, SRKR Engineering
College, Bhimavaram, AP, India.

Author ρ

:

Professor & HOD, Department of CSE, JNTU College of
Engineering, JNTU Jagithyal, AP, India.

is, the processors in the odd-numbered rows 1, 3, 5, ...
are numbered from left to right, and in the even-
numbered rows from right to left. (The first symbols of T
and P are in processor 1, the next in processor 2, and
so on.) This allocation scheme places symbols adjacent
in the text or pattern in adjacent processors. The output
of the string matching algorithm is that each processor
is to be marked as either being a starting position of an
occurrence of P in T or not. In this paper we proposed a
parallel string matching technique based on butterfly
model.

The main contributions of this work are
summarized as follows. This work offers a compre-

hensive

study as well as the results of typical parallel
string matching algorithms at various aspects and their
application on butterfly computing models. This work
suggests the most efficient algorithmic butterfly models
and demonstrates the performance gain for both
synthetic and real data. The rest of this work is
organized as, review typical algorithms, algorithmic
models and finally conclude the study.

II.

RECENT ADVANCEMENTS AND GLOBAL

RESEARCH

The first optimal parallel string matching
algorithm was proposed by Galil [13]. On SIMD-CRCW
model, this algorithm required n / log n processors, and
the time complexity is O(log n) ; on SIMD-CREW model,
it required n / log2 n processors and the time complexity
is O(log2 n). Vishkin [14] improved this algorithm to
ensure it is still optimal when the alphabet size is not
fixed. In [15], an algorithm used O (n

× m) processors
was presented, and the computation time is O(log log n)
. A parallel KMP string matching algorithm on distributed
memory machine was proposed by CHEN

[16]. The
algorithm is efficient and scalable in the distributed
memory environment. Its computation complexity is O(n
/ p + m) , and p is the number of the processors.

S

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

13

(
DDDD DDDD

)
Y
e
a
r

01
3

2
A

A Frame work for Parallel String Matching- A
Computational Approach with Omega Model

K Butchi Raju α, Chinta Someswara Rao σ & Dr. S. Viswanadha Raju ρ

SV Raju et.al [17] presents new method for
exact string matching algorithm based on layered
architecture and two-dimensional array. This has
applications such as string databases and
computational biology. The main use of this method is
to reduce the time spent on comparisons of string
matching by distributing the data among processors
which achieves a linear speedup and requires layered
architecture and additionally p*# processors.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

14

(
)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
A

Bi Kun et.al [18] proposed the improved
distributed string matching algorithm. And also an
improved single string matching algorithm based on a
variant Boyer-Moore algorithm is presented. In this they
implement algorithm on the above architecture and the
experiments prove that it is really practical and efficient
on distributed memory machine. Its computation
complexity is O(n/p + m), where n is the length of the
text, and m is the length of the pattern, and p is the
number of the processors. They show that this
distributed architecture is suitable for paralleling the
multipattern string matching algorithms and
approximate string matching algorithms.

Hsi-Chieh Le [19] et.al presents three
algorithms for string matching on reconfigurable mesh
architectures. Given a text T of length n and a pattern P
of length m, the first algorithm finds the exact matching
between T and P in O(1) time on a 2-dimensional
RMESH of size (n - m+ 1) x m. The second algorithm
finds the approximate matching between T and P in O(k)
time on a 2D RMESH, where k is the maximum edit
distance between T and P. The third algorithm allows
only the replacement operation in the calculation of the
edit distance and finds an approximate matching
between T and P in constant-time on a 3D RMESH. By
this paper we state that this is simpler model would be
sufficient to run the proposed algorithms without
increasing the reported time complexities.

S V Raju [20] et.al considers the problem of
string matching algorithm based on a two-dimensional
mesh. This has applications such as string databases,
cellular automata and computational biology. The main
use of this method is to reduce the time spent on
comparisons in string matching by using mesh
connected network which achieves a constant time for
mismatch a text string and. This is the first known
optimal-time algorithm for pattern matching on meshes.
The proposed strategy uses the knowledge from the
given algorithm and mesh structure.

Its'hak Dinstein [21] et.al propose a parallel
computation approach to two dimensional shape
recognition. This approach uses parallel techniques for
contour extraction, parallel computation of normalized
contour-based feature strings independent of scale and
orientation, and parallel string matching algorithms. The
implementation on the EREW PRAM architecture is
discussed, but it can be adapted to other parallel
architectures.

Jin Hwan Park [22] et.al presents efficient
dataflow schemes for parallel string matching. In this
they consider two sub problems known as the exact
matching and the k-mismatches problems are covered.
Three parallel algorithms based on multiple input (and
output) streams are presented. Time complexities of
these parallel algorithms are O((n/d)+a), 0 £ a £ m,
where n and m represent lengths of reference and
pattern strings (n >> m) and d represents the number

of streams used (the degree of parallelism). They show,
they can control the degree of parallelism by using
variable number (d) of input (and output) streams. They
show their approaches solve the exact matching and the
k-mismatches problems with time complexities of O((n /
d) + a), where a = log m for the hierarchical scheme, m
for the linear scheme, and 0 for the broadcasting
scheme. Required time to process length n reference
string is reduced by a factor of d by using d identical
computation parts in parallel. With linear systolic array
architecture, m PEs are needed for serial design and
d*m PEs are needed for parallel design, where m is the
pattern size and the d is the controllable degree of the
parallelism (i.e. number of streams used).

S V Raju [23] et.al considers the problem of
exact string matching algorithm based on a two-
dimensional array. This has applications such as string
databases, cellular automata and computational
biology. The main use of this method is to reduce the
time spent on comparisons in string matching by finding
common characters in pattern string which achieves a
constant time O(1) for pattern string in a text string. This
reduces many calls across backend interface.

Chuanpeng Chen [24] et.al propose a high
throughput configurable string matching architecture
based on Aho-Corasick algorithm. The architecture can
be realized by random-access memory (RAM) and basic
logic elements instead of designing new dedicated
chips. The bit-split technique is used to reduce the RAM
size, and the byte-parallel technique is used to boost the
throughput of the architecture. By the particular design
and comprehensive experiments with 100MHz RAM
chips, one piece of the architecture can achieve a
throughput of up to 1.6Gbps by 2-byte-parallel input,
and we can further boost the throughput by using
multiple parallel architectures.

Prasanna[25] et.al propose a multi-core
architecture on FPGA to address these challenges. They
adopt the popular Aho-Corasick (AC-opt) algorithm for
our string matching engine. Utilizing the data access
feature in this algorithm, they design a specialized
BRAM buffer for the cores to exploit a data reuse
existing in such applications. Several design
optimizations techniques are utilized to realize a simple
design with high clock rate for the string matching
engine. An implementation of a 2-core system with one
shared BRAM buffer on a Virtex-5 LX155 achieves up to
3.2 GBPS throughput on a 64 MB state transition table
stored in DRAM. Performance of systems with more
cores is also evaluated for this architecture, and a
throughput of over 5.5 Gbps can be obtained for some
application scenarios.

S. Muthukrishnan et.al[26] present an algorithm
on the CRCW PRAM that checks if there exists a false
match in O(1) time using O(n) processors. This
algorithm does not require preprocessing the pattern.
Therefore, checking for false matches is provably

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

this simple algorithm to convert the Karp–Rabin Monte
Carlo type string-matching algorithm into a Las Vegas
type algorithm without asymptotic loss in complexity.
Finally they present an efficient algorithm for identifying
all the false matches and, as a consequence, show that
string-matching algorithms take A.log log m/ time even
given the flexibility to output a few false matches.

S V Raju [27] et.al present new approach for
parallel string matching. Some known parallel string
matching algorithms are considered based on duels by
witness who focuses on the strengths and weaknesses
of the currently known methods. The new ‘divide and
conquer’ approach has been introduced for parallel
string matching, called the W-period, which is used for
parallel preprocessing of the pattern and has optimal
implementations in a various models of computation.
The idea, common for every parallel string matching
algorithm is slightly different from sequential ones as
Knuth-Morris-Pratt or Boyer-Moore algorithm.

III. COMMUNICATION NETWORK RELATION TO

COMPUTER SYSTEM COMPONENTS

A typical distributed system is shown in Figure
1. Each computer has a memory-processing unit and
the computers are connected by a communication
network. Figure 2 shows the relationships of the
software components that run on each of the computers
and use the local operating system and network
protocol stack for functioning.

The distributed software is also termed as
middleware. A distributed execution is the execution of
processes across the distributed system to
collaboratively achieve a common goal. An execution is
also sometimes termed a computation or a run. The
distributed system uses a layered architecture to break
down the complexity of system design. The middleware
is the distributed software that drives the distributed
system, while providing transparency of heterogeneity at
the platform level [28]. Figure 2 schematically shows the
interaction of this software with these system
components at each processor.

Figure 1 : A distributed systems connects processors by a communication network.

Extent of
distributed
protocols

 Operating System

Application Layer

Transport Layer

Network Layer

Data link layer

N
et

w
or

k
pr

ot
oc

ol
 s

ta
ck

Distributed software
(middleware libraries)

Distributed application

P M P M

P M P M
P M P M

P M

Communication network

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

01
3

2
A

simpler than string matching since string matching takes
O(log(log m)) time on the CRCW PRAM. In this hey use

© 2013 Global Journals Inc. (US)

Figure 2 : Interaction of the software components at each processor.

(WAN/LAN)

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

IV. TEXT PARTITIONING
The exact string-matching problem can achieve

data parallelism with data partitioning technique. We
decompose the text into r subtexts, where each subtext
contains (T/p)+m-1 successive characters of the
complete text. There is an overlap of m-1 string
characters between successive subtexts, i.e, a
redundancy of r(m-1) characters. Alternatively it could
be assumed that the database of an information retrieval
system contains r independent documents. Therefore, in
both the cases all the above partitions yield a number of
independent tasks each comprising some data (i.e. a
string and a large subtext) and a sequential string
matching procedure that operates on that data. Further,
each task completes its string matching operation on its
local data and returns the number of occurrences[29-
31]. Finally, we can observe that there are no
communication requirements among the tasks but only
global (or collective) communication is required.

Figure 3 : Framework for pool of Processors

The main issue to be addressed is how the
several tasks (or r subtexts) can be mapped or
distributed to multiple processors for concurrent
execution. In [29-31] different ways of distributing the
database across a multi computer network were
discussed. Let p be the number of processors in
network and r be the number of subtext in the whole
collection then the text partition is defined as, if r=p then
each subtext contains T/p+m-1 characters. This is
called static allocation of subtext as shown in Fig 3. In
the next section we present the parallel algorithm that is
based on static allocation of subtext using MPI library. A
significant contribution of this paper is a demonstration
of the maximum size buffer with 2k processors for
implementation of string matching and capable of
accepting a character from r subtexts where k=8bits.
This architecture enables a buffered string matching
system implementing a KMP like pre computation
algorithm. In the above mapping {a1, a2…ar} is the

input string where r represents subtext and {p1,
p2…pk} are the number of processors for the given
input string (k=8). In the above mapping the given input
string will be allocated to each processor as shown in
Fig. 3.

V.

METHODOLOGY

 Multistage interconnection networks (MINs)
consist of more

than one stages of small

interconnection elements called switching elements and
links interconnecting them. Multistage interconnection
networks (MINs) are used in multiprocessing systems to
provide cost-effective, high-bandwidth communication
between processors and/or memory modules. A MIN
normally connects N inputs to N outputs and is referred
as an N × N MIN. The parameter N is called the size of
the network[32-33]. The popularity of MINs stems from
both the operational features they deliver –e.g. their
ability to route multiple communication tasks
concurrently-

and the appealing cost/performance ratio

they achieve. MINs with the Banyan [34] property e.g.
Omega Networks [35], Delta Networks [36], and
Generalized Cube Networks [37] are more widely
adopted,

since non-Banyan MINs have -generally-

 higher cost and complexity. Both in the context of
parallel and distributed system, the performance of the
communication network interconnecting the system
elements (nodes, processors, memory modules etc) is
recognized as a critical factor for overall system
performance. Consequently, the need for
communication infrastructure performance prediction
and evaluation has arisen, and numerous research
efforts have targeted this area, employing either
analytical models (mainly based on Markov models and
Petri-nets) or simulation techniques.

 There are several different multistage
interconnection networks proposed and studied in the
literature. Figure1 illustrates a structure of multistage
interconnection network, which are representatives of a
general class of networks. This Figure 4 shows the
connection between p inputs and b outputs, and
connection between these is via n number of stages.

 Figure 4 :

A Multistage Interconnection Network(MIN)

S1

S2

Sr

Input
String
(m)

P1
.
.

Pk

P1
.
.

Pk

P1
.
.

Pk

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

16

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
A

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

A multistage interconnection network is actually
a compromise between crossbar and shared bus
networks multistage interconnection networks are:
• Attempt to reduce cost
• Attempt to decrease the path length

In a multistage interconnection network, as in a
crossbar, switching elements are distinct from
processors. Instead messages pass through a series of
switch stages. The network can be constructed from
unidirectional or bi-directional switches and links. In a
unidirectional MIN, all messages must traverse the same
number of wires, and so the cost of sending a message
is independent of processor location. In effect, all
processors are equidistant. In a bidirectional MIN, the
number of wires traversed depends to some extent on
processor location, although to a lesser extent than a
mesh or hypercube.

VI. OMEGA NETWORK

Omega network connecting P processors to P
memory banks as shown in Fig 5 In general, it consists
of p = (q + 1)2q processors, organized as q + 1 ranks
of 2q processors each (Figure 1). Optionally we shall
identify the rightmost and the leftmost ranks, so there is
no rank q, and the processors on ranks 0 and q - 1 are
connected directly. Let us denote the processor i on the
rank r by Pir,r, 0 ≤ i < 2q, 0 ≤ r ≤ q. Then processor Pi,r+1

is connected to the two processors Pi,r, and Pir,r and
processor Pir,r+1 is connected to the two processors Pi,r.
and Pir,r. Recall that ir = Iq-1 ir..i0 These four
connections form a "butterfly" pattern, from which the
name of the network is derived. The hypercube is
actually the butterfly with the rows collapsed. The
communication link in the hypercube between
processors Pi, and Pir is identified with the
communication links in the butterfly between Pi,r+l and
Pir,r+1, and between Pir,r+l and Pi,r.

Figure 5 : Omega Network

Terminology : Terminal reliability is defined as
the probability of successful communication between an
input output pair. In this section, terminal reliability of
Omega, has evaluated. The Omega is a unique-path
MIN that has N input switches and N output switches
and n

stages, where n = log2N. An 8×8 Omega has

three stages, 12 SEs and 32 links. And reliability is
shown in Fig 6.

Let r be the probability of a switch being

operational. As Omega is a unique-

path MIN, the failure

of any switch will cause system failure, so

from the
reliability point of view, there are log2N SEs in series for
each terminal path. Hence, the terminal reliability of an
N×N Omega is Rt (Omega) = (r)log2N

As there is only a

single path between a particular input Si , i

=1, 2, 3, 4,

and a output in an 8×8 Omega so the terminal reliability
is Rt (Omega) = (r)3.

Switching Reliability

Terminal Reliability of Omega

 0.99

0.970299
 0.98

0.941192

 0.96

0.884736
 0.95

0.857375

 0.94

0.830584
 0.92

0.778688

 0.9

0.729

0

0.2

0.4

0.6

0.8

1

1.2

0.99 0.98 0.96 0.95 0.94 0.92 0.9

T
e r

m
in

a
l r

el
ia

b
il

it
y

switching reliability

Reliability graph

Figure

6

:

Switching Reliability

 VII.

PROPOSED SYSTEM STRUCTURE

 In this we propose a system for parallel
processing with omega model. Its shared-memory,
expandable MIMD parallel computer.

Figure

7 :

Omega Network with 8 i/o

 The computer got its name from the omega
switch which it uses for interprocessor communication.

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

01
3

2
A

© 2013 Global Journals Inc. (US)

The switch supports a processor-to-processor
bandwidth of 32 Mbits/second. Figure 7 illustrates 8-
input 8-output omega switch.

 VIII.

PROGRAMMING THE OMEGA PARALLEL

PROCESSOR

 The omega Parallel Processor is programmed
exclusively in high-level programming languages.
Searching, IRS, Editing, compiling and linking,
downloading, running and debugging of programs are
done from a UNIX front-end. A window manager
enables rapid switching between the front-end and the
Butterfly system environments. Two distinct approaches
to programming the omega have seen widespread use:
message passing and shared memory. When using the
message passing paradigm the programmer
decomposes the application into a moderately sized
collection of loosely coupled processes which from time
to time exchange control signals or data. This approach
is similar to programming a multiprocessor application
for a uniprocessor. In the shared memory approach, a

task is usually some small procedure to be applied to a
subset of the shared memory. A task, therefore, can be
represented simply as an index, or a range of indices,
into the shared memory and an operation to be
performed on that memory. This style is particularly
effective for applications containing a few frequently
repeated tasks. Memory and processor management
are used to keep all memories and processors equally
busy.

IX.

PARALLEL STRING MATCHING ALGORITHM

ON OMEGA MODEL

In this

model

data on processors have been
organized such that they represent the m sets of length
of n-m+1 of the text string with m* n-m+1 matrix plus,
the first processor of each row segment holding the first
element of each set also carries an element of pattern.
The process is similar as per above for the remaining m
1 rows. First show how to find the occurrences of
pattern P in text string T on omega model with m*(n
m+1) in constant time O (1).

Lemma-1 : Each step in the above algorithm
runs in constant time. Thus we have the following
theorem.

Theorem 1.1 : There is a constant time string
matching algorithm on a omega model that finds the
occurrences of pattern in text using m*(n-m+1)
processors

Example : Text string T(n)= GOKARAJU and
Pattern string P(m)= RAJU L1 ={GOKAR},
L2={OKARA} L3={KARAJ}L4={ARAJU}

Step-1

R G O K A R
A O K A R A
J K A R A J
U A R A J U

Step-2

<R,G> <R,O> <R,K> <R,A> <R,R>
<A,O> <A,K> <A,A> <A,R> <A,A>
<J,K> <J,A> <J,R> <J,A> <J,J>
<U,A> <U,R> <U,A> <U,J> <U,U>

Step-3

0 0 0 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1

Step-4

0 0 0 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1

4 4 3 4 0

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

18

(
DDDD

)
Y
e
a
r

01
3

2
A

© 2013 Global Journals Inc. (US)

As per the given example, after step 4 in the
matrix Mm+1,j values useful for deciding the matching is
exact string matching or approximate string matching
with the k mismatches.

Lemma-2 : So that the string matching is
completely scalability and obtain the following theorem.

Theorem 1.2 : The given two strings size of text
n and size of pattern m. find the occurrences of pattern
in text.

There is completely scalable on Butterfly model.
The algorithm runs in O(m*(n-m+1))/P time, where P is
the number of processors and 1≤p≤m*(n-m+1).

X. PERFORMANCE EVALUATION

In order to evaluate the overall performance of a
multi-priority (NxN) MIN consisting of (2x2) SEs, we use
the following metrics. Let T be a relatively large time
period divided into u discrete time intervals (τ1, τ2,, τu).

Average throughput the average number of
packets accepted by all destinations per network cycle.
Formally, Τhavg (or bandwidth) is defined as

where n(k) denotes the number of packets that
reach their destinations during the kth time interval.

Normalized throughput is the ratio of the
average throughput Τhavg to number of network outputs
N. Formally, Th can be expressed by back ground and
reflects how effectively network capacity is used.

Relative normalized throughput RTh(i) of i-class
priority traffic, where i=1..p is the normalized throughput
Th(i) of i-class priority packets divided by the
corresponding-class offered load λ(i) of such packets.

Average packet delay Davg(i) of i-class priority
traffic, where i=1..p is the average time a
corresponding-class priority packet spends to pass
through the network. Formally, Davg(i) is expressed by

where n(u) denotes the total number of the
corresponding- class priority packets accepted within u
time intervals and td(k) represents the total delay for the
kth such packet. We consider td(k) = tw(k) + ttr(k)
where tw(k) denotes the total queuing delay for kth
packet waiting at each stage for the availability of a

corresponding-class empty buffer at the next stage
queue of the network.

The second term ttr(k) denotes the total
transmission delay for kth such packet at each stage of
the network, that is just n*nc, where n=log2N is the
number of intermediate stages and nc is the network
cycle.

XI. CONCLUSIONS

In this paper we concentrate on parallel
algorithms for string matching on computing models,
especially in omega model. In this paper simulate the
parallel algorithms for the implementation of high speed
string matching; this uses fine-grained parallelism and
performs matching of a search string by splitting the
string into a set of substrings and then matching all of
the substrings simultaneously. We also see that this
implementation can be optimized in terms of resource
utilization.

References Références Referencias

1. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is Parallel
Algorithms for String matching on computing
models - A survey and experimental results”, LNCS,
Springer,pp.270-278, ISBN: 978-3-642-29279-8
,2011.

2. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “PDM data classification from
STEP- an object oriented String matching
approach”, IEEE conference on Application of
Information and Communication Technologies,
pp.1-9, ISBN: 978-1-61284-831-0, 2011.

3. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is Parallel
Algorithms for String matching - A survey and
experimental results”, IJAC, Vol 4 issue 4, pp-91-97,
2012.

4. Simon Y. and Inayatullah M., “Improving
Approximate Matching Capabilities for Meta Map
Transfer Applications,” Proceedings of Symposium
on Principles and Practice of Programming in Java,
pp.143-147, 2004.

5. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Parallel Algorithms for String
Matching Problem based on Butterfly Model”,
pp.41-56, IJCST, Vol. 3, Issue 3, July – Sept, ISSN
2229-4333, 2012.

6. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is String
matching algorithms- A survey and experimental
results”, IJCIS,Vol 6 No 3, pp.56-61, 2013.

7. Chinta Someswararao, “ Parallel String Matching
Problems with Computing Models - An Analysis of
the Most Recent Studies”, International Journal of
Computer Applications , Vol.76(15),pp.7-25,

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

01
3

2
A

© 2013 Global Journals Inc. (US)

Published by Foundation of Computer Science,
New York, USA, 2013.

8. Chinta Someswararao, “Parallel String Matching
with Multi Core Processors-A Comparative Study for
Gene Sequences”, Global Journal of Computer
Science and Technology, Vol-13, Issue-1, pp.27-41,
2013.

9. K, Grabowski S, “Average-Optimal String Matching”,
Journal of Discrete Algorithms, pp- 579-594,2009.

10. Luis Russo L, Navarro G, Oliveira A, Morales P,
“Approximate String Matching with Compressed
Indexes Algorithm”, pp- 1105-1136,2009.

11. Ilie L, Navarro G, Tinta L, “The Longest Common
Extension Problem, Revisited and Applications to
Approximate String Searching”, Journal of Discrete
Algorithms, pp-418-428, 2010.

12. Fredriksson K, Grabowski S, “Average-Optimal
String Matching, Journal of Discrete Algorithms”,
pp- 579-594,2009.

13. Z. Galil, “Optimal parallel algorithms for string
matching,” in Proc. 16th Annu. ACM symposium on
Theory of computing, pp. 240-248, 1984.

14. U. Vishkin, “Optimal parallel matching in strings,”
Information and control, vol. 67, pp. 91-113, 1985.

15. Y. Takefuji, T. Tanaka, and K. C. Lee, “A parallel
string search algorithm”, IEEE Trans. Systems, Man
and Cybernetics, vol. 22, pp. 332-336, March-April
1992.

16. CHEN Guo-liang, LIN-Jie, and GU Nai-jie, “Design
and analysis of string matching algorithm on
distributed memory machine,” Journal of Software,
vol. 11, pp. 771-778, 2000.

17. Viswanadha Raju, S.; Vinaya Babu, A.; Mrudula,
M.; “Backend Engine for Parallel String Matching
Using Boolean Matrix”, IEEE on PAR ELEC, pp-281-
283,2006.

18. Bi Kun, Gu Nai-jie, Tu Kun, Liu Xiao-hu, and Liu
Gang A Practical Distributed String Matching
Algorithm Architecture and Implementation World
Academy of Science, Engineering and Technology ,
2005.

19. Hsi-Chieh Leet,Fikret Ercalt, “RMESH Algorithms
For Parallel String Matching” ,IEEE,1997.

20. S. Viswanadha Raju and A. Vinayababu, “Optimal
Parallel algorithm for String Matching on Mesh
Network Structure”, 2006.

21. Its'hak Dinstein, ad M. Landau, “Using Parallel
String Matching Algorithms for Contour Based 2-D
Shape Recognition”, IEEE,1990.

22. Jin Hwan Park and K. M. George, “Parallel String
Matching Algorithms Based on Dataflow”, IEEE on
System Sciences, 1999.

23. S.Viswanadha Raju S R Mantena A.Vinaya Babu G V
S Raju, “Efficient Parallel Pattern Matching using
Partition Method”,2006.

24. Chuanpeng Chen, Zhongping Qin, “A Bit-split Byte-
parallel String Matching Architecture”,IEEE,2009.

25. Qingbo Wang, Viktor K. Prasanna, “Multi-Core
Architecture on FPGA for Large Dictionary String
Matching”, IEEE on Field Programmable Custom
Computing Machines,2009.

26. S. Muthukrishnan “Detecting False Matches in
String-Matching Algorithms”, Algorithmica ,Springer-
Verlag New York Inc.1997.

27. S.Viswanadha Raju , A.Vinaya Babu, G.V.S.Raju,
and K.R. Madhavi , “W-Period Technique for Parallel
String Matching”,2007.

28. Ajay D. Kshemkalyani and Mukesh Singhal,”
Distributed Computing: Principles, Algorithms, and
Systems”,Cambridge.

29. S.Viswanadha Raju and A.Vinayababu, 2004,
“Performance in the design of Parallel
Programming”, Proc ObComAPC-2004, Allied
Publications, pp.380 to 392.

30. S.Viswanadha Raju, A.Vinayababu, S.P.Yanaiah and
GVSRaju, 2006 “Parallel Approach for K String
Matching”, Proc NCIMDiL-2006, Indian Institute Of
Technology, Kharagpur , 5-10.

31. J. Garofalakis, and E. Stergiou “An analytical
performance model for multistage interconnection
networks with blocking”, Procs. of CNSR 2008,May
2008

32. Josep Torrellas, Zheng Zhang. The Performance of
the Cedar Multistage Switching Network. IEEE
Transactions on Parallel and Distributed Systems,
8(4), pp. 321-336, 1997.

33. Bhogavilli S. K., Abu-Amara H., “Design and
Analysis of High-performance Multistage
Interconnection Networks”, IEEE Transactions on
Computers, vol. 46, no. 1, January 1997, pp. 110 -
117.

34. G. F. Goke, G.J. Lipovski. “Banyan Networks for
Partitioning Multiprocessor Systems” Procs. of 1st
Annual Symposium on Computer Architecture, pp.
21-28, 1973.

35. D. A. Lawrie. “Access and alignment of data in an
array processor”, IEEE Transactions on Computers,
C-24(12):11451155,Dec. 1975.

36. J.H. Patel. “Processor-memory interconnections for
mutliprocessors”, Procs. of 6th Annual Symposium
on Computer Architecture. New York, pp. 168-177,
1979.

37. G. B. Adams and H. J. Siegel, “The extra stage
cube: A fault-tolerant interconnection network for
supersystems”, IEEE Trans. on Computers, 31(4)5,
pp. 443-454, May 1982.

A Frame work for Parallel String Matching- A Computational Approach with Omega Model

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

20

(
DDDD

)
Y
e
a
r

01
3

2
A

© 2013 Global Journals Inc. (US)

	A Frame work for Parallel string Matching- A Computational Approach with Omega Model
	Authors
	Keywords
	I. INTRODUCTION
	II. RECENT ADVANCEMENTS AND GLOBALRESEARCH
	III. COMMUNICATION NETWORK RELATION TOCOMPUTER SYSTEM COMPONENTS
	IV. TEXT PARTITIONING
	V. METHODOLOGY
	VI. OMEGA NETWORK
	VII. PROPOSED SYSTEM STRUC TURE
	VIII. PROGRAMMING THE OMEGA PARALLELPROCESSOR
	IX. PARALLEL STRING MATCHING ALGORITHMON OMEGA MODEL
	X. PERFORMANCE EVALUATION
	XI. CONCLUSIONS
	References Références Referencias

