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Abstract - The role of protuberant data analysis in selection of 
certain genes having distinctive level of activities between 
conditions of interest i.e diseased gene and normal genes is 
very significant. Now-a-days it is become a standard in gene 
analysis that microarray of DNA is a crucial data preparation 
step in systemization and other biological analysis. We 
consider the problem of constructing an accurate prediction 
rule for separating the different labels of genes in microarray 
gene expression data. Use of SVM in such data analysis is not 
new but it is not up to the mark we desire. So in this 
manuscript, we have tried to modify Support Vector Machine 
(SVM) for better accuracy in cancer genes systemization. Here 
we have modified SVM to account for gene redundancy and 
keep a check on it. In the other approach, instead of keeping 
bias a constant in SVM, we have tried to modify SVM by bias 
variation which we call as Orthogonal Vertical Permutator 
(OVP).  
Keywords : support vector machine, microarray, 
redundancy, orthogonal vertical permutator.  

I. Introduction 

he theory of support vector machines (SVMs), 
which is based on the idea of structural risk 
minimization (SRM), is a new classification 

technique and has drawn much attention on this topic in 
recent years (Burges, 1998; Cortes and Vapnik 1995; 
Vapnik, 1995, 1998). The good generalization ability of 
SVMs is achieved by finding a large margin between two 
classes (Bartlett and Shawe-Taylor, 1998; Shawe-Taylor 
and Bartlett, 1998). In many applications, the theory of 
SVMs has been shown to provide higher performance 
than traditional learning machines (Burges, 1998) and 
has been introduced as powerful tools for solving 
classification problems. Since the optimal hyper-plane 
obtained by the SVM depends on only a small part of 
the data points, it may become sensitive to noises or 
outliers in the training set (Boser et al., 1992; Zhang, 
1999).  

To solve this problem, one approach is to do 
some preprocessing on training data to remove noises 
or outliers, and then use the remaining set learn the 
decision function (Cao et al., 2003).This method is hard 
to implement if we do not have enough knowledge 
about noises or outliers. In many real world applications, 
we  are  given  a  set  of training data without knowledge  
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about noises or outliers. There are some risks to remove 
the meaningful data points as noises or outliers.  

Support Vector Machines have gained much 
attention in recent years due to their better predictability 
and ability to theoretically project any data to infinite 
dimension. It works on the simple basis of separating 
classes using a hyper plane.  

In present scenario, any classification method 
has to deal with thousands of genes provided by micro 
array data. This is real test for and classification method. 
Neural networks have shown high potential in dealing 
with huge amount of data but it cannot overcome 
redundancy problem. Many highly correlated genes play 
similar role in classification while many of them could be 
omitted. Support Vector Machines also could not 
account for this problem in current form. In SVM, the 
weights of any two highly correlated features will be 
quite near and thus both can play significant role in 
classification. It is a major hindrance in feature selection. 

In this paper, we present two different 
approaches for improvement of classification accuracy 
for linear SVMs. In the first method, redundancy control 
has been targeted for improve the classification rate. For 
checking a control on redundancy an matrix ‘A’ has 
been introduced in the optimization problem. This matrix 
keeps a check on weight of a feature according to its 
correlation with other features. It will be discussed in 
details in later section of paper.  

The second method is also an approach to 
improve the classification performance of linear SVM. It 
is based on adjustment of bias value in SVM. The results 
have encouraged us for further probe. 

 

In the paper, Section 2 describes the 
architecture of normal Support vector machine. Section 
3 compares the architecture of normal SVM and 
modified SVM for controlling the redundancy. Section 4 
describes the other method for improving the 
classification accuracy called Orthogonal Vertical 
Permutator. Section 5 and 6 discusses experimentation 
and the results obtained respectively. 

 

 
 

a)
 

SVM 
 

Support Vector Machines (SVM’s) are learning 
methods used for binary classification of data. The basic 
idea is to find a hyper-plane separating n-dimensional 
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data perfectly into two classes. Since the example data 
is often not linearly separable, SVM introduce a “kernel 
induced feature space" which casts data into a higher 
dimensional space where data is separable. SVM plays 
a major role in eliminating computational complexity and 
over fitting (Crammer, Koby, 2001, Drucker, Harris, 
1996, Ferris, Michael C, 2002 and T. S. Furey et al. 
2000). 

 We are given l training samples {xi, yi}, i = 
1,…., l , where each sample has d inputs    , and a 
class label with one of two values (yi∈{-1,1}).Now, all 
hyper- planes in   are parameterized by a vector 
(w),and a constant (b), expressed in the equation 𝑤𝑤

 
.𝑥𝑥

 
+ 

𝑏𝑏
 
= 0 where w is orthogonal to the hyper-plane. 

 Given such a hyper-plane (w, b) that separates 
the data, this gives the function 

 
𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑤𝑤.𝑥𝑥

 
+ 𝑏𝑏)

 
which correctly systemizes the training. However, a 
given hyper-plane represented by (w, b) is equally 
expressed by all pairs {𝜆𝜆𝑤𝑤,𝜆𝜆

 
𝑏𝑏} for 𝜆𝜆∈𝑅𝑅+. So we define

 the canonical hyper-plane to be that which separates 
the data from the hyper-plane by a distance of at least 1. 

That is, we consider those that satisfy:  
xi .w + b > +1whenyi = +1 and 𝑥𝑥𝑖𝑖.𝑤𝑤  + 𝑏𝑏  <−1 

when or more compactly: yi(xi .w + b) >1 ∀𝑖𝑖.  

We can frame this as an optimization problem as: 
 

Minimize in (𝑤𝑤,𝑏𝑏): ||𝑤𝑤|| subject to (𝑓𝑓𝑜𝑜𝑟𝑟
 
𝑎𝑎𝑛𝑛𝑦𝑦

 

𝑖𝑖=1,….,𝑛𝑛)𝑦𝑦𝑖𝑖(𝑤𝑤.𝑥𝑥𝑖𝑖−𝑏𝑏)≥1 
 

b)
 

Modified SVM 
 

Before we start the modification over the 
existing SVM let us understand the method of 
generating the matrix A. 

 

i.
 

Generation of ‘A’ Matrix
  1.

 
On basis of property of features like correlation or 
mutual information. 

 

2.
 

Using a function of importance or unique data 
points. 

 

3.
 

We may also use something like gradient descent 
method. 

 

  
   

 
 

  
 

 
 
 
 

Consider the optimization problem in SVM. We 
introduce a matrix ‘A’ of order nxn where ‘n’ is number of 
features. If we minimize this optimization problem, the 
weight vector obtained is different from normal SVM  

  

 

  
 
 
 

Introducing Lagrange’s multiplier and 
converting to dual form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii.

 

Comparing Architecture

 

of SVM with Modified 
SVM 

 

The layout of normal SVM has been shown 
below. A separating hyper-plane in canonical form must 
satisy the following constraints, 

 

𝑦𝑦𝑖𝑖[<𝑤𝑤,𝑥𝑥𝑖𝑖>+𝑏𝑏]≥1 ,𝑖𝑖=1,…,𝑙𝑙.

 

The distance d(w,

 

b;

 

x) of a point x from the 
hyper-plane

 

(w,

 

b) is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2013  Global Journals Inc.  (US)

  
 

   
 

  12

Y
e
a
r

01
3

2
Modification of Support Vector Machine for Microarray Data Analysis

If    𝑤𝑖 =
𝑤𝑖

1+𝛽𝑖
; 

Then 𝐸 = (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡)2;
So, 𝐸 = (𝑤𝑇𝑥𝑖 + 𝑏 − 𝑂𝑖)2

Then, 𝜕𝐸

𝜕𝛽
= ∑ 2[𝑖=1 𝑤𝑇𝑥𝑖 + 𝑏 − 𝑂𝑖][ 

𝑎1
𝑎2
𝑎𝑛

 ]

𝑎𝑑 =
𝑥𝑖𝑑 . (−𝑤𝑑)

(1 + 𝛽𝑑)2

𝑚 𝑖𝑛 
1

2
||𝑤||2 +𝐶 ∑ 𝜉𝑖

𝑙
𝑖−1 +

1

2
𝑤𝑇𝐴𝑤

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖where𝐴 =

(
𝑎11 … 0

⋮ ⋱ ⋮
0 … 𝑎𝑚𝑛

) is a diagonal matrix.

𝜙(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) =
1

2
||𝑤||2+𝐶 ∑ 𝜉𝑖

𝑙
𝑖−1 +

1

2
𝑤𝑇𝐴𝑤 −

                                 ∑ 𝛼𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖]𝑙
𝑖=1 +

∑ 𝛽𝑖𝜉𝑖
𝑙
𝑖=1

𝜕𝜙 

𝜕𝑏
= 0 ⇒ ∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

= 0

𝜕𝜙 

𝜕𝜉
= 0 ⇒ 𝛼𝑖 + 𝛽𝑖 = 𝐶

𝜕𝜙 

𝜕𝜉
= 0 ⇒ 𝑤 = 𝐵−1 ∑ 𝛼𝑖𝑦𝑖𝑥𝑖 =

∑ 𝛼𝑖𝑦𝑖𝑥𝑖

1 + 𝛼𝑖

𝐻 = 𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝐻 = 𝑦𝑖𝑦𝑗

𝑥𝑖

1 + 𝑎𝑖

𝑥𝑗

𝑑(𝑤, 𝑏; 𝑥) =
| < 𝑤, 𝑥𝑖 > +𝑏|

||𝑤||

𝑝(𝑤, 𝑏) = min
𝑥𝑖;𝑦𝑖=−1

 𝑑(𝑤, 𝑏; 𝑥𝑖) + min
𝑥𝑖;𝑦𝑖=1

 𝑑(𝑤, 𝑏; 𝑥𝑖)

𝑝(𝑤, 𝑏) = min
𝑥𝑖;𝑦𝑖=−1

| < 𝑤, 𝑥𝑖 > +𝑏|

||𝑤||
+ min

𝑥𝑖;𝑦𝑖=1

| < 𝑤, 𝑥𝑖 > +𝑏|

||𝑤||

𝑝(𝑤, 𝑏) =
1

||𝑤||
( min

𝑥𝑖;𝑦𝑖=−1
 | < 𝑤, 𝑥𝑖 > +𝑏| +

min
𝑥𝑖;𝑦𝑖=1

 | < 𝑤, 𝑥𝑖 > +𝑏|)

𝑝(𝑤, 𝑏) =
2

||𝑤||

Rd

(xi ∈Rd)

Change in Hessian Matrix is-
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weight vector and we can keep a check on redundancy 
depending on ‘A’ matrix. 



Hence, the hyper-plane that optimally separates 
the data is the one that minimizes

 
 
 
  

This is solved by using Lagrange’s multipliers.  
 
 
 
 
 
 
 Where 𝛼𝛼

 
are the Lagrange multipliers.The 

Lagrangian has to be minimised with respect to 𝑤𝑤,
 
𝑏𝑏

 and minimised with respect to 𝛼𝛼≥0.
 

Classical 
Lagrangian duality enables the primal problem,

 
 
 
The minimum with respect to 𝑤𝑤 and 𝑏𝑏 of the 

Lagrangian, 𝜙𝜙 , is given by,  
 
 
 
 
 
 
 

Hence, the dual problem is 
  
 
 
 
 

 
 
 And hence the solution to the problem is given by 

 
 
 
 
 With constraints, 

 
 
 

 
 
 

This equation is can be represented as a 
quadratic form.  

iii.
 

Orthogonal Vertical Permutator
  

Orthogonal Vertical Permutator is a reformation 
of SVM. In OVP, we vary the bias value of SVM which 
results in vertical permutations of the hyper-plane 
resulting from SVM. This section of paper focuses on the 
bias value ‘b’ in SVM framework. Its theoretical 

inspiration is being discussed in following section. Bias 
is the constant term which is added in decision making 
equation. 

 
 
 
 
 
 
 
 

    

a. Adjustment of Bias Value in SVM 
Consider two concentric circles with each circle 

representing same class as in Fig. 1. Here, we compare 
the correct output rate of the output generated by SVM 
and OVP.  

Let the radius of inner circle be ‘r’ and radius of 
outer circle be n times ‘r’ i.e ‘nr’. Consider each point on 
the circle represents a sample.  

b. Correct Classification by SVM  

Correct classification=𝜋𝜋𝑟𝑟 + 𝜋𝜋𝑛𝑛𝑟𝑟 

𝐴𝐴= (𝑛𝑛 + 1)𝜋𝜋𝑟𝑟 𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ 𝑖𝑖𝑠𝑠 ℎ𝑎𝑎𝑙𝑙𝑓𝑓 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑢𝑢𝑚𝑚𝑓𝑓𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 𝑜𝑜𝑓𝑓 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 
𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑙𝑙𝑒𝑒 

c. Correct Classification by OVP  
Inner circle is classified correctly.  

Correct classification=2𝜋𝜋𝑟𝑟 + 𝐶𝐶𝑜𝑜𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡 𝑐𝑐𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 
𝑜𝑜𝑢𝑢𝑡𝑡𝑒𝑒𝑟𝑟 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑙𝑙𝑒𝑒 

We need to find 𝜃𝜃 to find the correct 
classification of outer circle. 𝜃𝜃 = 𝐴𝐴𝑟𝑟𝑐𝑐 𝑅𝑅𝑎𝑎𝑑𝑑𝑖𝑖𝑢𝑢𝑠𝑠

  

 
 
 

 
 
 
 
 

Therefore, 

 
 
 
 
 
 
 
 
 

 

Thus, the total correct output of by OVP is-
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𝜙(𝑤) =
1

2
||𝑤||2

𝜙(𝑤, 𝑏; 𝛼) =
1

2
||𝑤||2

− ∑ 𝛼𝑖(𝑦𝑖[< 𝑤, 𝑥𝑖 > +𝑏] − 1),

𝑙

𝑖=1

max
𝛼

𝑊(𝛼) = max
𝛼

(min 𝜙(𝑤, 𝑏; 𝛼))

𝜕𝜙

𝜕𝑏
= 0 ⇒ ∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

= 0

𝜕𝜙

𝜕𝑤
= 0 ⇒ 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

max
𝛼

𝑊(𝛼) = max
𝛼

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 < 𝑥𝑖, 𝑥𝑗

𝑙

𝑗=1

𝑙

𝑖=1

>  + ∑ 𝛼𝑘

𝑙

𝑘=1

𝛼∗ = 𝑎𝑟𝑔 min
𝛼

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 < 𝑥𝑖, 𝑥𝑗 >  − ∑ 𝛼𝑘

𝑙

𝑘=1

𝑙

𝑗=1

𝑙

𝑖=1

𝛼𝑖 ≥ 0
  
𝑖 = 1, … . . , 𝑙

∑ 𝛼𝑗𝑦𝑗

𝑙

𝑗=1

= 0

𝜃 =
𝐴𝑟𝑐

𝑅𝑎𝑑𝑖𝑢𝑠

𝜋

2
−

𝜃

2
= 𝑠𝑖𝑛−1(

𝑟

𝑛𝑟
)

𝜋

2
−

𝜃

2
= 𝑠𝑖𝑛−1(

1

𝑛
)

𝐴𝑟𝑐 = 𝜃 × 𝑅𝑎𝑑𝑖𝑢𝑠

𝐴𝑟𝑐 = (𝜋 − 2𝑠𝑖𝑛−1
1

𝑛
) × 𝑛𝑟

𝐴𝑟𝑐 = ( 𝜋𝑛𝑟 − 2𝑛𝑟𝑠𝑖𝑛−1
1

𝑛
)

𝐵 = 2𝜋𝑟 + 𝑛𝜋𝜋𝑟 − 2𝑛𝑟𝑠𝑖𝑛−1
1

𝑛
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Figure 1 : Depicting the concept of OVP in SVM



Difference in the correct output by SVM and OVP is  
 
 
 
 
 
Since, SVM generates the hyper-plane with the 

best possible slope, here we have adjusted the bias 
value to shift this plane using minimization of 
classification error of both classes. Therefore it can be 
seen that classification error is less in the later case as 
compared to the normal SVM. For realizing this plane, 
an approach similar to gradient descent is used. Bias 
value is changed by a fraction of its current value 
depending on the minimization of error.  

The error in this case is defined in a different 
way than in usual case.  

Normally error is defined as,  
 
 
 
 

But in this case, we have defined Error as  
 
 
 
 
 
Both error rates are quite different. In first case 

the, each error has absolute importance and is equally 
important. But in the other case, the error rate for each 
class is different and its importance is related to the 
number of samples in its class. In second case, one 
class may be classified to very high accuracy at the 
expense of the other. It leads to higher probability of 
accuracy rate for one class. 

 
SVM is used to categorize datasets into binary 

data. All the hyper-planes separating the data into two 
groups are orthogonal to vector w. The variation of bias 
gives rise to various permutations of the hyper-planes 
along the vertical. Our model gives rise to vertical 
permutations of the orthogonal hyper-planes and hence 
the Orthogonal Vertical Permutator is named. 

 III.

 

Result and Analysis

 This section gives the comparison of 
percentage accuracy of SVM with modified SVM in 
Table-I against the sigma values of A matrix. It can be 
inferred that the modification offers a better accuracy 
over SVM. The second table depicts a comparison of 
percentage of accuracy of SVM and OVP-SVM. The 
percentage accuracy with shifted bias value is better 
than normal bias value. Figure 2 and figure 3 gives the 
graphical representation of application of SVM and OVP-
SVM on concentric circle dataset and spiral dataset 
respectively. 

 

 
 
 
 
 

Table 1 : Comparing Accuracy Results of SVM and 
Modified SVM 

 
 
 
 
 

Table 2 :
 
Comparing Accuracy Results of SVM and OVP-

SVM
 

 
 
 
 
 
 
 
 

Figure 2 : Results of SVM and OVP-SVM on Concentric 
Circle

 

Dataset

 
 
 
 
 
 
 
 
 
 

Figure 3 : Results of SVM and OVP-SVM on 
Spiral Dataset

 

The comparison analysis of
 
both classification 

methods is done on the benchmark datasets. Each 
dataset is validated using double cross fold approach. 
Linear SVM is used for classification. Therefore only one 
parameter needs to be tuned i.e. the ‘C’ which accounts 
for soft margin classification. If training data was not 
provided separately then data was analyzed using 5 fold 
double cross validation. The data was divided into four 
parts of training data and one part of testing data. This 
training data was again five folded with four folds for 
actual training and one fold for parameter adjustment. 
All the datasets are available at UCI Machine Learning 
repository [6]. Table 1 shows the effect of change in 
matrix ‘A’ on sonar dataset. In rest of cases results are 
obtained by creating matrix ‘A’ is made by summing the 
correlation coefficient of a feature with rest of the 
features.

 

The experimentation of SVM with changed value 
of bias is performed on two datasets. The result of 
concentric circle dataset and of Spiral Dataset is shown 
in table 2.
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𝐵 − 𝐴 = (2𝜋𝑟 + 𝑛𝜋𝜋𝑟 − 2𝑛𝑟𝑠𝑖𝑛−1
1

𝑛
) − (𝑛 + 1)𝜋𝑟

𝐵 − 𝐴 = (𝜋𝑟 − 2𝑛𝑟𝑠𝑖𝑛−1
1

𝑛
) ≥ 0

( 1) (1)Total Misclassification of Class and ClassError
Total Number of Samples




( 1) ( 1)
( 1) ( 1)

Total Misclassification of Class Total Misclassification of ClassError
Total Number of Samples of Class Total Number of Samples of Class

 
 

 

A Matrix Modified SVM SVM

All Sigmas 75.85 75.25
Sigma>0.75 75.05 74.45

Selected Sigmas 76.3 75.4

Dataset SVM OVP-SVM

Concentric 

Circle

49.7% 63%

Spiral 49.8% 53.05%

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD

)
A



The results obtained in both methods 
outperform the normal SVM and have different 
advantages. Modified SVM is immune to redundancy 
and OVP helps in improvising the classification accuracy 
of SVM and can be beneficial in multi class datasets. 
The processing was done on Matlab R2009.
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