
© 2013. Abdulellah A. Alsaheel, Abdullah H. Alqahtani & Abdulatif M. Alabdulatif. This is a research/review paper, distributed under the 
terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), 
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 

  
Global Journal of Computer Science and Technology 
Hardware & Computation 
Volume 13 Issue 1 Version 1.0 Year 2013 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Analysis of Parallel Boyer-Moore String Search Algorithm 
   

  By
 

Abdulellah A. Alsaheel, Abdullah H. Alqahtani
 
& Abdulatif M. Alabdulatif

 

King Saud University, Saudi Arabia

 

                 
        

    

 

Abstract -

  

Boyer Moore string matching algorithm is one of the famous algorithms used in string 
search algorithms. Widely, it is used in sequential form which presents good performance. In this 
paper a parallel implementation of Boyer Moore algorithm is proposed and evaluated. Experimental 
results

 

show that it is valuable with zero overhead and cost optimal. The comparison between 
sequential and parallel showed that the parallel implementation was faster and more useful.

 

Keywords : parallel processing, parallel algorithm, boyer-moore, string matching algorithm, 
performance analysis.

 

GJCST-A

 

Classification : F.2.0

 

 

Analysis of Parallel Boyer-Moore String Search Algorithm

 
 

Strictly as per the compliance and regulations of:

 
 

 

 

 

 



Analysis of Parallel Boyer-Moore String Search 
Algorithm 

Abdulellah A. Alsaheel α, Abdullah H. Alqahtani σ & Abdulatif M. Alabdulatif ρ 

Abstract - Boyer Moore string matching algorithm is one of the 
famous algorithms used in string search algorithms. Widely, it 
is used in sequential form which presents good performance. 
In this paper a parallel implementation of Boyer Moore 
algorithm is proposed and evaluated. Experimental results 
show that it is valuable with zero overhead and cost optimal. 
The comparison between sequential and parallel showed that 
the parallel implementation was faster and more useful. 
Keywords : parallel processing, parallel algorithm, 
boyer-moore, string matching algorithm, performance 
analysis. 

I. Introduction 

tring matching algorithm is a huge area used 
when there is a need to search for the occurrence 
of a pattern of a string in a text. The applications 

of string matching algorithms is widely used like in 

security field when a protection system searching for a 
malicious pattern in a big text string. Boyer Moore is one 
of the most algorithms used in this field. The Boyer 
Moore algorithm search for the occurrence of pattern 
P[1-N] in a text T[1-M] by comparing the pattern in the 
text from right to left and shifting the pattern from left to 
right when mismatch occur using one of two functions 
that are bad character shift or good suffix shift[1]. 

The sequential Boyer Moore searching 
algorithm requires O(NM) in worst case when the 
pattern occurs in the text. And in the best performance 
is O(M/N) [4], where length of a pattern is N, and length 
of a text string is M. Actually, This algorithm is not 
efficiently working with small size strings but it is efficient 
with big size strings. 

 
 
 
 
 
 
 

Figure 1 : BM algorithm mechanism make comparison from right to left and shift from left to right when mismatch 
occur 

In this paper implementing a parallel Boyer 
Moore is proposed and evaluating its performance and 
compare it with sequential version. Most of performance 
metrics used in evaluating any algorithm is used to 
make a clear comparison between sequential and 
parallel algorithm and presents valuable metrics for 
algorithm.

 

II.
 

Related Works
 

A few works on parallelizing Boyer Moore 
algorithm proposed. In [2] implements a parallel 
algorithm in clustered computing environment for many 
kinds of string matching algorithms and Boyer Moore 
algorithm is one of them. They made a

 
comparison 

between the performance of this algorithm in sequential 
and parallel on different sizes of data and in different 
number of nodes. The result for their experiment and 
comparison demonstrated that Boyer Moore in parallel 
is taken less time than in sequential.

 
 
 

Authors α σ ρ : King Saud University, College of computer and 
information sciences, Saudi Arabia. E-mail : cs_saheel@hotmail.com 

Popa et al [3] has made an implementation for 
a parallel algorithm for Boyer Moore and calculating the 
speed up and efficiency in various numbers of 
processes. He used single program multiple data 
stream (SPMD) as a model and C as programming

 

language with using parallel virtual machine (PVM) 
functions.

 

III.
 

The Parallel Algorithm
 

Parallel processing is the concept of executing 
the same problem on different processing units 
concurrently. The parallel implementation is made to 
work on one control

 
unit with different data that called 

single instruction stream multiple data stream (SIMD). 
The communication model is shared address space 
where the algorithm implemented on the same platform.

 

In this algorithm different tasks assigned to P
 

processors to
 

present results. While these tasks are 
homogeneous and there are no dependencies between 
them, the bag of tasks has been used as a design 
pattern for the parallel algorithm.

 

S 

 ©  2013 Global Journals Inc.  (US)

  
  
 

  

43

Y
e
a
r

01
3

2
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD DDDD

)
A



The idea is to divide the text T to multiple 
partitions and make the comparison over the same copy 

of pattern and every worker concurrently implement M/P 
[1] where M is the length of text T. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Partitioning different parts of T on available P

The partitioning is occurred between lines of file 
text and cannot be occurred in the middle of line and 
assuming that the pattern that being searched for, will 
not be occurred between any two lines. 

a) Theoretical Analysis 
Sequential algorithm has been evaluated by its 

serial runtime 𝑇𝑇𝑠𝑠, that taken from the start of the 
execution of the algorithm to the end of it. The 
sequential time of Boyer Moore when pattern occur is 
𝑇𝑇𝑠𝑠=𝑂𝑂(𝑀𝑀𝑁𝑁) in worst case [4][5]. The parallel runtime that 
denoted by 𝑇𝑇𝑝𝑝 is the time taken from the first processor 
starts to the end of last processor. When our algorithm 
depends on dividing a text 𝑇𝑇 on the available workers P, 
the parallel time will be then 𝑇𝑇𝑝𝑝=𝑂𝑂( ∗𝑁𝑁) and the total 
cost is 𝑝𝑝𝑇𝑇𝑝𝑝=   . 

In the following some of the most famous 
performance metrics used for parallel systems 
measurement applied on the proposed parallel 
algorithm [6]: 

• Total overhead: the total time that spent by 
processers over sequential time 𝑇𝑇𝑜𝑜=𝑝𝑝𝑇𝑇𝑝𝑝− 𝑇𝑇𝑠𝑠=0. 

• Speed Up S: the ration of time taken by the 
algorithm taken in sequential to the same algorithm 
in parallel, S = P . 

• Efficiency E: is the relation between speed up and 
number of processors, E = 1 which is in this case is 
optimal. 

By applying these metrics on parallel algorithm, 
it showed that using Boyer Moore parallel algorithm is 
more efficient and better than using Boyer Moore 
sequential algorithm. 

b) Practical Analysis 

The algorithm has been implemented by Java 
programming language with having sequential and 
parallel versions of Boyer-Moore algorithm. The 
experiment has been applied on a platform with 8 
processing units and 8 GB RAM (Random Access 
Memory). 

This implementation used bad rule character 
that scan the pattern starting from the rightmost 
character against the text and the pattern will be shifted 
to the right whenever a mismatch occurs, pattern 
shifting will be according to the number of positions that 
stated at skip table that has stored the right most 
occurrence of that mismatched character at the pattern. 

The pseudo-code of Boyer-Moore algorithm: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

  
 

 
 

 
 

 
 

 
 
 

© 2013  Global Journals Inc.  (US)

  
 

   
 

  44

Y
e
a
r

01
3

2
  

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD

)
A

Analysis of Parallel Boyer-Moore String Search Algorithm

𝑀

𝑃

    int tableSize;
    int[] table;
    String pattern;
    public BoyerMoore(String pattern) {
        this.tableSize = 256;
        this.pattern = pattern;
        table = new int[tableSize];
        for (int c = 0; c < tableSize; c++)
            table[c] = -1;
        for (int j = 0; j < pattern.length(); j++) 
            table[pattern.charAt(j)] = j;
    }
    public int search(String text) {
        int N = pattern.length();
        int M = text.length();
        int skip;
        for (int i = 0; i <= M - N; i += skip) {
            skip = 0;
            for (int j = N-1; j >= 0; j--) {
                if (pattern.charAt(j) != text.charAt(i+j)) {
                    skip = Math.max(1, j - table[text.charAt(i+j)]);
                    break;
                }
            }
            if (skip == 0)
                return i;
        }
        return M;
    }

Partitioning the text into sub-amounts of work 
will divide the problem into smaller sub-problems, so 

𝑂 𝑀 ∗ 𝑁  



then multiple workers can work concurrently at the same 
time. All of the workers require an access to the 

complete list of patterns to compare their portions of text 
against all patterns.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table

 
1

 
:

 
Sequential Processing P=1, Parallel Processing P=8

 The performance of the sequential algorithm is 
stable and easy to read as Table1 has demonstrated, 
since adding 500 elements each time will requires 50 
Milliseconds approximately; despite the number of data 
elements being processed it will usually consume the 
same amount of time for processing the same amount 
of data. On the other hand there is the performance of 
the parallel processing which is presented at Table1 and 

may requires more analysis to be understood, however 
the table demonstrated that adding 500 data elements 
at each time will affect the processing time significantly 
whenever N is small; whereas adding the same amount 
of data to large number of elements will not affect the 
processing time that much. Conclusion is that the 
parallel version of Boyer-Moore algorithm works better 
with larger data.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure
 
3

 
: N is the number of text lines being processed

 
 
 
 
 
 
 
 
 
 
 
 

Table 2 : Varying number of Processors, N=3000 

Adding more workers will significantly improve 
the processing time especially whenever the number of 
workers is small. Notice that adding more workers not 
necessarily will improve processing performance, this 
due to the fact that Boyer-Moore algorithm will have 
worse case whenever there are more mismatches which 
require more shifting to do; and since the parallel 
algorithm has partitioned the data across multiple 
workers, that partitioning sometimes may not guarantee 
a better performance then what would you have if you 
have less workers especially whenever the number of 
workers is large where adding one more worker may not 
improve the performance significantly. Some data 

 ©  2013 Global Journals Inc.  (US)

  
  
 

  

45

Y
e
a
r

01
3

2
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD DDDD

)
A

Analysis of Parallel Boyer-Moore String Search Algorithm

Parallel Time 
(Milliseconds)

Sequential Time 
(Milliseconds)

Number of 
Elements (N)

550500
16961000
271431500
401912000
612322500
822783000

1143283500
1403674000
1454134500
1604615000

Actual Time (Milliseconds)Number of Processors (P)
2771
1702
1343
1034
1015
1066
937
828

partitioning introduces an additional delay since some 



data portions that held by some workers may have more

 
mismatches and more shifting then what other workers 
may need. So the data nature and the number of 
workers are critical for the parallel algorithm 

performance especially when there is large number of 
elements to be processed and where adding

 

more 
workers may not significantly improve the performance.

 
 
 
 
 
 
 
 
 
 
 
 

Figure

 

4

 

:

 

P is the number of processors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table

 
3

 
:
 
Parallel processing with varying number of 

workers, P=8, N=3000
 

To have more workers than the existing number 
of processors may lead to significant performance 
improvement, since having more workers means having 
smaller sub-problems which are faster to be processed. 
But one should consider that having more workers than 
the existing number of processors will introduce an 
additional overhead due to the context switching. So, 
identifying a threshold-like which specifies the maximum 
allowed number of workers that can work safely in 
performance wise. The experiment showed that on a 
platform with P=8 processors, there is a safe and better 
performance can be achieved by having 2 * P = 16 
threads. Increasing the number of threads more than 
that may result in

 

better or worse performance so one is 
advised to not exceed that threshold due to instability.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure

 

5

 

:

 

T is the number of threads

 

IV.

 

Conclusion

 

Sequential and parallel implementations of 
Boyer-Moore string matching algorithm have been 
evaluated. Theoretically, it proved that the performance 
of the parallel algorithm is cost optimal with zero 
overhead. In practical experiment, different sizes of data 
have been used to show that the parallel algorithm is 

very faster and better than sequential especially when 

© 2013  Global Journals Inc.  (US)

  
 

   
 

  46

Y
e
a
r

01
3

2
  

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD

)
A

Analysis of Parallel Boyer-Moore String Search Algorithm

Actual Time (Milliseconds)Number of Threads (T)
6110
4912
4014
3816
3818
3520
3522
4124
3826
2928

the data is large. Also, using different number of 
processors we demonstrated that the parallel Boyer-
Moore works better when the number of workers get 
increased unless the new data partitioning result in 
having some workers with data has many shifting which 
end up in delaying all of the workers. Number of 
workers/threads threshold has been proposed that can 



specify the number of threads which can be used 
efficiently with having stable performance, 2∗𝑃𝑃

 

𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑎𝑎𝑑𝑑𝑠𝑠, 
where P

 

is the number of existing processors.

 

References Références Referencias

 

1.

 

R. S. Boyer and J. S. Moore, “A fast string searching 
algorithm,” Communications of the ACM,

 

vol.20, 
Session10,

 

Oct.1977, pp.761–

 

772.

 
 

 
 

 
 

 
 

 
 

 

 ©  2013 Global Journals Inc.  (US)

  
  
 

  

47

Y
e
a
r

01
3

2
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD DDDD

)
A

Analysis of Parallel Boyer-Moore String Search Algorithm

2. P. J. C, and K. S. Panicker, “Single Pattern Search 
Implementations in a Cluster Computing 
Environment”, in 4th IEEE International Conference 
on Digital Ecosystems and Technologies, 2010.

3. D. Breslauer and Z. Galil, “A Parallel implementation 
of Boyer-Moore String Searching Algorithm,”
Sequencess II, 1993, pp. 121-142.

4. Z. Galil, “On improving the worst case running time 
of the Boyer-Moore string matching algorithm”
Communication of the. ACM Vo. 22, no. 9, pp. 505–
508, Sept. 1979.

5. R. Cole, “Tight bounds on the complexity of the 
Boyer-Moors string matching algorithm,”
proceeding in SODA '91 Proceedings of the second 
annual ACM-SIAM symposium on Discrete 
algorithms USA. Philadelphia, pp. 224-233, 1991.

6. A. Grama, G. Karypis, V. Kumar and A. Gupta, 
“Introduction to parallel computing, second edition,”
Addison-Wesley, 2003.



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank 

© 2013  Global Journals Inc.  (US)

  
 

   
 

  48

Y
e
a
r

01
3

2
  

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

  
Is
su

e 
I 
 V

er
sio

n 
I 

  
 

(
DDDD

)
A

Analysis of Parallel Boyer-Moore String Search Algorithm


	Analysis of Parallel Boyer-Moore String Search Algorithm
	Author's
	Keywords
	I. Introduction
	II. Related Works
	III. The Parallel Algorithm
	a) Theoretical Analysis
	b) Practical Analysis

	IV. Conclusion
	References Références Referencias

