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and the standard solutions take O(N2) time. In this paper, we present a fast minimum spanning tree-
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Abstract - Clustering technique is one of the most important 
and  basic tool for data mining. Cluster algorithms have the 
ability to detect clusters with irregular boundaries, minimum 
spanning tree-based clustering algorithms have been widely 
used in practice. In such clustering algorithms, the search for 
nearest objects in the construction of minimum spanning trees 
is the main source of computation and the standard solutions 
take O(N2) time. In this paper, we present a fast minimum 
spanning tree-inspired clustering algorithm, which, by using an 
efficient implementation of the cut and the cycle property of 
the minimum spanning trees, can have much better 
performance than O(N2). 
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I. Introduction 

iven a set of data points and a distance measure, 
clustering is the process of partitioning the data 
set into subsets, called clusters, so that the data 

in each subset share some properties in common. 
Usually, the common properties are quantitatively 
evaluated by some measures of the optimality such as 
minimum intracluster distance or maximum intercluster 
distance, etc. 

Clustering, as an important tool to explore the 
hidden structures of modern large databases, has been 
extensively studied and many algorithms have been 
proposed in the literature. Because of the huge variety 
of the problems and data distributions, different 
techniques, such as hierarchical, partitional, and 
density- and model-based approaches, have been 
developed and no techniques are completely 
satisfactory for all the cases. 

For example, some classical algorithms rely on 
either the idea of grouping the data points around some 
“centers” or the idea of separating the data points using 
some regular geometric curves such as hyper planes. 
As a result, they generally do not work well when the 
boundaries of the clusters are irregular. Sufficient 
empirical evidences have shown that a minimum 
spanning tree representation is quite invariant to the 
detailed geometric changes in clusters’ boundaries. 
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Therefore, the shape of a cluster has little 
impact on the performance of minimum spanning tree 
(MST)-based clustering algorithms, which allows us to 
overcome many of the problems faced by the classical 
clustering algorithms. 

II. An mst-inspired clustering 
algorithm 

Although MST-based clustering algorithms have 
been widely studied, in this section, we describe a new 
divide and- conquer scheme to facilitate efficient MST-
based clustering in modern large databases. Basically, 
it follows the idea of the “Reverse Delete” algorithm. 
Before proceeding, we give a formal proof of its 
correctness. 

Theorem 1. Given a connected, edge-weighted 
graph, the “Reverse Delete” algorithm produces an 
MST. 

Proof. First, we show that the algorithm 
produces a spanning tree. This is because the graph is 
given connected at the beginning and, when deleting 
edges in the non increasing order, only the most 
expensive edge in any cycle is deleted, which does 
eliminate the cycles but not disconnect the graph, 
resulting in a connected graph containing no cycle at 
the end. To show that the obtained spanning tree is an 
MST, consider any edge removed by the algorithm. It 
can be observed that it must lie on some cycle 
(otherwise removing it would disconnect the graph) and 
it must be the most expensive one on it (otherwise 
retaining it would violate the cycle property). Hence, the 
“Reverse Delete” algorithm produces an MST. 

For our MST-inspired clustering problem, it is 
straightforward that n=N and m=N (N-1)/2, and the 
standard solution has O (N2logN) time complexity. 
However, m=O (N2) is not always necessary. The 
design of a more efficient scheme is motivated by the 
following observations. First, the MST-based clustering 
algorithms can be more efficient if the longest edges of 
an MST can be identified quickly before most of the 
shorter ones are found. This is because, for some MST-
based clustering problems, if we can find the longest 
edges in the MST very quickly, there is no need to 
compute the exact distance values associated with the 
shorter ones. 

Second, for other MST-based clustering 
algorithms, if the longest edges can be found quickly, 
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the Prim’s algorithm can be more efficiently applied to 
each individual size-reduced cluster. This divide-and-
conquer approach will allow us to save the number of 
distance computations tremendously. 

Figure 1 : A two-dimensional five-cluster data set 

  
Figure 2 : Its spanning tree after the sequential 

initialization 

a) A Simple Idea 
Given a set of S-dimensional data, i.e., each 

data item is a point in the s-dimensional space, there 
exists a distance between every pair of the data items. 
To compute all the pairwise distances, the time 
complexity is O (sN2), where N is the number of data 
items in the set. Suppose at the beginning, each data 
item is initialized to have a distance with another data 
item in the set. For example, since the data items are 
always stored sequentially, each data item can be 
assigned the distance between itself and its immediate 
predecessor—called a forward initialized tree—or 
successor—called a backward initialized tree. These 
initial distances, whatever they are, provide an upper 
bound for the distance of each data item to its neighbor 
in the MST. 

In the implementation, the data structure 
consists of two arrays: 
1. Distance array   
2. Index array.  

Distance Array: 
             The distance array is used to record the 
distance of each data point to some other data point in 
the sequentially stored data set.  

Index Array: 
             The index array records the index of the data 
item at the other end of the distance in the distance 
array. 

According to the working principle of the MST-
based clustering algorithms, a database can be split 
into partitions by identifying and removing the longest 
inconsistent edges in the tree. Based on this finding, 
after the sequential initialization, we can do a search in 
the distance array (i.e., the current spanning tree) for the 
edge that has the largest distance value, which we call 
the potential longest edge candidate. Then the next step 
is to check whether or not there exists another edge with 
a smaller weight crossing the two partitions connected 
now by this potential longest edge candidate. If the 
result shows that this potential longest edge candidate 
is the edge with the smallest weight crossing the two 
partitions, we find the longest edge in the current 
spanning tree (ST) that agrees with the longest edge in 
the corresponding MST. Otherwise, we record the 
update and start another round of the potential longest 
edge candidate identification in the current ST. 

It can be seen that the quality of our fast 
algorithm depends on the quality of the initialization to 
quickly expose the longest edges. Though the 
sequential initialization gives us a spanning tree, when 
the data are randomly stored, such a tree could be far 
from being optimal. This situation can be illustrated by a 
two-dimensional five cluster data set shown in Figure. 1. 
Shown in Figure.2 is its spanning tree after the 
sequential initialization (SI). In order to quickly identify 
the longest edges, we propose to follow the sequential 
initialization by multiple runs of a recursive procedure 
known as the divisive hierarchical clustering algorithm 
(DHCA). 

b) Divisive Hierarchical Clustering Algorithm 
Essentially, given a data set, the DHCA   starts 

with k randomly selected centers  and then assigns 
each point to its closest center, creating k partitions. At 
each stage in the iteration, for each of these k partitions, 
DHCA recursively selects k random centers and 
continues the clustering process within each partition to 
form at most k

 n partitions for the nth stage. In our 
implementation, the procedure continues until the 
number of elements in a partition is below k+2, at which 
time, the distance of each data item to other data items 
in that partition can be updated with a smaller value by a 
brute-force nearest neighbor search. Such a strategy 
ensures that points that are close to each other in space 
are likely to be collocated in the same partition. 
However, because any data point in a partition is closer 
to its cluster center (not its nearest neighbor) than to the 
center of any other partition (in case, the data point is 
equidistant to two or more centers, the partition to which 
the data point belongs is a random one), the data points 
in the cluster’s boundaries can be misclassified into a 
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wrong partition. Fortunately, such possibilities can be 
greatly reduced by multiple runs of DHCA. To 
summarize, we believe that the advantage of DHCA is 
that, after multiple runs, each point will be very close to 
its true nearest neighbor in the data set. 

To demonstrate this fact, one can think of this 
problem as a set of independent Bernoulli trials where 
one keeps running DHCA and classifying each data 
point to its closest randomly selected cluster center at 
each stage of the process, until it succeeds (i.e., it hits 
its nearest neighbor, or at least, its approximate nearest 
neighbor). Let p be the probability that a random data 
point hits its nearest neighbor. Let Y be the random 
variable representing the number of trials needed for a 
random data point to hit its nearest neighbor. The 
probability of obtaining a success on trial y is given by 

P(Y=y)=qy-1p, 

Where q=1-p denotes the probability that a 
failure occurs. The relationship between p and P(Y=y) is 
plotted in from it, we can see that for a randomized 
process (i.e., p=0.5), at most 50 DHCAs are enough for 
most of the data points to meet their nearest neighbor. 
For our purpose, after the sequential initialization, a 
spanning tree is constructed and each data item in the 
tree has already had a distance. During the divisive 
hierarchical clustering process, each data item will have 
multiple distance computations.  

c) MST-Inspired Clustering Algorithm 
Based on the methodology presented in the 

previous two sections, given a loose estimate of 
minimum and maximum numbers of data items in each 
cluster, an iterative approach for our MST-inspired 
clustering algorithm can be summarized in the following: 
1. Start with a spanning tree built by the SI. 
2. Calculate the mean and the standard deviation of 

the edge weights in the current distance array and 
use their sum as the threshold. Partially refine the 
spanning tree by running our DHCA multiple times 
until the percentage threshold difference between 
two consecutively updated distance arrays is below 
10-6. 

3. Identify and verify the longest edge candidates by 
running MDHCA until two consecutive longest edge 
distances converge to the same value at the same 
places. 

4. Remove this longest edge. 
5. If the number of clusters in the data set is preset or 

if the difference between two consecutively removed 
longest edges has a percentage decrement larger 
than 50 percent of the previous one, we stop. 
Otherwise go to Step 3. 

 

Figure 3 :  Updated spanning tree using DHCAs 

We stop Step 2 when the percentage threshold 
difference between two consecutive pruning thresholds, 
i.e., its percentage decrement, is below a threshold, say 
10-6 in our implementation, because further DHCA-
based distance upper bound updates will not bring us 
more gains which are worth the overhead of the DHCA. 
The spanning tree after the DHCA updates for the one 
shown in Figure. 2 is manifested in Figure. 3. 

The terminating condition presented in the 
above MST inspired clustering algorithm is under the 
assumptions that the clusters are well separated and 
there are no outstanding outliers. However, in many real-
world problems, the clusters are not always well 
separated and noise in the form of outliers often exists. 
For these cases, some of the longest edges do not 
correspond to any cluster separations or breaks but are 
associated with the outliers for such cases, we propose 
terminating  

Conditions of that are adaption results from LM 
algorithm and the MSDR algorithm. 

The advantage of the LM algorithm is the 
avoidance of unnecessary large number of small 
clusters. The advantage of the MSDR algorithm is that it 
can find the optimal cluster separations, particularly for 
cases where there exist some unknown hidden 
structures in the data set. 

The adapted LM algorithm is the following: 
1. Get a loose estimate of the maximum and    

Minimum number of data points for each cluster. 
2. Always cut the largest subcluster and cut an edge          

only when the sizes of both clusters resulted by           
cutting that edge are larger than the minimum           
number of data points. 

3. Terminates when the size of the largest cluster           
becomes smaller than the estimated maximum           
number of data points. 

The adapted LM algorithm is the following: 
1. Calculate the mean and the standard deviation of 

the edge weights in the distance array and use their 
sum as the threshold. ‘Remove the longest edge 
that is larger than the threshold and that links either 
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a single point or a very small number of data points 
to the MST. 

2. Continue Steps 1 and 2 until the edge is reached, 
by removing which, two large groups will form from 
the single largest group before that edge is cut. 

3. Apply the MSDR algorithm on the denoised MST  
4. Assign the removed data points the same cluster 

Label as their nearest neighbor’s. 

d) Time Complexity Analysis 
From the description in the previous sections, it 

can be seen that our algorithm mainly consists of two 
phases. The first phase includes the sequential 
initialization and the DHCA spanning tree updating, and 
the second phase uses the MDHCA to locate the 
longest edges and partitions the obtained approximate 
minimum spanning tree to form sensible clusters. We 
expect the original DHCAs (i.e., no thresholding 
involved) to scale as O (fN logN), where f denotes the 
number of DHCA constructed before the terminating 
condition is satisfied. Since in our implementation, at 
each step of the spanning tree updating using the 
DHCA, before we assign a data item to a cluster center, 
if its current distance upper bound is smaller than the 
threshold (i.e., the sum of the mean and one standard 
deviation of the tree edge weights), we ignore it, the time 
complexity is actually (d(xN)log(xN)), where x is between 
0 and 1.  

Therefore, as long as x is small enough, the 
time complexity could be near linear on average. 
Though its worst time complexity could be O(N2), the 
average time complexity of the second phase is O(eN 
logN), where e denotes the number of MDHCA 
constructed before the terminating condition is satisfied. 
Since, on average, the number of longest edges is 
much smaller than the data set size N, as long as the 
spanning tree constructed in the first phase is very close 
to the true minimum spanning tree, we expect our MST-
inspired algorithm to scale as O(log N). 

e) Pseudocode for Our Clustering Algorithm 
The implementation of the DHCA in our 

approach is through the design of a C++ data structure 
called Node. The Node data structure has several 
member variables that remember the indexes of the 
subset of the data items that are clustered into it from its 
parent level, the indexes of its randomly chosen k cluster 
centers from its own set for its descendants, and a main 
member function that generates k new nodes by 
clustering its own set into k sub clusters. The outputs of 
the Node data structure are at most k new Nodes as the 
descendents of the current one. 

The divisive hierarchical clustering process 
starts with creating a Node instance, called the top 
Node. This top Node has every data item in the data set 
as its samples. From these samples, this top Node 
randomly chooses k data points as its clustering centers 
and assigns each sample to its nearest one, generating 

k data subsets in the form of k Nodes. Only when the 
number of samples in a Node is larger than a 
predefined cluster size will that Node be pushed to the 
back of the topNode, forming an array of Nodes. This 
process continues recursively. With the new Nodes 
being generated on the fly and pushed to the back of 
the Node array, they will be processed in order until no 
new Nodes are generated and the end of the existing 
Node array is reached. 

Totally, we need two variants of the DHCA 
procedure, DHCA for our spanning tree updating, and 
MDHCA for the cycle property implementation. The 
DHCA_ST procedure is given in Table 1. The DHCA_ 
CYC procedure is the same as DHCA_ST except for the 
ways to choose cluster centers and will not be repeated 
here. 

Procedure Name         DHCA_ST 
Input: 
Dist_st, edge_st                The ST distance array and index   
array 
Dist_knn,edge_knn          The auxiliary arrays to remember k-
Nearest 
                                          Neighbours(kNN) for each data item 
kNN                                  The no.of NNs of a data item 
nodeArray                         An array of the Node structures 
currentNode                     The current Node in the Node array 
k                                       The number of clusters at each step 
data                                  The input data set 
maxclustersize                 The maximum size of each clusters 
threshold                          The value used to filter 
Output: 
 Updated dist_st,edge_st,dist_knn,edge_knn and new 
generated<=k   
Nodes which are pushed to the back of nodeArray 
Begin 
        Randomly select  k centers from   sampleNumbers of     
        currentNode; 
        Generate k newNodes; 
        For each sample i  in sampleNumbers of currentNode 
that is not    
        a center 
        { 
               find its nearest center j out of k;                         
if((dist_st[i]<distance(i , j)&& 
                          (sampleNumber[i]>sampleNumber[j])) 
             { 
                  Update dist_st, edge_st; 
             } 
              if(dist_knn[i].max>distance(i,j)) 
            { 
                   Update dist_knn, edge_knn; 
             } 
             if(dist_st[i]>threshold) 
             { 
         assign   sampleNumbers[i] to groups of center j; 
     } 
  } 
      for  each newNode j=1 to k 
      { 
             if(newNode[j].sampleNumbers.size()>maxclustersize) 
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             { 
                   Push newNode[j] to the end of nodeAyyay; 
              } 
        } 
  End   
       dist_knn[i].max is the kNNth nearest neighbor of data item 
i. 

 

(a) Original image 

 

(b) On our MST 

 

(c) On Prim’s MST 

Figure (a-c) :  Results of the adapted MSDR algorithm 

We conducted extensive experiments to 
evaluate our algorithm against the k-means algorithm 
and two other state-of-the-art MST-based clustering 
algorithms on three standard synthetic data sets and 
two real data sets. The experimental results show that 
our proposed MST inspired clustering algorithm is very 
effective and stable when applied to various clustering 
problems. Since there often exist some structures in the 
data sets, our algorithm does not necessarily require but 
can automatically detrmine the desired number of 
clusters by itself.  

In the future, we will further study the rich 
properties of the existing MST algorithms and adapt our 
proposed  MST inspired  clustering algorithm to more 
general and larger data sets, particularly when the whole 
data set cannot fit into the main memory. 

III. Conclusion 

As a graph partition technique, the MST-based 
clustering algorithms are of growing importance in 
detecting the irregular boundaries. A central problem in 
such clustering algorithms is the classic quadratic time 
complexity on the construction of an MST. In this paper, 
we present a more efficient method that can quickly 
identify the longest edges in an MST so as to save some 
computations. Our contribution is the design of a new 
MST-inspired clustering algorithm for large data sets 
(however, without any specific requirements on the 
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distance measure used) by utilizing a DHCA in an 
efficient implementation of the cut and the cycle 
property. 
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