
© 2012. P.Sampurnima, J Srinivas & Harikrishna. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Performanace of Improved Minimum Spanning Tree Based on
Clustering Technique

 By P.Sampurnima, J Srinivas & Harikrishna
 NOVA college of engineering for women Vijayawada

Abstract - Clustering technique is one of the most important and basic tool for data mining. Cluster
algorithms have the ability to detect clusters with irregular boundaries, minimum spanning tree-based
clustering algorithms have been widely used in practice. In such clustering algorithms, the search for
nearest objects in the construction of minimum spanning trees is the main source of computation

Keywords : Clustering, graph algorithms, Minimum spanning tree, Divisive hierarchical clustering
algorithm.

GJCST-C Classification: E.1

Performanace of Improved Minimum Spanning Tree Based on Clustering Technique

Strictly as per the compliance and regulations of:

and the standard solutions take O(N2) time. In this paper, we present a fast minimum spanning tree-
inspired clustering algorithm, which, by using an efficient implementation of the cut and the cycle
property of the minimum spanning trees, can have much better performance than O(N2).

Performanace of Improved Minimum Spanning
Tree Based on Clustering Technique

P.Sampurnima α, J Srinivas σ & Harikrishna ρ

Abstract - Clustering technique is one of the most important
and basic tool for data mining. Cluster algorithms have the
ability to detect clusters with irregular boundaries, minimum
spanning tree-based clustering algorithms have been widely
used in practice. In such clustering algorithms, the search for
nearest objects in the construction of minimum spanning trees
is the main source of computation and the standard solutions
take O(N2) time. In this paper, we present a fast minimum
spanning tree-inspired clustering algorithm, which, by using an
efficient implementation of the cut and the cycle property of
the minimum spanning trees, can have much better
performance than O(N2).
Keywords : Clustering, graph algorithms, Minimum
spanning tree, Divisive hierarchical clustering algorithm.

I. Introduction

iven a set of data points and a distance measure,
clustering is the process of partitioning the data
set into subsets, called clusters, so that the data

in each subset share some properties in common.
Usually, the common properties are quantitatively
evaluated by some measures of the optimality such as
minimum intracluster distance or maximum intercluster
distance, etc.

Clustering, as an important tool to explore the
hidden structures of modern large databases, has been
extensively studied and many algorithms have been
proposed in the literature. Because of the huge variety
of the problems and data distributions, different
techniques, such as hierarchical, partitional, and
density- and model-based approaches, have been
developed and no techniques are completely
satisfactory for all the cases.

For example, some classical algorithms rely on
either the idea of grouping the data points around some
“centers” or the idea of separating the data points using
some regular geometric curves such as hyper planes.
As a result, they generally do not work well when the
boundaries of the clusters are irregular. Sufficient
empirical evidences have shown that a minimum
spanning tree representation is quite invariant to the
detailed geometric changes in clusters’ boundaries.

Author α : M.Tech Student Department of Computer Science and
Engineering NOVA college of engineering for women Vijayawada.
E-mail : psampurnima@gmail.com
Author σ : Associate professor Department of Computer Science and
Engineering NOVA college of engineering for women Vijayawada.
Author ρ : HOD Department of Computer Science and Engineering
NOVA college of engineering for women Vijayawada.

Therefore, the shape of a cluster has little
impact on the performance of minimum spanning tree
(MST)-based clustering algorithms, which allows us to
overcome many of the problems faced by the classical
clustering algorithms.

II. An mst-inspired clustering
algorithm

Although MST-based clustering algorithms have
been widely studied, in this section, we describe a new
divide and- conquer scheme to facilitate efficient MST-
based clustering in modern large databases. Basically,
it follows the idea of the “Reverse Delete” algorithm.
Before proceeding, we give a formal proof of its
correctness.

Theorem 1. Given a connected, edge-weighted
graph, the “Reverse Delete” algorithm produces an
MST.

Proof. First, we show that the algorithm
produces a spanning tree. This is because the graph is
given connected at the beginning and, when deleting
edges in the non increasing order, only the most
expensive edge in any cycle is deleted, which does
eliminate the cycles but not disconnect the graph,
resulting in a connected graph containing no cycle at
the end. To show that the obtained spanning tree is an
MST, consider any edge removed by the algorithm. It
can be observed that it must lie on some cycle
(otherwise removing it would disconnect the graph) and
it must be the most expensive one on it (otherwise
retaining it would violate the cycle property). Hence, the
“Reverse Delete” algorithm produces an MST.

For our MST-inspired clustering problem, it is
straightforward that n=N and m=N (N-1)/2, and the
standard solution has O (N2logN) time complexity.
However, m=O (N2) is not always necessary. The
design of a more efficient scheme is motivated by the
following observations. First, the MST-based clustering
algorithms can be more efficient if the longest edges of
an MST can be identified quickly before most of the
shorter ones are found. This is because, for some MST-
based clustering problems, if we can find the longest
edges in the MST very quickly, there is no need to
compute the exact distance values associated with the
shorter ones.

Second, for other MST-based clustering
algorithms, if the longest edges can be found quickly,

G

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

17

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

the Prim’s algorithm can be more efficiently applied to
each individual size-reduced cluster. This divide-and-
conquer approach will allow us to save the number of
distance computations tremendously.

Figure 1 : A two-dimensional five-cluster data set

Figure 2 : Its spanning tree after the sequential

initialization

a) A Simple Idea
Given a set of S-dimensional data, i.e., each

data item is a point in the s-dimensional space, there
exists a distance between every pair of the data items.
To compute all the pairwise distances, the time
complexity is O (sN2), where N is the number of data
items in the set. Suppose at the beginning, each data
item is initialized to have a distance with another data
item in the set. For example, since the data items are
always stored sequentially, each data item can be
assigned the distance between itself and its immediate
predecessor—called a forward initialized tree—or
successor—called a backward initialized tree. These
initial distances, whatever they are, provide an upper
bound for the distance of each data item to its neighbor
in the MST.

In the implementation, the data structure
consists of two arrays:
1. Distance array
2. Index array.

Distance Array:
 The distance array is used to record the
distance of each data point to some other data point in
the sequentially stored data set.

Index Array:
 The index array records the index of the data
item at the other end of the distance in the distance
array.

According to the working principle of the MST-
based clustering algorithms, a database can be split
into partitions by identifying and removing the longest
inconsistent edges in the tree. Based on this finding,
after the sequential initialization, we can do a search in
the distance array (i.e., the current spanning tree) for the
edge that has the largest distance value, which we call
the potential longest edge candidate. Then the next step
is to check whether or not there exists another edge with
a smaller weight crossing the two partitions connected
now by this potential longest edge candidate. If the
result shows that this potential longest edge candidate
is the edge with the smallest weight crossing the two
partitions, we find the longest edge in the current
spanning tree (ST) that agrees with the longest edge in
the corresponding MST. Otherwise, we record the
update and start another round of the potential longest
edge candidate identification in the current ST.

It can be seen that the quality of our fast
algorithm depends on the quality of the initialization to
quickly expose the longest edges. Though the
sequential initialization gives us a spanning tree, when
the data are randomly stored, such a tree could be far
from being optimal. This situation can be illustrated by a
two-dimensional five cluster data set shown in Figure. 1.
Shown in Figure.2 is its spanning tree after the
sequential initialization (SI). In order to quickly identify
the longest edges, we propose to follow the sequential
initialization by multiple runs of a recursive procedure
known as the divisive hierarchical clustering algorithm
(DHCA).

b) Divisive Hierarchical Clustering Algorithm
Essentially, given a data set, the DHCA starts

with k randomly selected centers and then assigns
each point to its closest center, creating k partitions. At
each stage in the iteration, for each of these k partitions,
DHCA recursively selects k random centers and
continues the clustering process within each partition to
form at most k

 n partitions for the nth stage. In our
implementation, the procedure continues until the
number of elements in a partition is below k+2, at which
time, the distance of each data item to other data items
in that partition can be updated with a smaller value by a
brute-force nearest neighbor search. Such a strategy
ensures that points that are close to each other in space
are likely to be collocated in the same partition.
However, because any data point in a partition is closer
to its cluster center (not its nearest neighbor) than to the
center of any other partition (in case, the data point is
equidistant to two or more centers, the partition to which
the data point belongs is a random one), the data points
in the cluster’s boundaries can be misclassified into a

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

18

(
DDDD

)
C

20

12
Y
e
a
r

wrong partition. Fortunately, such possibilities can be
greatly reduced by multiple runs of DHCA. To
summarize, we believe that the advantage of DHCA is
that, after multiple runs, each point will be very close to
its true nearest neighbor in the data set.

To demonstrate this fact, one can think of this
problem as a set of independent Bernoulli trials where
one keeps running DHCA and classifying each data
point to its closest randomly selected cluster center at
each stage of the process, until it succeeds (i.e., it hits
its nearest neighbor, or at least, its approximate nearest
neighbor). Let p be the probability that a random data
point hits its nearest neighbor. Let Y be the random
variable representing the number of trials needed for a
random data point to hit its nearest neighbor. The
probability of obtaining a success on trial y is given by

P(Y=y)=qy-1p,

Where q=1-p denotes the probability that a
failure occurs. The relationship between p and P(Y=y) is
plotted in from it, we can see that for a randomized
process (i.e., p=0.5), at most 50 DHCAs are enough for
most of the data points to meet their nearest neighbor.
For our purpose, after the sequential initialization, a
spanning tree is constructed and each data item in the
tree has already had a distance. During the divisive
hierarchical clustering process, each data item will have
multiple distance computations.

c) MST-Inspired Clustering Algorithm
Based on the methodology presented in the

previous two sections, given a loose estimate of
minimum and maximum numbers of data items in each
cluster, an iterative approach for our MST-inspired
clustering algorithm can be summarized in the following:
1. Start with a spanning tree built by the SI.
2. Calculate the mean and the standard deviation of

the edge weights in the current distance array and
use their sum as the threshold. Partially refine the
spanning tree by running our DHCA multiple times
until the percentage threshold difference between
two consecutively updated distance arrays is below
10-6.

3. Identify and verify the longest edge candidates by
running MDHCA until two consecutive longest edge
distances converge to the same value at the same
places.

4. Remove this longest edge.
5. If the number of clusters in the data set is preset or

if the difference between two consecutively removed
longest edges has a percentage decrement larger
than 50 percent of the previous one, we stop.
Otherwise go to Step 3.

Figure 3 : Updated spanning tree using DHCAs

We stop Step 2 when the percentage threshold
difference between two consecutive pruning thresholds,
i.e., its percentage decrement, is below a threshold, say
10-6 in our implementation, because further DHCA-
based distance upper bound updates will not bring us
more gains which are worth the overhead of the DHCA.
The spanning tree after the DHCA updates for the one
shown in Figure. 2 is manifested in Figure. 3.

The terminating condition presented in the
above MST inspired clustering algorithm is under the
assumptions that the clusters are well separated and
there are no outstanding outliers. However, in many real-
world problems, the clusters are not always well
separated and noise in the form of outliers often exists.
For these cases, some of the longest edges do not
correspond to any cluster separations or breaks but are
associated with the outliers for such cases, we propose
terminating

Conditions of that are adaption results from LM
algorithm and the MSDR algorithm.

The advantage of the LM algorithm is the
avoidance of unnecessary large number of small
clusters. The advantage of the MSDR algorithm is that it
can find the optimal cluster separations, particularly for
cases where there exist some unknown hidden
structures in the data set.

The adapted LM algorithm is the following:
1. Get a loose estimate of the maximum and

Minimum number of data points for each cluster.
2. Always cut the largest subcluster and cut an edge

only when the sizes of both clusters resulted by
cutting that edge are larger than the minimum
number of data points.

3. Terminates when the size of the largest cluster
becomes smaller than the estimated maximum
number of data points.

The adapted LM algorithm is the following:
1. Calculate the mean and the standard deviation of

the edge weights in the distance array and use their
sum as the threshold. ‘Remove the longest edge
that is larger than the threshold and that links either

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

19

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

a single point or a very small number of data points
to the MST.

2. Continue Steps 1 and 2 until the edge is reached,
by removing which, two large groups will form from
the single largest group before that edge is cut.

3. Apply the MSDR algorithm on the denoised MST
4. Assign the removed data points the same cluster

Label as their nearest neighbor’s.

d) Time Complexity Analysis
From the description in the previous sections, it

can be seen that our algorithm mainly consists of two
phases. The first phase includes the sequential
initialization and the DHCA spanning tree updating, and
the second phase uses the MDHCA to locate the
longest edges and partitions the obtained approximate
minimum spanning tree to form sensible clusters. We
expect the original DHCAs (i.e., no thresholding
involved) to scale as O (fN logN), where f denotes the
number of DHCA constructed before the terminating
condition is satisfied. Since in our implementation, at
each step of the spanning tree updating using the
DHCA, before we assign a data item to a cluster center,
if its current distance upper bound is smaller than the
threshold (i.e., the sum of the mean and one standard
deviation of the tree edge weights), we ignore it, the time
complexity is actually (d(xN)log(xN)), where x is between
0 and 1.

Therefore, as long as x is small enough, the
time complexity could be near linear on average.
Though its worst time complexity could be O(N2), the
average time complexity of the second phase is O(eN
logN), where e denotes the number of MDHCA
constructed before the terminating condition is satisfied.
Since, on average, the number of longest edges is
much smaller than the data set size N, as long as the
spanning tree constructed in the first phase is very close
to the true minimum spanning tree, we expect our MST-
inspired algorithm to scale as O(log N).

e) Pseudocode for Our Clustering Algorithm
The implementation of the DHCA in our

approach is through the design of a C++ data structure
called Node. The Node data structure has several
member variables that remember the indexes of the
subset of the data items that are clustered into it from its
parent level, the indexes of its randomly chosen k cluster
centers from its own set for its descendants, and a main
member function that generates k new nodes by
clustering its own set into k sub clusters. The outputs of
the Node data structure are at most k new Nodes as the
descendents of the current one.

The divisive hierarchical clustering process
starts with creating a Node instance, called the top
Node. This top Node has every data item in the data set
as its samples. From these samples, this top Node
randomly chooses k data points as its clustering centers
and assigns each sample to its nearest one, generating

k data subsets in the form of k Nodes. Only when the
number of samples in a Node is larger than a
predefined cluster size will that Node be pushed to the
back of the topNode, forming an array of Nodes. This
process continues recursively. With the new Nodes
being generated on the fly and pushed to the back of
the Node array, they will be processed in order until no
new Nodes are generated and the end of the existing
Node array is reached.

Totally, we need two variants of the DHCA
procedure, DHCA for our spanning tree updating, and
MDHCA for the cycle property implementation. The
DHCA_ST procedure is given in Table 1. The DHCA_
CYC procedure is the same as DHCA_ST except for the
ways to choose cluster centers and will not be repeated
here.

Procedure Name DHCA_ST
Input:
Dist_st, edge_st The ST distance array and index
array
Dist_knn,edge_knn The auxiliary arrays to remember k-
Nearest
 Neighbours(kNN) for each data item
kNN The no.of NNs of a data item
nodeArray An array of the Node structures
currentNode The current Node in the Node array
k The number of clusters at each step
data The input data set
maxclustersize The maximum size of each clusters
threshold The value used to filter
Output:
 Updated dist_st,edge_st,dist_knn,edge_knn and new
generated<=k
Nodes which are pushed to the back of nodeArray
Begin
 Randomly select k centers from sampleNumbers of
 currentNode;
 Generate k newNodes;
 For each sample i in sampleNumbers of currentNode
that is not
 a center
 {
 find its nearest center j out of k;
if((dist_st[i]<distance(i , j)&&
 (sampleNumber[i]>sampleNumber[j]))
 {
 Update dist_st, edge_st;
 }
 if(dist_knn[i].max>distance(i,j))
 {
 Update dist_knn, edge_knn;
 }
 if(dist_st[i]>threshold)
 {
 assign sampleNumbers[i] to groups of center j;
 }
 }
 for each newNode j=1 to k
 {
 if(newNode[j].sampleNumbers.size()>maxclustersize)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

20

(
DDDD

)
C

20

12
Y
e
a
r

 {
 Push newNode[j] to the end of nodeAyyay;
 }
 }
 End
 dist_knn[i].max is the kNNth nearest neighbor of data item
i.

(a) Original image

(b) On our MST

(c) On Prim’s MST

Figure (a-c) : Results of the adapted MSDR algorithm

We conducted extensive experiments to
evaluate our algorithm against the k-means algorithm
and two other state-of-the-art MST-based clustering
algorithms on three standard synthetic data sets and
two real data sets. The experimental results show that
our proposed MST inspired clustering algorithm is very
effective and stable when applied to various clustering
problems. Since there often exist some structures in the
data sets, our algorithm does not necessarily require but
can automatically detrmine the desired number of
clusters by itself.

In the future, we will further study the rich
properties of the existing MST algorithms and adapt our
proposed MST inspired clustering algorithm to more
general and larger data sets, particularly when the whole
data set cannot fit into the main memory.

III. Conclusion

As a graph partition technique, the MST-based
clustering algorithms are of growing importance in
detecting the irregular boundaries. A central problem in
such clustering algorithms is the classic quadratic time
complexity on the construction of an MST. In this paper,
we present a more efficient method that can quickly
identify the longest edges in an MST so as to save some
computations. Our contribution is the design of a new
MST-inspired clustering algorithm for large data sets
(however, without any specific requirements on the

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

21

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

distance measure used) by utilizing a DHCA in an
efficient implementation of the cut and the cycle
property.

References Références Referencias

1. I. Katriel, P. Sanders, and J.L. Traff, “A Practical
Minimum Spanning Tree Algorithm Using the Cycle
Property,” Proc. 11th European Symp. Algorithms
(ESA ’03), vol. 2832, pp. 679-690, 2003.

2. C.T. Zahn, “Graph-Theoretical Methods for
Detecting and Describing Gestalt Clusters,” IEEE
Trans. Computers, vol. 20, no. 1, pp. 68-86, Jan.
1971.

3. A. Vathy-Fogarassy, A. Kiss, and J. Abonyi, “Hybrid
Minimal Spanning Tree and Mixture of Gaussians
Based Clustering Algorithm,” Foundations of
Information and Knowledge Systems, pp. 313-330,
Springer, 2006.

4. O. Grygorash, Y. Zhou, and Z. Jorgensen,
“Minimum Spanning Tree-Based Clustering
Algorithms,” Proc. IEEE Int’l Conf. Tools with
Artificial Intelligence, pp. 73-81, 2006.

5. R.C. Gonzalez and P. Wintz, Digital Image
Processing, second ed. Addison-Wesley, 1987.

6. Y. Xu, V. Olman, and D. Xu, “Clustering Gene
Expression Data Using a Graph-Theoretic
Approach: An Application of Minimum Spanning
Trees,” Bioinformatics, vol. 18, no. 4, pp. 536-545,
2002.

7. J. Kleinberg and E. Tardos, Algorithm Design,
pp.142-149. Pearson-Addison Wesley, 2005.

8. A. Ghoting, S. Parthasarathy, and M.E. Otey, “Fast
Mining of Distance-Based Outliers in High
Dimensional Data Sets,” Proc. SIAM Int’l Conf. Data
Mining (SDM), vol. 16, no. 3, pp.349-364, 2006.

9. I. Katriel, P. Sanders, and J.L. Traff, “A Practical
Minimum Spanning Tree Algorithm Using the Cycle
Property,” Proc. 11th European Symp. Algorithms
(ESA '03), vol. 2832, pp.679-690, 2003.

10. J. Lin, D. Ye, C. Chen, and M. Gao, “Minimum
Spanning Tree-Based Spatial Outlier Mining and Its
Applications,” Lecture Notes in Computer Science,
vol. 5009/2008, pp.508-515, Springer-Verlag, 2008.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

22

(
DDDD

)
C

20

12
Y
e
a
r

	Performanace of Improved Minimum Spanning Tree Based onClustering Technique
	Author's
	Keywords
	I. Introduction
	II. An mst-inspired clusteringalgorithm
	a) A Simple Idea
	b) Divisive Hierarchical Clustering Algorithm
	c) MST-Inspired Clustering Algorithm
	d) Time Complexity Analysis
	e) Pseudocode for Our Clustering Algorithm

	III. Conclusion
	References Références Referencias

