
© 2012. Amjan.Shaik, Dr.C.R.K.Reddy & Dr.A.Damodaram. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Impact of Mediated relations as Confounding Factor on Cohesion
and Coupling Metrics: For Measuring Fault Proneness in Oo
Software Quality Assessment

 By Amjan.Shaik, Dr.C.R.K.Reddy & Dr.A.Damodaram
 JNTUH, Hyderabad, Andhra Pradesh, India

Abstract - Mediated class relations and method calls as a confounding factor on coupling and
cohesion metrics to assess the fault proneness of object oriented software is evaluated and
proposed new cohesion and coupling metrics labeled as mediated cohesion (MCH) and mediated
coupling (MCO) proposed. These measures differ from the majority of established metrics in two
respects: they reflect the degree to which entities are coupled or resemble each other, and they take
account of mediated relations in couplings or similarities. An empirical comparison of the new
measures with eight established metrics is described. The new measures are shown to be
consistently superior at measure the fault proneness.

GJCST-C Classification: D.2.8

Impact of Mediated relations as Confounding Factor on Cohesion and Coupling Metrics For Measuring Fault Proneness in Oo Software Quality Assessment

Strictly as per the compliance and regulations of:

Impact of Mediated relations as Confounding
Factor on Cohesion and Coupling Metrics: For

Measuring Fault Proneness in Oo Software
Quality Assessment

Amjan.Shaik α, Dr.C.R.K.Reddy σ & Dr.A.Damodaram ρ

Abstract - Mediated class relations and method calls as a
confounding factor on coupling and cohesion metrics to
assess the fault proneness of object oriented software is
evaluated and proposed new cohesion and coupling metrics
labeled as mediated cohesion (MCH) and mediated coupling
(MCO) proposed. These measures differ from the majority of
established metrics in two respects: they reflect the degree to
which entities are coupled or resemble each other, and they
take account of mediated relations in couplings or similarities.
An empirical comparison of the new measures with eight
established metrics is described. The new measures are
shown to be consistently superior at measure the fault
proneness.

I. Introduction

bject Oriented (OO) design and code, for
instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]. These metrics offer ways to evaluate the

excellence of software and their use in former phases of
software development can help organizations in
evaluating large software development quickly, at a low
cost [3]. But how do we know which metrics are
functional in capturing important quality attributes such
as Degree of Fault prone, effort, efficiency or amount of
maintenance adaptations. Experiential studies of real
systems can provide relevant answers. There have been
few empirical studies evaluating the effect of object-
oriented metrics on software quality and constructing
models that utilize them in predicting quality attributes in
the system, such as [16, 17, 18, 19, 5, 20, 21, 22, 23, 8,
12, 24]. More data based by empirical studies, which
are capable of being verified by observation or
experiment are needed. The evidence gathered through
these empirical studies is today considered to be the
most powerful support possible for testing a given
hypothesis.

A well designed component, in which the
functionality has been appropriately distributed to its

Author

α

:

Research Scholar, Department of CSE, JNTUH, Hyderabad,

Andhra Pradesh, India.

E-mail : amjan_shahi@yahoo.com

Author

σ

: Professor and HOD of CSE CBIT, Gandipet, Hyderabad,

Andhra Pradesh, India.

E-mail : crkreddy@gmail.com

Author

ρ

: Professor of CSE and Director, Academic Audit Cell,
JNTUH, Kukatpally, Hyderabad, Andhra Pradesh, India.

E-mail : damodarama@rediffmail.com

various subcomponents, is more likely to be fault free
and will be easier to adapt. Appropriate distribution of
function underlies two key concepts of object-oriented
design: coupling and cohesion. Coupling is the extent to
which the various subcomponents interact. If they are
highly interdependent then changes to one are likely to
have significant effects on the behavior of others. Hence
loose coupling between its subcomponents is a
desirable characteristic of a component. Cohesion is the
extent to which the functions performed by a subsystem
are related. If a subcomponent is responsible for a
number of unrelated functions then the functionality has
been poorly distributed to subcomponents. Hence high
cohesion is a characteristic of a well designed
subcomponent.

Many metrics have been proposed to measure
the coupling and cohesion to predict the fault-prone and
maintainability of software. However, few studies had
been done using coupling and cohesion to assess the
quality of components.

In this context we therefore analyzed the
mediated relations of the classes and method calls as a
confounding factor for coupling and cohesion metrics
and proposing two new metrics called Mediated
coupling and Mediated cohesion to measure the fault
proneness to assess the quality of the software.

The rest of the paper organized as, in section II
the traditional cohesion and coupling metrics revealed,
which followed by section III that explores transitivity as
a confounding factor.

II. The Coupling and Cohesion in OO
Programming

a) Measuring Coupling
The term coupling is usually used in a

derogatory manner in design review meetings. Even so,
it's not possible to design aefficient OO application
without coupling. At any time if one object interacts with
another object, then it is coupling. In reality, what you
need to try to minimize is coupling factors. Strong
coupling means that one object is strongly coupled with
the implementation details of another object. Strong
coupling is discouraged because it results in less

O

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

39

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

flexible, less scalable application software. However,
coupling can be used so that it enables objects to talk to
each other while also preserving the scalability and
flexibility.

Though this seems like a difficult task, OO
metrics can help you to measure the right level of
coupling.

Coupling between Objects (CBO): CBO is
defined as the number of non-inherited classes
associated with the target class. It is counted as the
number of types that are used in attributes, parameters,
return types, throws clauses, etc. Primitive types and
system types (e.g. Java.lang.*) is not counted.

Data Abstraction Coupling (DAC): DAC is
defined as the total number of referring types in attribute
declarations. Primitive types, system types, and types
inherited from the super classes are not counted.

Method Invocation Coupling (MIC): MIC is
defined as the relative number of classes that receive
messages from a particular class.

1
nMICMIC
N

=
−

Where N isthe total number of classes defined
within the project.

nMIC is the total number of classes that
receive a message from the target class.

Demeter's Law: Ian Holland first proposed the
Law of Demeter. The class form of Demeter's Law has
two versions: a strict version and a minimized version.
The strict form of the law states that every supplier class
of a method must be a preferred supplier. The
minimization form is more permissive than the first
version and requires only minimizing the number of
acquaintance classes of each method.

Definition 1 (Client): Method M is a client of
method f attached to class C, if in M message f is

sent to an object of class C , or to C . If f is

specialized in one or more subclasses, then M is only a
client of f attached to the highest class in the hierarchy.

Method M is a client of some method attached to C .
Definition 2 (Supplier): If M is a client of class

C then C is a supplier to M. In other words, a supplier
class to a method is a class whose methods is called in
the method. In Listing 1, the Product class is a supplier
class to the client class Order.

Definition 3 (associate Class): A class 1C is an
acquaintance class of method M attached to class 2C
, if 1C is a supplier to M and 1C is not one of the
following:
The same as 2C ;
A class used in the declaration of an argument of M

A class used in the declaration of an instance
variable of 2C

Definition 4 (Preferred-supplier class): Class B
is called a preferred-supplier to method M (attached to
the class C) if B is a supplier to M and one of the
following conditions holds:

B is used in the declaration of an instance
variable of C

B is used in the declaration of an argument of
M , including C and its super classes.
B is a preferred acquaintance class of M .

b) Measuring Cohesion
In OO methodology, classes contain certain

data and exhibit certain behaviors. This concept may
seem fairly obvious, but in practice, creating well-
defined and cohesive classes can be tricky. Cohesive
means that a certain class performs a set of closely
related actions. A lack of cohesion, on the other hand,
means that a class is performing several unrelated
tasks. Though lack of cohesion may never have an
impact on the overall functionality of a particular class—
or of the application itself—the application software will
eventually become unmanageable as more and more
behaviors become scattered and end up in the wrong
places.

Thus, one of the main goals of OO design is to
come up with classes that are highly cohesive. Luckily,
there's a metric to help to verify that the designed class
is cohesive.
The LCOM Metric: Lack of Cohesion in Methods

The Lack of Cohesion in Methods metric is
available in the following three formats:

LCOM1: Take each pair of methods in the class
and determine the set of fields they each access. If they
have disjointed sets of field accesses, the count P
increases by one. If they share at least one field access,
Q increases by one. After considering each pair of
methods:

() ()RESULT P Q ? P Q : 0= > −

A low value indicates high coupling between
methods. This also indicates the potentially high
reliability and good class design. Chidamber and
Kemerer provided the definition of this metric in 1993.

LCOM2: This is an improved version of LCOM1.
Say you define the following items in a class:

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

40

(
DDDD

)
C

20

12
Y
e
a
r

()
() ()

m : number of methods in a class
a : number of attributes in a class.
mA : number of methods that access the attribute a.
sum mA : sum of all mA over all the attributes in the class.

LCOM2 1 sum mA / m*a= −

If the number of methods or variables in a class
is zero (0), LCOM2 is undefined as displayed as zero
(0).

LCOM3: This is another improvement on
LCOM1 and LCOM2 and is proposed by Henderson-
Sellers. It is defined as follows:

()() ()
()

LCOM3 m sum mA / a / m 1

where m, a, mA, sum mA are as defined in LCOM2.

= − −

The following points should be noted about LCOM3:

The LCOM3 value varies between 0 and 2.
LCOM3>1 indicates the shortage of cohesion and is
considered a kind of alarm.

If there is only one method in a class, LCOM 3
is undefined and also if there are no attributes in a class
LCOM3 is also undefined and displayed as zero (0).

Each of these different measures of LCOM has
a unique way to calculate the value of LCOM.

An extreme lack of cohesion such as
LCOM3>1 indicates that the particular class should be
split into two or more classes.

If all the member attributes of a class are only
accessed outside of the class and never accessed
within the class, LCOM3 will show a high-value.

A slightly higher value of LCOM means that you
can improve the design by either splitting the classes or
re-arranging certain methods within a set of classes.

III.

Mediated relations of classes and
method calls as confounding

factor

a)

Confounding Factor

The term confounding refers to a situation in
which an association between an independent variable
and a dependent variable is thought to be the result of
the influence of a third variable[17]. The suggestion is
that an apparent association between the independent
and dependent variables may be partly or completely
accounted for by a third variable. By the same token, the
absence of an apparent association between
independent and dependent variables may be the result
of a failure to account for the effects of a third variable.
The third variable that distorts the true association
between the independent and dependent variables is
usually called a confounding variable. The distortion that
results from perplexing may lead to overestimation or
underestimation of an association, depending on the
direction and magnitude of the relations that the

confounding variable has with the independent and
dependent variables [18].

To quantitatively analyze the confounding
factor, a number of confounding factor analysis models
using various modeling techniques, such as linear,
logistic, and probity regression, have been developed
[16], [17], [19], [20], [21], [22]. Among these models,
the confounding factor analysis model based on linear
regression techniques has been widely used in health
sciences and epidemiological research [16], [19], [20].
Compared to models based on other modeling
techniques, the linear-regression-based model has two
main advantages: 1) A number of statistical methods
have been developed for this model to test for a
confounding variable [16], [19] and 2) it is easy to
determine whether a confounding variable leads to
overestimation or underestimation of the true
association between the independent and dependent
variables [16], [20].

b)

Mediated relation as dependent variable

The objective of this study is to empirically
investigate to identify the cohesion and coupling metrics
under consideration of mediated class relations and
method calls as confounding factors and assessing the
association between these cohesion and coupling
metrics and degree of fault-proneDegree of Fault prone
is an important external quality attribute and identifying
faults-prone classes is very useful because: 1) It enables
software developers to take focused preventive actions
that can reduce maintenance costs and improve quality
and 2) it helps software managers to allocate resources
more effectively. In this study, Degree of Fault prone
denotes the extent of class responsibility in component
failure. We need to select the depth of the transitivity in
class relations and method calls as the dependent
variable for our study.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

41

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

IV. Mediated coupling between
objects[mcbo]

We begin by regarding any object-oriented
software system as a directed graph, in which the
vertices are the classes comprising the system.
Suppose such a system comprises a set of classes
C (C |{ 1.. })i C i m≡ ∈ = . Let

{ }m(C) m(C) () | (1..)j j i jm C i n≡ ∈ = be the

methods of the class jC , and mI()C Cj i→ the set of

methods and instance variables in class iC invoked by

class jC for j i ≠ . An edge from jC to iC exists if

and only if the 0()mI C Cj i >→ , which can be used to

generate the weight of that directed edge. The graph is
directed since ()mI C Cj i→ is not necessarily equal to

()mI C Ci j→ . Let consider that ()mI C Cj→ is the set of all

methods and instance variables in other classes of C
that are invoked by class jC . ‘ ()mI C Cj→ ’ can be

represented as follows:

() ()
1

m
mI mIC C C Cj j i

i
=→ →
=

a) Finding a Degree of Directed Coupling (DDC)
The directed edge weight ()cw C Cj i→ between

classes jC and iC can be represented as

()
()

()

mI C Cj icw C Cj i mI C Cj

→
=→

→
, the directed edge weight also

can refer as degree of direct coupling (DDC) between
two classes cw is always between 0 and 1.

b) Finding a degree of mediated coupling (DMC)
Based on this degree of direct coupling

between two classes, we can generalize the process of
detecting the degree of mediated coupling mcw between

any two classes jC and kC exists such that

() 0mI C Cj k→ ≅ , which follows:

1
1(,) | |

1

mcw C C p ej k j k
cwi

i

= −→ →
 ∑
 =

()(mI 0)
j kC Ciff → ≅

In above equation
e j k→ is the set of DDCs of edges, which are

building path p between class jC and kC

icw is DDC of an edge i that belongs to j ke → .

p is one of the path out of set of paths P
between jC and kC

c) Applying Confounding factor
The confounding factor of path p is ()pcf , that

assessed as follows:

| | 1()
(,) | |()

e pcf C C pj k e p

−
=→

Here in the above equation

()pe is set edges that belongs to the path p .

Then the generalized degree of mediated
coupling between class jC and kC ()mcw C Cj k→ can be

found as follows

1
1() | |

()(,) (,)
1

mcw C C Pj k
mcw cfC C i C C ij k j k

i

= −→
+ ∑ → → =

The following hypothesis is a convention from
the empirical study conducted on applications that are
confirmed as fault prone:

If ‘ mcw ’is the degree of mediated coupling
between two objects 1O and 2O then (100)%mcw× is

the percentage of 1O and 2O objects in application’s

fault proneness.

V. Mediated cohesion (mch)

The proposed cohesion metric is based on
transitive function calls. The Hypothesis of the proposed
cohesion metric can be defined as:

We build a graph based on the function calls

between the functions of the same class.
The edge between any two functions represents

thetotal number of similar properties used similar
functions invoked in both functions.
Finding Degree of Direct Cohesion(DDCH)

The Degree of Direct Cohesion Between two
functions that represents the edge weight can be
generalized as follows:

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

42

(
DDDD

)
C

20

12
Y
e
a
r

If a method A invoking a method B and method
B is invoking method C, then the connection between A
and C can be considerable and their cohesiveness is
transitive if and only if A,B and C belongs to a same
class or classes in an inheritance hierarchy .

Let ()ipM is set of properties used in a method

iM of the class C such that ipM pC∈ and iM mC∈
, here pC is set of properties declared in the classC
and mC is a set of methods belongs to the class C .
Let ()imM is set of methods invoked in method iM of

the class C such that imM mC∈ .

Let ()jpM is set of properties used in the

method jM of the class C such that jpM pC∈ and

jM mC∈ , here pC is set of properties declared in

the class C and mC is a set of methods belongs to the
class C . Let ()jmM is set of methods invoked in

method jM of the class C such that jmM mC∈ .

If (||) j i i jM mM M mM∈ ∈ then there an

edge exists between these two methods. The graph is
not a directed graph, since edge weight is not changing
under any direction of direct connection between the
two functions. The DDCH that referred as edge weight
can be measured as follows:

()

| | | |
1

| | | |

| | | |
| | | |

i j

i j i j

i j i j
M M

i j i j

i j i j

pM pM mM mM
pM pM mM mM

chw
pM pM mM mM
pM pM mM mM

⊕

+ − =

+

,here ()1 0
i jM Mchw ⊕≥ ≥

a) Finding Degree of Mediated Cohesion (DMCH)
Based on this degree of direct Cohesion

between two methods, we can generalize the process of
detecting the degree of mediated cohesion mchw

between any two methods jM and kM of same class

exists such that () 0chw M Mj k⊕ ≅ , which follows:

1
1(,) | |

1

mchw M M p ej k j k
chwi

i

= −⊕ →
 ∑
 =

()(chw 0)
j kM Miff ⊕ ≅

In above equation
e j k→ is the set of DDCHs of edges, which are

building a path p between methods jM and kM

ichw is DDCH of an edge i that belongs to j ke → .

p is one of the path out of set of paths P
between jM and kM

b) Applying Confounding factor
The confounding factor of the path p is ()pcf ,

that assessed as follows:
| | 1()

(,) | |()

e pcf M M p ej k p

−
=⊕

Here in the above equation

()pe is set edges that belongs to the path p .

Then the generalized degree of mediated

cohesion between methods jM and kM

()mchw M Mj k⊕ can be found as follows

1
1() | |

()(,) (,)
1

mchw M M Pj k
mchw cfM M i M M ij k j k

i

= −⊕
+ ∑ ⊕ ⊕ =

Since the class level cohesiveness is significant
to predict the fault proneness than the method level
cohesiveness.

The class level confounding factor of a class C
measures as follows:

()
11

| ' |
| |

Cccf
P

mC

= −

Since the the ration between number paths
build in the graph and number of methods exists
indicates the cohesiveness, if the majority of paths
between same classes can be considered as a
confounding factor. Hence the above equation justifies
the measurement of the class level confounding factor.

Here in this equation | ' |P represents the total
number of paths build between the methods of a class
C , | |mC total number of methods in class C .

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

43

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Then the class level mediated cohesiveness
can be measured as follows:

11() | '|
() ()

1

mchw C P
mchw ccfp Ci

i

= −

+ ∑ =

Here in the above equation
()mchw pi is the degree of mediated cohesion

between methods that build path ip

The following hypothesis is a convention from
the empirical study conducted on applications that are
confirmed as fault prone:

If ‘ mchw ’is the degree of mediated cohesionof
class C then (100)%mchw× is class C fault
proneness in application’s fault proneness.

VI. Results analysis

We conducted experiments on applications
build under SDLC standards. We make sure the
heterogeneity in number of classes of the applications
considered for experiments. We measured the Fault
proneness prediction accuracy of the
MCBO and MCH as fallow:

Classes correctly predicted as fault proneS(MCBO)
Classes actually fault prone

=

Classes correctly predicted as fault proneS(MCH)
Classes actually fault prone

=

S(MCBO H)
(Correctly predicted as fault prone by MCBO and MCH

Actually fault prone

MC⊕ =

Fig. 3 : Fault proneness prediction sensitivity of
Mediated Coupling Between Objects(MCBO), MCBO

with confounding factor(MCBO - CF) and CBO

Fig. 4 : Fault proneness prediction sensitivity of
Mediated cohesion (MCH), MCH with confounding

factor(MCH - CF) and LCOM

Here in fig 3 we can observe the performance of
the MCBO with the confounding factor in predicting the
sensitivity of fault proneness, which stands with
approximately 90% and miles ahead when compared to

CBO. If path lengths are not considered as confounding
factors then the sensitivity of MCBO is as low as CBO.
This we can observe in the case of Lucene. Since the
Lucene is having considerable variations in path lengths
between any two classes that are connected in a
transitive manner. In other two applications JPCAP and
RASIN are having a minimal number of paths between
two classes and also the variation between any two
paths is negligible. The similar kind of performance can
be observed for MCH with confounding factor. Fig 4
indicating the advantage of MCH with the number of
paths as confounding factors over LCOM. The
significance of the number of paths as confounding
factor can be observed in the case of JPCAP. In majority
classes the number of paths builds between same
methods of the class. Hence the performance of the
MCH without confounding factor is as low as LCOM(see
fig 4).

VII. Conclusion

These results clearly demonstrate that the
proposed metrics MCBO and MCH for coupling and
coherence are very good predictors for fault proneness.
It is clearly identified that

1. Mediated coupling between two objects is having
an impact of the number of connections and path
length variation as confounding factors.

2. Mediated Cohesion between the methods of a class
is having an impact of the number of paths build
between any two methods of a class as
confounding factors.

These two metrics MCBO and MCH are
measuring as numeric values rather in binary quantity.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

44

(
DDDD

)
C

20

12
Y
e
a
r

References Références Referencias

1. K.K.Aggarwal, Yogesh Singh, ArvinderKaur,
RuchikaMalhotra, “Analysis of Object-Oriented
Metrics”, International Workshop on Software
Measurement (IWSM), Montréal, Canada , 2005.

2. L.Briand, J.Daly and J. Wust, “A Unified Framework
for Cohesion Measurement in Object-Oriented
Systems”, Empirical Software Engineering, 3, 65-
117, 1998.

3. L.Briand ,J.Daly and J. Wust, “A Unified Framework
for Coupling Measurement in Object-Oriented
Systems”, IEEE Transactions on software
Engineering, vol. 25, 91-121, 1999.

4. J.Bieman, B.Kang, “Cohesion and Reuse in an
Object-Oriented System”, Proc. CM Symp. Software
Reusability (SSR’94), 259-262, 1995.

5. M.Cartwright, M.Shepperd, “An Empirical
Investigation of an Object- Oriented Software
System”, IEEE Transactions of Software
Engineering. vol.26, Issue 8, 786 – 796, Aug. 2000.

6. S.Chidamber and C.Kemerer, “A metrics Suite for
Object-Oriented Design”, IEEE Trans. Software
Engineering, vol. SE-20, no.6, 476-493, 1994.

7. S.Chidamber, C. Kemerer, “Towards a Metrics Suite
for Object Oriented design”, Proc. Conference on
Object-Oriented Programming: Systems,
Languages and Applications (OOPSLA’91),
Published in SIGPLAN Notices, vol 26 no. 11, 197-
211, 1991.

8. R.Harrison, S.J.Counsell, R.V.Nithi, “An Evaluation
of MOOD set of Object- Oriented Software Metrics”,
IEEE Trans. Software Engineering, vol. SE-24, no.6,
491-496, 1998.

9. B.Henderson-sellers, “Object-Oriented Metrics,
Measures of Complexity”, Prentice Hall, 1996.

10. M.Hitz, B. Montazeri, “Measuring Coupling and
Cohesion in Object-Oriented Systems”, Proc. Int.
Symposium on Applied Corporate Computing,
Monterrey, Mexico, 1995.

11. A.Lake, C.Cook, “Use of factor analysis to develop
OOP software complexity metrics”, Proc. 6th Annual
Oregon Workshop on Software Metrics, Silver Falls,
Oregon, 1994.

12. W.Li, S.Henry, “Object-Oriented Metrics that Predict
Maintainability’, Journal of Systems and Software,
vol. 23, no.2, 111-122, 1993.

13. Y.Lee, B.Liang, S.Wu, F.Wang, “Measuring the
Coupling and Cohesion of an Object-Oriented
program based on Information flow”, International

Conference on Software Quality, Maribor, Slovenia
1995.

14. M.Lorenz, J.Kidd, “Object-Oriented Software
Metrics”, Prentice-Hall, 1994.

15. D.Tegarden, S. Sheetz, D.Monarchi, “A Software
Complexity Model of Object- Oriented Systems”,
Decision Support Systems, vol. 13 no.3-4, 241-262,
1995.

16. V.Basili, L.Briand, W.Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators”, IEEE
Transactions on Software Engineering, vol. 22
no.10, 751-761, 1996.

17. A.Binkley and S.Schach, “Validation of the Coupling
Dependency Metric as a risk Predictor”,
International Conference on Software Engineering
(ICSE), 452- 455, 1998.

18. L.Briand ,J.Daly, V.Porter, J. Wust, “Exploring the
relationships between design measures and
software quality”, Journal of Systems and Software,
vol. 5, 245- 273, 2000.

19. L. Briand, J. Wüst, H. Lounis, “Replicated Case
Studies for Investigating Quality Factors in Object-
Oriented Designs, Empirical Software Engineering:
An International Journal, vol 6, no 1, 11-58, 2001.

20. S.Chidamber, D. Darcy, C. Kemerer, “Managerial
use of Metrics for Object- Oriented Software: An
Exploratory Analysis”, IEEE Transactions on
Software Engineering, vol.24, no.8, 629-639, 1998.

21. K.ElEmam, S. Benlarbi, N.Goel , S. Rai, “A
Validation of Object-Oriented Metrics”, Technical
Report ERB-1063, National Research Council of
Canada (NRC), 1999.

22. K.ElEmam, W. Melo, J. Machado, “The Prediction of
Faulty Classes Using Object-Oriented Design
Metrics”, Journal of Systems and Software, vol. 56,
63- 75, 2001.

23. T.Gyimothy, R. Ferenc I. Siket, “Empirical validation
of object-oriented metrics on open source software
for fault prediction”, IEEE Trans. Software
Engineering, vol. 31, Issue 10, 897 – 910, Oct. 2005.

24. Yu Ping, Ma Xiaoxing, LuJian “Predicting Degree of
Fault prone using OO Metrics: An Industrial Case
Study, CSMR 2002, Budapest, Hungary, 99-107.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

45

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

The performance of mediated coupling between
objects and mediated cohesion of class is miles ahead
over CBO and LCOM, The number of paths and length
of the paths concluded as confounding factors that
influence the performance of the MCBO and MCH.

This page is intentionally left blank

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

46

(
DDDD

)
C

20

12
Y
e
a
r

	Impact of Mediated relations as Confounding Factor on Cohesionand Coupling Metrics: For Measuring Fault Proneness in OoSoftware Quality Assessment
	Author's
	I. Introduction
	II. The Coupling and Cohesion in OOProgramming
	a) Measuring Coupling
	b) Measuring Cohesion

	III. Mediated relations of classes andmethod calls as confoundingfactor
	a) Confounding Factor
	b) Mediated relation as dependent variable

	IV. Mediated coupling betweenobjects[mcbo]
	a) Finding a Degree of Directed Coupling (DDC)
	b) Finding a degree of mediated coupling (DMC)
	c) Applying Confounding factor

	V. Mediated cohesion (mch)
	a) Finding Degree of Mediated Cohesion (DMCH)
	b) Applying Confounding factor

	VI. Results analysis
	VII. Conclusion
	References Références Referencias

