
© 2012. Amit Chhabra & Gurvinder Singh. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Cloud & Distributed
Volume 12 Issue 12 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Performance Evaluation of Adaptive Scheduling Algorithm for
Shared Heterogeneous Cluster Systems

 By Amit Chhabra & Gurvinder Singh
 Guru Nanak Dev University, Amritsar, India

Abstract - Cluster computing systems have recently generated enormous interest for providing easily
scalable and cost-effective parallel computing solution for processing large-scale applications.
Various adaptive space-sharing scheduling algorithms have been proposed to improve the
performance of dedicated and homogeneous clusters. But commodity clusters are naturally non-
dedicated and tend to be heterogeneous over the time as cluster hardware is usually upgraded and
new fast machines are also added to improve cluster performance. The existing adaptive policies for
dedicated homogeneous and heterogeneous parallel systems are not suitable for such conditions.
Most of the existing adaptive policies assume a priori knowledge of certain job characteristics to take
scheduling decisions. However such information is not readily available without incurring great cost.
This paper fills these gaps by designing robust and effective space-sharing scheduling algorithm for
non-dedicated heterogeneous cluster systems, assuming no job characteristics to reduce mean job
response time. Evaluation results show that the proposed algorithm provide substantial improvement
over existing algorithms at moderate to high system utilizations.

Keywords : adaptive space-sharing scheduling, cluster computing systems, non-dedicated
heterogeneous clusters, performance evaluation and mean response time.

GJCST-B Classification: C.1.4

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

Strictly as per the compliance and regulations of:

Performance Evaluation of Adaptive Scheduling
Algorithm for Shared Heterogeneous Cluster

Systems
Amit Chhabra α & Gurvinder Singh σ

Abstract - Cluster computing systems have recently generated
enormous interest for providing easily scalable and cost-
effective parallel computing solution for processing large-scale
applications. Various adaptive space-sharing scheduling
algorithms have been proposed to improve the performance
of dedicated and homogeneous clusters. But commodity
clusters are naturally non-dedicated and tend to be
heterogeneous over the time as cluster hardware is usually
upgraded and new fast machines are also added to improve
cluster performance. The existing adaptive policies for
dedicated homogeneous and heterogeneous parallel systems
are not suitable for such conditions. Most of the existing
adaptive policies assume a priori knowledge of certain job
characteristics to take scheduling decisions. However such
information is not readily available without incurring great cost.
This paper fills these gaps by designing robust and effective
space-sharing scheduling algorithm for non-dedicated
heterogeneous cluster systems, assuming no job
characteristics to reduce mean job response time. Evaluation
results show that the proposed algorithm provide substantial
improvement over existing algorithms at moderate to high
system utilizations.
Keywords : adaptive space-sharing scheduling, cluster
computing systems, non -dedicated heterogeneous
clusters, performance evaluation and mean response
time.

I. Introduction

raditionally multiprocessors were used as parallel
computing platform to execute large-scale grand
challenging applications. But for over the past

decade, there have been unprecedented technological
advances in the commodity personal computers (PCs)
and network performance, mainly as a result of faster
hardware and more sophisticated software. Another
predominant trend witnessed during this era was the
falling prices of these technologies. Both of these trends
intuitively stimulated the creation of new cost-effective
and high-performance networked-computing based
parallel and distributed paradigm centering on the use
of cluster of low-cost PCs (and/or workstations)
interconnected with low-latency, high-bandwidth

Author α : Assistant Professor in the department of computer science
and engineering, Guru Nanak Dev University, Amritsar, India.

E-mail : chhabra_amit78@yahoo.com

Author σ : Professor in the department of computer science and
engineering, Guru Nanak Dev University, Amritsar, India.

E-mail : gsbawa71@yahoo.com

networks (like ATM, switched Fast or Gigabit Ethernet
etc.). Clusters of PCs are becoming a commonplace
high-performance computing platform in universities
which enjoy the in-house availability of cluster
constituents such as PCs and internetworking devices
as commodity-off-the-shelf (COTS) components.

On par with the development of clusters as a
parallel processing platform to execute large-scale
applications (also known as jobs), scheduling on
clusters has been an interesting research area to work
with in recent years. Job schedulers are generally
designed to resolve the contention among multiple
competing jobs to acquire the available computational
resources (such as processors, memory, storage etc.).

Parallel job scheduling problem is widely
studied in traditional multiprocessor systems [3-6] and
to a relatively less extent in cluster computing systems
[1-2]. A common assumption in most of the existing
parallel job scheduling research in both these systems,
has been that all processors in the system have equal
processing capacity (i.e., homogeneous) and
dedicated. In contrast, in this paper we focus on
proposing a scheduling algorithm to allocate processors
to jobs in non-dedicated and heterogeneous cluster
computing environment.

The rest of the paper is organized as follows:
Section 2 discusses background knowledge on cluster
computing systems and scheduling. Section 3 states
the problem statement. Section 4 gives an overview of
previous literature work related to the problem and
describes the details of the proposed solution. Section 5
describes simulation model which discusses the
workload and system model used. Section 6 evaluates
the performance of new policies and compares them
with existing solutions and Section 7 concludes the
paper.

II. Background Knowledge

In recent times, paradigm of parallel processing
in various organizations has been shifted from traditional
expensive multiprocessors to commodity-based high-
performance clusters due to their high-performance and
cost-effectiveness. Clusters of PCs or workstations
based on the duration and availability of amount of
processing capacity can be generally classified into two

T

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

1

(
DDDD

)
B

20

12
Y
e
a
r

classes; 1) High Performance Computing (HPC)
systems, and 2) High Throughput Computing (HTC)
systems. HPC systems are suitable for interactive
parallel jobs as they deliver enormous amount of
processing capacity over short periods of time. HTC
systems provide large amounts of processing capacity
over long periods of time and hence suitable for batch
parallel jobs. Within these two classes, cluster
computing systems are further classified into three
categories [1-2] as follows:
1. Volunteer-owned Cluster Computing (VCC):

Individual computer in the system may be
homogeneous or heterogeneous and is assumed to
be privately owned. The machines may be used for
executing externally submitted jobs only if the owner
is not using it. Therefore machines in the VCC
systems are non-dedicated as these are not
simultaneously available to external and local users.
The VCC cluster type systems are commonly used
as High throughput computing (HTC) platforms.

2. Community-owned Cluster Computing (CCC): All
computing machines are shareable and may be
homogeneous or heterogeneous. The CCC cluster
computing systems are used both as HTC and HPC
environments. A computer lab in an educational
institution is a best example of CCC type of
systems.

3. Privately-owned Cluster Computing (PCC): PCC is a
dedicated cluster of computers or workstations,
which is commonly referred to as Beowulf in the
literature. This kind of setup is deliberated for use
either as a dedicated HTC or as a dedicated HPC
platform.

Space-sharing policies are commonly used to
schedule parallel jobs in distributed-memory parallel
systems such as multiprocessors as well as cluster
computing systems. In space-sharing policy, parallel
system of multiple processors is divided into disjoint set
of processors (known as partitions) so that each
partition can be assigned to a single job. In this way,
number of jobs can be executed side-by-side by
simultaneously providing processor partitions. The
number of processors in each partition to be assigned
to a job is known as partition size. The primary reason
for preferring space-sharing over time-sharing for cluster
systems is to avoid the cost of context switching due to
frequent preemptions in time-sharing systems.

Space-sharing policies can be broadly divided
into fixed, variable, adaptive and dynamic policies [3-4]
based on the decision that whether the partition size
once assigned to the jobs can be changed during
execution time or not. In fixed policies, partition sizes are
fixed by the administrator before the system actually
starts operating and any modification to these partition
sizes require a system reboot. Variable policies require
partition sizes to be specified by the user at the time of

job arrival. In adaptive policies, partition sizes are
determined by the scheduler at the time of job
scheduling on the basis of current system load and any
available job characteristics. However partition size once
assigned to a job cannot be changed during job
execution. In dynamic policies, partition size of a job can
be changed during its execution.

High performance applications for cluster
computing systems are mostly presented as parallel
jobs. A parallel job is said to consist of a set of tasks
running concurrently to achieve a certain common
objective. Each task runs to completion on its assigned
processor. The number of tasks (and hence processors
required) a certain job has is referred to as the job size.

Characteristics of on-line job streams that act
as input workload to the job schedulers influence the
performance of the schedulers. Parallel jobs can be
classified into four types [3-4]; (i) Rigid, (ii) Moldable (iii)
Evolving, and (iv) Malleable, depending upon the
number of processor to be allocated at submission time
or during execution. A rigid job demands a fixed number
of processors at the time of submission and executes
on these processors exclusively until completion.
Moldable jobs can be made to execute on different
number of processors based on the current system
load. For example if system load is high, then few
processors can be assigned to the moldable job and if
system load then large number of processors can be
allotted to the job. However this flexibility is only
available at job start time and partition size cannot be
reconfigured during execution. The processor
requirements of both Evolving and Malleable jobs can
be changed during execution. For evolving jobs,
requirement changes are initiated by the application
itself during the various phases of its execution. If the
system cannot satisfy the job's demand, the job has to
wait for exact processor allocation. For malleable jobs,
the decision to change the number of processors is
made by an external job scheduler.

III. Problem statement

Most of existing parallel job scheduling policies
especially adaptive space-sharing polices have been
focused on homogeneous parallel systems such as
distributed-memory multiprocessors and cluster
computing systems (for example PCC or VCC systems)
in which all the processors are dedicated and of equal
capacity. It should be noted that scheduling polices for
distributed-memory multiprocessors can be directly
used in PCC systems without any modification due to
similarity in architectures of both the systems. However
clusters of PCs such as CCC systems tend to be
heterogeneous due to the fact that over the passage of
time, new fast machines are regularly added to cluster
or some of the obsolete cluster hardware is replaced to
improve cluster computing performance. Moreover in

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

2

(
DDDD

)
B

20

12
Y
e
a
r

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

order to improve the utilization of computing machines,
the processors in CCC systems are often shared by
local users to execute local jobs (hereafter known as
background workload).

The problem seems significant as the partition
sizes obtained in non-dedicated heterogeneous parallel
systems (e.g. CCC systems) will be different from those
obtained in dedicated homogeneous systems. When we
partition a dedicated homogeneous cluster (such as
PCC and VCC), partition size is obtained by dividing
total number of physical processors by the total number
of jobs in the system. But in case of non-dedicated
heterogeneous systems, partition size is calculated by
dividing the total available computing power of all
processors by the number of jobs currently available in
the system. However total available computing power
will be different at different times due to variations in the
computing power of individual processors in the
presence of varying background workload. Hence
corresponding calculated partition size changes
continuously. Moreover existing adaptive policies focus
on using certain job characteristics (which may not be
readily and cheaply available) to calculate partition size.
Therefore an efficient adaptive scheduling policy is
required which can take care of heterogeneity of
processor speeds as well as run-time load variations
due to background workloads executing at individual
processors and above all requires no job characteristics
to calculate partition size.

IV. Related Works and proposed
algorithms

The focus of the current job scheduling
research in distributed-memory parallel systems is
towards adaptive algorithms to schedule moldable jobs
[8-15] as they have shown to achieve better mean
response time than the scheduling algorithms for rigid
jobs. This is due to the fact that adaptive algorithms
decide the partition sizes by adapting to current system
load at job scheduling time whereas rigid jobs only
require a fixed number of processors resulting into
increased processor fragmentation and mean response
times. Dynamic policies are shown to more suitable for
shared-memory parallel systems in which the
associated overheads of dynamic-partitioning are
outweighed by the benefits.

Adaptive scheduling algorithms for assigning
partition sizes to moldable jobs have been extensively
studied in homogeneous parallel systems

[5-12]

and to

less extent in heterogeneous parallel systems [2][13].
Existing adaptive algorithms in both homogeneous and
heterogeneous cluster systems share one common
assumption that processors are dedicated to execute
only cluster applications (no other applications can be
executed locally). Available adaptive policies also differ

from each other by the amount of job characteristics
used in making processor allocation decisions.

In [5-6], Rosti et al. introduced several adaptive
partitioning policies (known as Fixed Processors per Job
(FPPJ)), Equal Partitioning with a Maximum (EPM),
Insurance Policy and Adaptive Policies (known as AP1,
AP2, AP3, AP4 and AP5)) for distributed-memory
multiprocessors over a wide range of workload types
and with different possible arrival rates. These policies
try to allocate equal-sized partitions to the waiting
applications since no a priori job characteristics were
assumed to be available. However these policies differ
from each other in how the target partition-size is
computed.

Out of these adaptive policies, AP2 (known as
work-conserving policy) seems to be an interesting
policy that reserves one additional partition for the future
job arrivals. The partition size in the AP2 policy is
calculated as shown in (1).

(1)

In [7], Dandamudi and Yu show that AP2

considers only queued jobs to calculate partition size.
This will lead to a situation that contravenes the principal
of allocating equal-sized partitions to all jobs.
Dandamudi and Yu, suggested a modified version of
AP2 known as Modified adaptive policy (MAP) which
considers waiting as well as running jobs to calculate
partition size as shown in (2).

(2)

Target partition size to be finally allocated to the

waiting job is calculated using equation (3). It is the
minimum of the partition size calculated using equation
(2) and maximum parallelism of the job.

 (3)

The parameter f (whose value lies between 0
and 1) is used to control the contribution of the
“running” jobs to the partition size. It has been shown
that the MAP policy provides significant improvement in
performance over policies like AP2, ASP and ASP-max
etc. that do not consider the contribution of running jobs
while calculating partition size. The amount of
improvement obtained is a function of parameter f,
system load, and workload.

The adaptive policy proposed in [8][10] is more
restrictive, in that users must specify a range of the
number of processors for each job. Availability of service
demand knowledge of an individual job is assumed in
the paper. Schedulers will select a number which gives

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

3

(
DDDD

)
B

20

12
Y
e
a
r

the best performance. Schedulers in [8][10] use a
submit-time greedy strategy to schedule moldable jobs.

(4)

In [2], a variation of MAP, known as
Heterogeneous Adaptive Policy (HAP) was suggested
by Dandamudi and Zhou to work with heterogeneous
parallel systems. The work introduced the concept of
Basic Processor Unit (BPU) to differentiate the
heterogeneous processors from each other. Partition
sizes are allocated to the jobs on the basis of their
computation power in terms of number of BPUs rather
than using a physical processor level as in
homogeneous systems. The research paper showed the
supremacy of HAP over MAP and AP2 policies. Partition
size in HAP is calculated as in equation (5) and target
partition size is calculated using equation (3).

 (5)

In [13], Shim suggested various adaptive
policies for shared heterogeneous network of
workstations (NOW) considering the priority of
sequential local jobs as well as the parallel jobs. No in-
depth details about the working of the algorithms are
provided in the paper and no comparisons are made
with the existing policies. The shortcoming of this paper
is that it considers only waiting jobs to calculate the
partition size which usually lead to worse results.

In [14], Doan et al. suggested priority-based
adaptive policy for homogeneous PC-based cluster
systems for both rigid and moldable jobs. The user can
assign priority to both types of jobs. The jobs with higher
priority are given preference in execution. Since rigid
jobs require the fixed number of processors (e.g.
partition size), so partition-function for only moldable
jobs is derived from equation (2) as given in [7].

In [15], Abawajy proposed another adaptive
policy known as SOUL for heterogeneous multi-cluster
systems which calculates partition size on the basis of
mean service rate of heterogeneous processors, local
load at processors and maximum parallelism
information of waiting jobs. It has been shown that
SOUL policy tends to produce shorter mean job
response times as compared to both AEP and MAP at
various workloads. But no comparison between HAP
and SOUL policy is available.

From the literature survey, following lessons
have been learnt which will help us to design a robust
adaptive policy for non-dedicated heterogeneous
parallel systems.

1)

Adaptive policies which consider both current
waiting and running jobs in the parallel system
perform better than those policies which consider
only current waiting jobs.

2)

In heterogeneous systems, BPU mechanism is used
frequently to differentiate the computing power of
different physical processors.

3)

When no job knowledge is available, equal-sized (or
equivalent) partitioning mechanism is preferred over
weighted square-root fair-share strategy which
requires the service demand knowledge of jobs.

4)

Significant cost in terms of various overheads is
involved in obtaining the a priori knowledge of
various job characteristics such as maximum
parallelism, average parallelism, service demand
knowledge etc.

(6)

In a cluster system with P processors, BPUk
represents the computing power of kth processor and
Local_loadk

denotes the load at individual processor
due to the execution of local jobs.

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

4

(
DDDD

)
B

20

12
Y
e
a
r

In [11], Srinivasan et al. have some
improvement to [8][10]: (i) using schedule time-
scheduler which defers the choice of partition size until
the actual job schedule time instead of job submission
time and, (ii) using aggressive backfilling instead of
conservative backfilling.

In [12], Srinivasan et al. argue that an equal-
sized partition strategy tends to benefit jobs with small
computation size (light jobs). On the other hand,
allocating processors to jobs proportional to the job
computation size tends to benefit heavy jobs
significantly. A compromise policy is that each job will
have a partition size proportional to the square root of its
computation size (Weight) as in (4). This equation is
used to calculate partition size in an enhanced
backfilling scheme proposed in [11].

a) Proposed Robust Heterogeneous Adaptive Policy
(RHAP)

Using these observations and lessons, we have
suggested few modifications to HAP policy which have
shown good results over various policies in dedicated
heterogeneous systems. The new policy is named as
Robust Heterogeneous Adaptive Policy (RHAP) to
schedule jobs in non-dedicated heterogeneous cluster
environment and requires no job characteristics (as
opposed to HAP) to calculate final target partition size
for the current waiting jobs.

Since cluster processors can be shared
between local and parallel jobs, therefore at any point of
time, current available computing power for execution of
parallel workload at each processor in the presence of
local workload is given as in equation (6).

Ideal partition size in RHAP is then calculated
on the basis of current available computing as shown in
(7).

 (7)

It should be noted that job scheduler is invoked
only at arrival and departure time of jobs. Information
about local load and computing power of each
processor is also collected by the job scheduler at these
times. Here “Max” is system-wide Maximum Allocation
parameter which imposes an upper limit on the number
of BPUs to be allocated to jobs. It is equal to some fixed
percentage of the total BPUs available in the system.
The number of BPUs finally allocated is calculated as
follows in (8).

 (8)

Since no knowledge about maximum
parallelism of the jobs is “a priori” available to the
scheduler, so there is no distinction between short and
long jobs. In the absence of “Max” parameter, shorter
jobs can be assigned large number of processors
resulting into internal processor fragmentation and
increased waiting times for other jobs. Max puts a cap
on the smaller jobs that tend to retain larger partition
sizes. Moreover it also avoids the situations when a long
job is holding up large number of processors.

V. Simulation model

We have implemented a discrete event

performance of proposed adaptive scheduling
algorithms under various workload conditions.
Simulation modeling is preferred over the actual
experimentation as it gave us the greater flexibility of
covering a wide range of application characteristics and
controlled parameters like arrival rates, system utilization
etc. and allowed us to abstract away trivial details of the
environment under study, which otherwise would
complicate the performance evaluation procedure.

The developed simulator takes the on-line job
stream as input parallel workload, executes parallel
workload with the specified adaptive policy and
generates the output in the form of mean response time.
Response time of a job is defined as the sum of its
execution time and waiting time. Waiting time of job is
the difference between job arrival time and job
scheduling time. Execution time is the actual time spent
to execute the job. It should be noted that at the time of
job arrival, no job characteristics (such as number of
processors required, job service demand etc.) are
available to the scheduler.

a)

System Model

We have used an open system model of
community-owned cluster of 64 independent commodity
single-processor personal computers and each

computer is used in a shared mode i.e. it is able to
service local sequential tasks as well as the tasks of
parallel job submitted by the central job scheduler. The
computers differ from each other in terms of
heterogeneity in processor speeds i.e. computing power
they possess. Computer and processor terms are used
interchangeably in context of this paper. We assume
that computers in the cluster are connected using
100Mbps Ethernet switch. Relative computing power of
different physical processors is represented in terms of
Basis Processing Unit (BPU) [2] which can either be
derived with the help of SPECfp2000 ratings based on
the processor speeds or by executing independent
benchmarking programs on heterogeneous processors.
We have used two types of processors in the computers
of cluster system; First 32 computers contain Type I
processors; Next 32 computers contain Type II
processors that are twice faster than Type I processors.
Hence each processor in Type I has 1 BPU and Type II
processor has 2 BPUs.

b) Parallel Workload Model
Parallel workload model containing online

stream of parallel jobs for scheduling contains two
components; 1) job arrival process and 2) job service
demand. The job arrival process is characterized by job
arrival rate (λ) and coefficient of variation of inter-arrival
times (CVa). High arrival rate represents that inter-arrival
time between successive jobs is small. We have
modeled the job arrival process using exponential
distribution with CVa equal to one.

Mean service demand (D) parameter is the
uncorrelated cumulative mean service demand which
represents the total time required to execute the job in a
dedicated environment, independent of how many
processors are used. Service demand of jobs is
generated using 2-stage hyper-exponential distribution
with coefficient of variation of service demand (CVs)
greater than one. Since moldable jobs can be made to
run on the varying number of processors, therefore time
(tj) taken by the parallel job varies based on the number
of processors (pj) assigned to it when the job starts
executing. It should be noted that dj= (tj)*(pj) as we
have ignored the communication and synchronization
overheads, when overall mean service demand of a
parallel job (dj) is distributed equally among tasks
(which are always equal to “pj” processors assigned to
the job) of the job.

c) Background Workload Model
We assume abstract model for representing

load due to background jobs at each processor by
hiding the internal details of arrival and execution times
of sequential local jobs. Each cluster processor is
assumed to service a stream of background jobs that
arrive at individual computers independently. Local_load
at each processor indicates the load due to the
execution of sequential local jobs. As the local load

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

5

(
DDDD

)
B

20

12
Y
e
a
r

simulator in .Net environment to evaluate the

increases, computing power available to service parallel
workload decreases. We model the local load using
discrete uniform distribution ranging from 0% to 30% i.e.
U[0%, 30%] and this information is only available to job
scheduler at job arrival and departure times.

VI. Performance Evaluation and
Results

In this section we will evaluate the performance
of proposed algorithms in terms of mean response time
and also compare the simulation results with the existing
approaches. The default parameters and values used in
simulation experiments are for various simulation

Table 1 : Default parameters and values used

Average load or utilization of the cluster system
due to parallel jobs is derived using equation (9).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

=
𝐽𝐽𝑢𝑢𝐽𝐽 𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝑢𝑢 𝐴𝐴𝐴𝐴𝑢𝑢𝐴𝐴 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝑢𝑢 𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝑠𝑠𝐴𝐴 𝑑𝑑𝐴𝐴𝑑𝑑𝐴𝐴𝑢𝑢𝑑𝑑

 𝑁𝑁𝑢𝑢𝑑𝑑𝐽𝐽𝐴𝐴𝐴𝐴 𝑢𝑢𝑜𝑜 𝑝𝑝𝐴𝐴𝑢𝑢𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑢𝑢𝐴𝐴𝑠𝑠
 (9)

a) Relative performance of the scheduling policies

In this section we compare the performance of
the proposed adaptive scheduling policy i.e. RHAP with
the HAP and MAP policy. Since no maximum parallelism
information is a priori available to the scheduler,
therefore target partition size for HAP policy computed
in (3) will be equal to the partition size computed in (2).
The default value of ‘f’ in the partitioning-function for
RHAP, HAP and MAP policies is set to 0.5 which is
suggested as a reasonable value in existing similar
research works [2][7].

RHAP policy tends to produce shorter MRT
values at system loads of interest (i.e. at medium to high
loads) as shown in figure 1. This is due to two reasons;
1) RHAP policy produce smaller partition sizes as
compared to both HAP and MAP as it considers the
background workload into account. 2) Max parameter
also restricts allocation of the larger partition sizes to
jobs. On the other hand, both HAP and MAP try to
allocate larger partition sizes since they are not aware of

any background workload. But in reality the total
available computing power of all processors is much
less than that of assumed by MAP and HAP. Therefore
jobs have to wait for a long time to receive calculated
partition sizes. HAP and MAP policies also tend to
produce bigger partition sizes at low to medium system

Fig. 1 : Performance of scheduling policies

Utilization since they impose no upper limit on
the number of processors to be allocated to jobs. This
will apparently result into allocation of large partition
sizes to even smaller jobs.

Fig. 2 : Sensitivity to arrival time CV

b) Sensitivity Analysis
In this section, we study the sensitivity of the

three policies to variances in inter-arrival and service
times. When the arrival CV is varied, the service CV is
held at 4. Similarly arrival CV is fixed at 1 when the
performance sensitivity to service time CV is studied.
The system utilization for parallel load is fixed at 80%.

PARAMETERS OF PARALLEL JOBS VALUES
MEAN SERVICE DEMAND (D) 16
COEFFICIENT OF VARIATION (CVA) OF

JOB ARRIVAL

1

COEFFICIENT OF VARIATION (CVS) OF

SERVICE DEMAND

4

NUMBER OF PROCESSORS
IN THE CLUSTER

64

MAX 30 %
OF TOTAL
PROCESSING
CAPACITY

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

6

(
DDDD

)
B

20

12
Y
e
a
r

parameters for 5000 jobs are as follows in table 1.

i. Sensitivity to Arrival Time Variations

The performance sensitivity of the three policies
to inter-arrival CV is shown in figure 2. The mean
response time increases with increasing inter-arrival CV
for the three policies. The RHAP policy maintains its
performance superiority over HAP and MAP policy at
80% system utilization.

The increase in arrival time variance means the
clustered arrival of jobs into the system. This also led to
longer gaps in the job arrivals. The impact of variance in
arrival time is more on HAP and MAP policies as shown

fragmentation induced by the background workload and
the way the partition-size is computed for the jobs. Since
the partition sizes are computed on the basis of total
number of BPUs (in case of HAP) and total number of
processors (in case of MAP), the actual number of
available BPUs (in case of HAP) and available
processors (in case of MAP) can be lower than the
partition-size computed. This is due to the fact that there
is possibility of background tasks running on some of
processors at the time and both HAP and MAP doe not
consider background workload when computing
partition size. But RHAP policy tend to produce smaller
partition sizes due to consideration of background
workload as well as upper limit imposed by Max
parameter, therefore the impact of arrival time variance
is reduced as compared to other two policies.

ii. Sensitivity to Service Demand Variations
The figure 3 shows that MRT of the three

policies increases with the increase in the variance in the
service demand. With the increase in service demand
variance, there will few large service demand jobs and
large number of small service demand jobs. As the
service time CV increases, the service demand of the
larger jobs will increase even though their number goes
down as a fraction of the total jobs.

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

7

(
DDDD

)
B

20

12
Y
e
a
r

Fig.

3

:

Sensitivity to service time CV

The impact of service time variance on three
policies is more than the impact of arrival time variance.
This is due to the fact that all of these policies use FCFS
as a job selection policy which is known to be sensitive
of variance in service demand, to allocate processors to
jobs. FCFS allocation of processors to jobs results in a
situation where small jobs could be blocked by an
earlier arrived large job. This problem gets more serious
as the variance in service demand increases.

VII. Conclusion

Space-sharing algorithms are preferred in
distributed-memory cluster systems to avoid the
overhead due to frequent preemptions involved in time-
sharing systems. Adaptive space-sharing algorithms are
used in distributed-memory parallel systems such as
cluster computing systems and dynamic space-sharing
algorithms are more suited to shared-memory
multiprocessors. Most of popular adaptive algorithms
are only designed for dedicated homogeneous parallel
systems such as multiprocessors, PCC or even VCC
type of clusters. Existing few adaptive algorithms for
heterogeneous parallel systems require the knowledge
of job characteristics to schedule jobs. This paper
suggests a robust adaptive policy for non-dedicated
heterogeneous cluster systems to schedule parallel jobs
without requiring any knowledge of job characteristics.
Comparative results have shown the dominance of the
proposed policy over the existing similar policies at
medium to high system loads of interest.

References Références Referencias

1. J.H. Abawajy. Parallel Job Scheduling Policies on
Cluster Computing Systems. Ph.D. Thesis. Ottawa-
Carleton Institute for Computer Science, Carleton
University, Ottawa, Canada, November, 2003.

2. S.P. Dandamudi and Z. Zhou, “Performance of
Adaptive Space-Sharing Policies in Dedicated
Heterogeneous Cluster Systems”, Future
Generation Computer Systems, 20(5), 895-906
(2004).

3. D.G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K.C. Sevcik, P. Wong, Theory and practice in
parallel job scheduling, in: Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, vol. 1291, Springer-Verlag,
Berlin, 1997, pp. 1–34.

4. D. G. Feitelson and L. Rudolph. Parallel Job
Scheduling - A Status Report. Lecture Notes in
Computer Science, Springer, Vol. 3277 (2005).

5. E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B.
M. Carlson. Robust Partitioning Policies for
Multiprocessor Systems. Performance Evaluation,
Vol.19, 141-265 (1994).

6. E. Rosti, E. Smirni, L.W. Dowdy, G. Serrazi, K.C.
Sevcik, Processor saving scheduling policies for

in figure 2. These two policies suffer from processor

Performance Evaluation of Adaptive Scheduling Algorithm for Shared Heterogeneous Cluster Systems

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

8

(
DDDD

)
B

20

12
Y
e
a
r

multiprocessor systems, IEEE Transactions on
Computers 47 (2) (1998).

7. S.P. Dandamudi and H. Yu, “Performance of
Adaptive Space Sharing Processor Allocation
Policies for Distributed-Memory Multicomputers”,
Journal of Parallel and Distributed Computing, vol.
58, pp. 109-125 (1999).

8. W. Cirne and F. Berman. Adaptive Selection of
Partition Size for Supercomputer Requests. Lecture
Notes in Computer Science, Springer, Vol. 1911,
187-208 (2000).

9. W. Cirne and F. Berman. Using Moldability to
Improve the Performance of Supercomputer Jobs.
Journal of Parallel and Distributed Computing, Vol.
62, 1571-1601 (2002).

10. W. Cirne and F. Berman. A Comprehensive Model
of the Supercomputer Workload. Proc. of IEEE 4th
Annual Workshop on Job Scheduling Strategies for
Parallel Processing (2005).

11. S. Srinivasan, V. Subramani, R. Kettimuthu, P.
Holenarsipur, and P. Sadayappan. Effective
Selection of Partition Sizes for Moldable Scheduling
of Parallel Jobs. Lecture Notes In Computer
Science, Springer, Vol. 2552, 174- 183 (2002).

12. S. Srinivasan, S. Krishnamoorthy, and P.
Sadayappan. A Robust Scheduling Strategy for
Moldable Scheduling of Parallel Jobs. Proc. of 2003
IEEE International Conference On Cluster
Computing (2003).

13. Young-Chul Shim, “Performance evaluation of
scheduling schemes for NOW with heterogeneous
computing power”, Future Generation Computer
Systems. 20(2): 229-236 (2004).

14. V.H. Doan. An Adaptive Space-Sharing Scheduling
Algorithm for PC-Based Clusters, Modeling,
Simulation and Optimization of Complex Processes,
pp 225-234, 2008.

15. J.H. Abawajy, “An Efficient Adaptive Policy for High-
Performance Computing”, Future Generation
Computer Systems, Vol. 25, 364-370, (2009).

	Performance Evaluation of Adaptive Scheduling Algorithm forShared Heterogeneous Cluster Systems
	Author's
	Keywords
	I. Introduction
	II. Background Knowledge
	III. Problem statement
	IV. Related Works and proposedalgorithms
	V. Simulation model
	a) System Model
	b) Parallel Workload Model
	c) Background Workload Model

	VI. Performance Evaluation andResults
	a) Relative performance of the scheduling policies
	b) Sensitivity Analysis
	i. Sensitivity to Arrival Time Variations
	ii. Sensitivity to Service Demand Variations

	VII. Conclusion
	References Références Referencias

