
© 2012. Sukhamrit Kaur, Kuljit Kaur & Dilbag Singh. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Cloud & Distributed
Volume 12 Issue 11 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Evaluating Performance of Web Services in Cloud Computing
Environment with High Availability

 By Sukhamrit Kaur, Kuljit Kaur & Dilbag Singh
 Guru Nanak Dev University Amritsar (Punjab) India

Abstract - This paper presents an methodology for attaining high availability to the demands of the
web clients. In order to improve in response time of web services during peak hours dynamic
allocation of host nodes will be used in this research work. As web users are very demanding: they
expect web services to be quickly accessible from the world 24*7.

Fast response time leads to high availability of web services, while slow response time
degrades the performance of web services. With the increasing trend of internet, it becomes a part of
life. People use internet to help in their studies, business, shopping and many more things. To
achieve this objective LAMP platform is used which are Linux, Apache, My SQL, and PHP. LAMP is
used to increase the quality of product by using open
source software.

The proposed strategy will work as middle layer and provide highly availability to the web
clients.

Keywords : Failover, dynamic allocation, host service provider, High availability, LAMP, Web Services.

GJCST-B Classification: C.2.1

Evaluating Performance of Web Services in Cloud Computing Environment with High Availability

Strictly as per the compliance and regulations of:

Sukhamrit Kaur α, Kuljit Kaur σ & Dilbag Singh ρ

Abstract - This paper presents an methodology for attaining
high availability to the demands of the web clients. In order to
improve in response time of web services during peak hours
dynamic allocation of host nodes will be used in this research
work. As web users are very demanding: they expect web
services to be quickly accessible from the world 24*7.

Fast response time leads to high availability of web
services, while slow response time degrades the performance
of web services. With the increasing trend of internet, it
becomes a part of life. People use internet to help in their
studies, business, shopping and many more things. To
achieve this objective LAMP platform is used which are Linux,
Apache, My SQL, and PHP. LAMP is used to increase the
quality of product by using open
source software.

The proposed strategy will work as middle layer and
provide highly availability to the web clients.
Keywords : Failover, dynamic allocation, host service
provider, High availability, LAMP, Web Services.

I. Introduction

he Internet and World Wide Web (WWW) have
captured the world’s imagination. Internet is
represented in network as a cloud. Cloud

computing is where application and files are hosted on
a cloud consisting of thousand of computers and
servers, all linked together and accessible via internet.
Any web service or application offered via cloud
computing is called a cloud service. With this simple but
powerful interface, a user can download a file after
accessing any web service from another computer with
only a click of the mouse. Moreover, advances in
technology continue to extend the functionality of the
Internet. As Web services becomes increasingly
popular, network congestion and server overloading
have becoming significant problems. So efforts are
being made to address these problems and improve
web performance.

In this paper for providing high availability to the
requests of web clients a new environment is
developed. In order to improve in response time of web
services during peak hour’s dynamic distribution of host
nodes will be used in this research work. As
expectations of web users are at crest: they expect web

Author

α

:

Dept. Computer Science & Engineering

Guru Nanak Dev

University

Amritsar (Punjab) India.

E-mail

:

er.sukhamrit@gmail.com

Author

σ

: Dept. Computer Science & Engineering

Guru Nanak Dev

University

Amritsar (Punjab) India.

E-mail:

kuljitchahal.cse@gndu.ac.in

Author

ρ

: Dept. Computer Science & Engineering

Guru Nanak Dev

University

Amritsar (Punjab) India.

E-mail

:

dggill2@gmail.com

services to be quickly accessible from the world 24*7
Fast response time leads to high availability of web
services, while slow response time degrades the
performance of web services. With the mounting
tendency of internet, it becomes a part of life. People
use internet to help in their studies, industry, Shopping
and many more things.

To attain this objective LAMP Technology is
used in which are Linux is an operating system, Apache
web server, My SQL database, and PHP scripting
language. LAMP is used to increase the quality of
product by using open source software.

II. Research motivation

In existing Dynasoar do not provide the solution
if request from the single client occur more than a time
for the same web service. Moreover, it will not provide
any solution to HSP failure. So after see the causes and
benefits of Dynasoar environment, try to implement it
practically as Dynasoar is a theoretical concept, here
trying to implement it.

III. Scope of this research

The scope of the research is defined by the following:
1. This research work deals with load distribution and

high availability for web services.
2. This research does not deal with management and

security issue of web services.
3. Since it is not feasible to run the proposed strategy

on large web hosting, small web sites are
developed which will simulate the proposed
algorithm using LAMP.

4. Different type of tests will be implemented using
LAMP to test various aspects of the web services.

5. Visualization of the experimental results and drawing
appropriate performance analysis.

6. Appropriate conclusion will be made based upon
performance analysis.

7. For future work suitable future directions will be
drawn considering limitations of existing work.

IV. Problem definition

In this research paper a new approach is
considered in which

there is an active-active server. If a

client accesses the same

web service several times then

it will consider as one and if

one server fails, then client

request redirected to another active

server. Using active

T

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

1

(
DDDD

)
B

20

12

Evaluating Performance of Web Services in
Cloud Computing Environment with High

Availability

Y
e
a
r

active server eliminated the problem of server
enhancement and failover time. To achieve the objective
some constraints have been setup, according to them, if
access to the server goes down, another server has
placed to accommodate that request. Preventing an
interruption is the model of Active-Active high
availability, which introduces multiple active, replicated,
redundant components.

V. Literature review

Web services (WS) [1] [2] [3] are self-contained
software modules available in a network, such as the
internet, which completes tasks, solves problems, or
conducts transactions on behalf of a user or application.
It is trajectory of communicating between two electronic
devices over the web. WS interact with the sources of
the information, changing the state of systems and
causing real world processes to occur. As a WS network
grows, its existence and performance becomes crucial
to the business’s core activities. So the management of
WS is important for providing seamless access of the
service to the user.

Web server (WSer) [setting up a web server by
simon Collins [5][6][7] delivers web services to the
clients. Web server is connected to the web and can be
accessed to the users. It is possible that user can setup
its own web server. Web server can be connected to
internet or it can be a private Intranet. Both require
similar software, only Intranet works in a private network
and internet connected to public internet. As the traffic
on web server increases, congestion will increased
which may results in low response time. So to reduce
these problems concept of redirection is used.

Redirection (RD) [8][9] is the process of
selecting the best server that can serve user request.
Web server can redirect the browser to go elsewhere to
proceed the user request. Redirection happens at client
side. A client is redirected only after its request has
reached the home server. When user request arrives, if
there is congestion, the server can redirect the client to
the other web page where same request to be
processed.

Redirection of a client towards a given replica of
a Web service is performed after the client’s request has
reached the Web server storing the requested service.
To improve the overall systems throughout, redirection
takes place. This one of the most common use is to
route traffic while migrating a web page from one server
to another.

Proxy Server (PS) [10][11][12]function is to
forward traffic

between clients and server. Here Mysar

Squid Proxy server is

used. Squid is an intermediary

between clients and server. As

Squid is a open source

software. Mysar squid is a monitoring

tool that
constantly monitors the request of web client, and

creates the database where clearly showing for which

web service client made a request. PS could help
provide adequate access and response time to large
numbers of users requesting previously accessed page.

High availability (HA) [13], [14] also known as
failover. The key to HA be redundancy is the most
common approach to increase availability. If the primary
fails, one of the back-ups is promoted into that role. HA
ensures automated recovery in case of failure with two
different approach 1+1 and 1:1. Over the time, the file
management systems and registered data became
complex, and database management systems were
increasingly used to store metadata.

It is often said that this generation of web
services got it start from LAMP. LAMP is a stack of
simple web technologies, powerful web technologies
that power a lot of popular. LAMP is a popular open
source solution used to run servers in which PHP is
configured to run on Apache web server, using the
MySQL database on Linux operating system. It is
popular because of its open source nature, low cost,
and its packages are easy to install and convenient to
use[15] [16] [17][18].

Availability [19], [20], [21] is a reoccurring and a
growing concern in software intensive systems. Cloud
systems services can be turned off-line due to
conservation, power outages or possible denial of
service invasions. Fundamentally, its role is to determine
the time that the system is up and running correctly; the
length of time between failures and the length of time
needed to resume operation after a failure. Availability
needs to be analysed through the use of presence
information, forecasting usage patterns and dynamic
resource scaling.

Dynamic web service deployment functionality
has been explored and developed in many different
contexts, including J2EE [22], [23] and Web Services
[24]. Rauch et al. [25] implemented partition cloning and
partition repositories as well as a set of OS-independent
tools for software maintenance using entire partitions,
thus providing a clean abstraction of operating system
configuration states. However, this approach is not
suitable for service-oriented architectures. Moreover, the
deployment of an entire OS image is expensive, and the
deployment itself will seriously impact system
availability. Chase et al. explore related ideas in their
Cluster on Demand project [26].

Keahey et al. [27], [28] use virtual machine
technology (e.g., Xen, VMware) to build virtual working
environments and to provide for the dynamic
management of the Grid job life cycle. Their use of
virtual machines rather than JVMs to host user
computations leads to somewhat different solutions
from our service-oriented approach.

ROST [29], deployed in the CROWN Grid,
focuses on dynamic and remote deployment for WSRF
core with secure access. The developers evaluated
remote deployment in the load balancing of local

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

2

(
DDDD

)
B

20

12
Y
e
a
r

clusters. However, they did not discuss in detail the
capability and availability of deployment. Weissman et
al. present an architecture and implementation for a
dynamic Grid service architecture based on Tomcat that
extends GT3 to support dynamic service hosting
(hosting and rehosting a service within the Grid in
response to service demand and resource fluctuation)
[30], [31].

Their implementation allows new services to be
added or replaced without taking down a site for
reconfiguration and allows a VO to respond effectively to
dynamic resource availability and demand. But the
implementation is based completely on Tomcat’s
container-level deployment capability, which suffers
from poor performance. These and a few other projects
[32], [33] are the main dynamic deployment efforts for
Grid applications. Some of them clearly are not intended
for a WSRF-enabled service-oriented architecture.
Moreover, although some have implemented service-
oriented dynamic deployment, they do not address in
detail the cost, namely, the capability brought from
dynamic deployment itself and the availability in
dynamic Grid environments.

VI. Experimental set-up

In order to implement the fail-over strategy a
suitable experimental set-up has been made as shown
in Fig. 1. Fig. 1 take following steps to execute the jobs
of the clients: The client request are monitored in such a
way that each request can transparently monitor. For
this process, the proxy server (Mysar) is implemented.
The Network setup is as shown in Fig. 1.

Fig. 1 :

Experimental set-up

In Fig. 1 following steps are performed:
Step1: Initially clients submit their jobs to

access some web services; it goes through some
processes.

Step2: Requests goes to WSP, and then it will
pass the given requests to the HSP.

Step3: HSP then fulfill the requests and give
response to client according to desired requirement.

Step4: Multiple servers (HSP) are there in HSP
end to provide services to their clients.

Step5: Policies are implemented in such a
manner that the client’s requests automatically
redirected to other web servers. If number of requests
range is reached to its peak, then it will be assumed that
given server is busy or facing some sort of problem for
responding client’s requests.

Step6: Client’s request is fulfilled with high
availability with low response time.

PS: Server used for monitoring the service that
user request. Clients in the network connected to the
PS, after client request for web service, database is
created into PS after monitoring. Then after passing
through PS it goes to WSP.

VII. Simulation results

a) Ideal server
Fig. 2 is showing that when the web server was

kept Ideal i.e. no request received from the client. This is
the rare condition when server was kept ideal or can be
possible during off-peak hours.

Fig. 2 :

Ideal server

b)

When single user request multiple times

In Fig. 3 Squid will monitor the request and
server will

responds once for that particular request.

c)

Threshold point

In Fig. 4, 5 requests received at Server from
different IP at

same instant.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

3

(
DDDD

)
B

20

12
Y
e
a
r

All the request will be process on time-sharing
basis and beyond this point the server load will increase
which intern reduce the performance of the server. So to
overcome this redirection of Web server is mandatory.

d) Beyond Threshold
Fig. 5 demonstrating that when 6th request received

at server at same instant. The 6th request will be monitor
by Wire shark as mentioned below.

e) Beyond threshold
In Fig. 7 client request for

amrit.sukralamata.com so counter increase by 1 by
received the request from Sukh.fossfoundation.com as
given in Fig. 6.

After that if client request for amrit sub-domain
page will redirect to such sub-domain. And both count
increase by

Fig. 3 :

When single user request multiple times

Fig. 4 :

Threshold point

1. Verfiying the client request address and
server response back address.

VIII. Performance analysis

In order to do performance analysis, two
comparisons table has been made in this research
work. This section first give the performance comparison
of developed simulator with existing methods (in which
no dynamic deployment of host nodes is implemented)
and later on comparison of different approaches is
made using different performance metrics.

a) Comparison with existing methods
Table I is showing the comparison of existing

and developed technique. Table I has shown that
developed simulator will give better results than existing

Fig. 5 :

5 client request

Fig. 6 : 6 client request

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

4

(
DDDD

)
B

20

12
Y
e
a
r

Fig. 7 : Beyond Threshold

methods. As existing technique do not provide feature of
dynamic allocation, therefore node failure or congestion
may result in delay in response time of client requests,
by transferring request of local host to some remote
node. The problem of dynamic allocation technique with
broker is proved to be inefficient as migration of
requests is done using random decisions and also not
increase overall cost of the scenario.

b) Comparison using average response time
By taking 6 host nodes and also taking 300

client’s requests performance has been measured and
compared with existing methods. Table II is showing the
average response time comparison at different intervals.
It has been clearly shown in Table II that proposed
method gives better results than existing methods. As in
existing method it not possible to achieve dynamic
allocation of host nodes, and without log files may
cause the problem of random allocation of nodes to the
requests, which may increase response time. Fig. 8 is
showing the graph of average response time using
different intervals, which are shown in Table II. Fig. 8
shows the difference between existing methods
graphically and it is clearly shown that the proposed
method gives better results than existing methods.

Fig. 8 : Average response time comparison

c) Comparison using number of waiting requests
Table III is showing the number of waiting

requests comparison at different intervals. It has been
clearly shown in Table III that proposed method gives
better results than existing methods. Fig. 9 is showing
the graph of number of waiting

Fig. 9 : Average response time comparison

requests using different intervals, which are shown in
Table III. Fig. 9 shows the difference between existing
methods graphically and it is clearly shown that the

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

5

(
DDDD

)
B

20

12

Feature Existing Proposed Method

Log files No Yes

Failover No Yes

Load Balancing No Yes

Race condition Yes No

Dynamic allocation No Yes

Architecture 2 Tier 3 Tier

Utilization of host nodes Low Maximum

Average response time High Low

Waiting jobs Maximum Minimum

Interval Existing technique Proposed

50 2 0.8

100 2.5 1.32

150 2.7 1.45

200 2.9 1.43

250 3.4 1.4

300 3.6 1.33

Interval Existing technique Proposed

50 20 0

100 42 15

150 61 37

200 78 42

250 80 49

300 103 62

Table III : Number of Waiting Requests

Table II : Average Response TimeTable I : Feature’s Comparison with Existing Method

Y
e
a
r

proposed method gives better results than existing
methods.

d) Average response time on server 1
Table IV is showing the average response time

on server 1. It has been clearly shown in Table IV that as
number of hits increases on given server due to
congestion average response time has increased as
number of hits increased. Fig. 10 is

Table IV : Average Response Time of Server 1

Fig. 10 : Average response time of server 1

showing the graph of average response time on server
1, which is shown in Table IV. Fig. 10 has demonstrate
that as number of hits increased by some constant,
average response time will increased rapidly (quite more
than the increase in number of hits). Therefore proposed
technique will prevent it by doing load balancing among
available host nodes thus make average response time
optimal as shown in Table V. Table V is showing the
load balancing between different servers.

Table V : Average Response Time on Different Server

Fig. 11: is showing the comparison graph of
average response time on different servers, which is
shown in Table V.

Fig. 11 : Average response time comparison

Fig. 10 has demonstrate that as number of hits
increased by some constant, average response time will
stay balanced due to load balancing among available
nodes or servers.

e) Server Utilization (in %)
Table VI is showing the Server utilization as

number of requests increases.

Table VI : Server Utilization (In %)

Fig. 12 : Server Utilization (in %)

Fig. 12 is showing the server utilization, which is
shown in Table V. Fig. 12 has demonstrate that as
number of requests increased by some constant,
utilization is also increased by some multiple constant
but after the threshold (the capacity of server) it will
increases rapidly.

Table VII is showing the Servers utilization as
number of requests increases by implementing
proposed technique.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

6

(
DDDD

)
B

20

12

Number of hits Server 1

1 4

2 68

3 128

4 130

... ...

9 1645

Number of hits Server 1 Server 2 Server 3

1 4 - -

2 68 - -

...

6 144 - -

7 - 16 -

8 - 42 -

...

13 - - 42

14 - - 78

...

18 - - 140

Number of requests Utilization (%)

1 6

2 12

3 18

4 22

... ...

8 92

9 95

Y
e
a
r

Fig. 13 is showing the server utilization, which is
shown in Table VI. Fig. 13 has demonstrate that as
number of requests.

Table VII : Server Utilization (In %) Among Two Servers

Fig. 13 : Server Utilization (in %) among two servers

increased by some constant, utilization is also increased
by some multiple constant but after the threshold (the
capacity of server) proposed strategy will do balance
the load among other active servers.

IX. Conclusion and future
directions

This paper proposes a smart strategy for web
services using dynamic allocation techniques. Using
LAMP, a new environment has been developed that
implement the proposed method. Performance
comparison of existing methods has been made with
the proposed method. It has been concluded with the
help of performance metric’s comparison that the
proposed failover strategy gives good results than
existing methods.

In this paper homogeneous host nodes has
been considered for simulation environment, in future
work heterogeneous nodes will be used for better
results.

X. Contributions

This section will describe the contributions of
this research work to science and practice.

A literature review has been conducted on the
approached of high availability in web services. The
results of this literature research show that web services
are in its infancy, because the structured search
revealed minimal peer-reviewed information on these
topics. Regardless, this research has refined three

concepts from the literature and transformed them into
dimensions that are usable in the context of web
services. The most contributing dimension is based on
concept from the research area of fail-over strategies.

Another contribution of this research is related
to the LAMP. This research uses LAMP in order to
provide high availability to the demands of the clients.
With the identification of congestion in web services, this
research shows which problems can occur when
congestion occur. This type of research has not been
conducted before and it is important for entities that
wish to know what the high availability limitations of web
services.

References Références Referencias

1.

S. Chatterjee and J. Webber, “Developing
Enterprise Web Services: An

Architects Guide:

Penguin Books,” 2003.

2.

S. Parastatidis, J. Webber, P. Watson, and T.
Rischbeck, “A Grid Application

Framework based

on Web Services Specifications and Practices,”

http://www.neresc.ac.uk/ws-gaf, 2003.

3.

M. Keidl, S. Seltzsam, and A. Kemper, “Reliable
Web Service Execution

and Deployment in Dynamic

Environments,” presented at Technologies

for E-
Services, Berlin, 2003.

4.

J. Chen, M. Day, “A.Wharton. Benchmarking the
Next Generation of

Internet Servers. Whitepaper

available

at http://domino.lotus.com. March

1997.

5.

M. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web

Traffic: Evidence and Possible

Causes,” IEEE/ACM Transactions on

Networking,
1997.

6.

J. Mogul, “Network Behavior of a Busy Web Server
and its Clients,”

DEC WRL RR, 2006.

7.

G. Trent, M. Sate. “WebSTONE: The First
Generation

in HTTP Server Benchmarking,” White

paper available at

http://www.sgi.com/

Products/

WebFORCE/WebStone/paper.html

8.

A. Baggio, “Distributed redirection for the Globule
platform,”

Technical Report IR-CS-010, Vrije

Universiteit, Oct. 2004.

http://www.cs.vu.nl/

globe/

techreps. html.

9.

M. Szymaniak, “DNS-based client redirector for the
Apache HTTP

server,” Master’s thesis, Warsaw

University and Vrije Universiteit, June

2002.

10.

David A. Patterson and John L. Hennessy,
“Computer Organization

and Design: The

Hardware/Software Interface,” Morgan Kaufmann,
3rd edition, August 2004.

11.

Tom Sheldon, “Encyclopedia of Networking &
Telecommunications,”

McGraw-Hill, New York, NY,

3rd edition, June 2001.

12.

R. P. Wooster and M. Abrams, “Proxy Caching that
Estimates Page Load

Delays,” Proceedings of the

6th International WWW Conference, April

1997.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

7

(
DDDD

)
B

20

12

Number of requests Server 1 Server 2

1 6 -

2 12 -

...

6 48 -

7 - 6

8 - 13

...

12 - 45 Y
e
a
r

13. UKUUG LISA/Winter Conference, “High-Availability
and Reliability. The Evolution of the Linux-HA
Project,” Bournemouth, February 25-26 2004.

14. Budrean S., Yanhong Li, and Desai B.C. “High
availability solutions for transactional database
systems,” In Database Engineering and
Applications Symposium, 2003. Proceedings.
Seventh International, pages 347355, 16-18 July
2003.

15. Cecchet etal, “Performance Comparison of
Middleware Architectures for Generating Dynamic
Web Content,” 4th ACM /IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, June
16-20, 2003

16. Amza etal, “Specification and Implementation of
Dynamic Web Site Benchmarks,” IEEE 5th Annual
WWC-5, Austin, TX, USA, November 2002.

17. Amza etal, “Bottleneck Characterization of Dynamic
Web Site Benchmarks,” Technical Report TR02-398,
Rice University, January 2002.

18. Cecchet etal, “Performance and scalability of EJB
applications,” 17th , Oopsla 2002, Seattle, WA, USA,
4-8 November 2002.

19. M. Zhang, H. Jin, X. Shi, S. Wu, “VirtCFT: A
Transparent VMLevel Fault-Tolerant System for
Virtual Clusters,” in Proceedings of Parallel,
Distributed Systems (ICPADS), Dec. 2010.

20. R. Badrinath, R. Krishnakumar, R. Rajan,
“Virtualization aware job schedulers for checkpoint-
restart,” in 13th International Conference on Parallel,
Distributed Systems (ICPADS’07), vol. 2, Hsinchu,
Taiwan, pp. 1-7, Dec. 5-7 2007.

21. J. D. Sloan, “High Performance Linux Clusters With
Oscar”, Rocks, Open Mosix, Mpi, O’a Reilly, ISBN
10: 0-596- 00570-9 / ISBN 13: 9780596005702, pp.
2-3, Nov.2004, [Online]. Available: gec.di.uminho.pt/
discip/minf/cpd0910/PAC/livro-hpl-cluster.pdf

22. F. Reverbel, B. Burke, and M. Fleury, “Dynamic
Deployment of IIOP Enabled Components in the
JBoss Server,” Component Deployment: Second
International Working Conference, CD 2004,
Edinburgh, UK, May 20-21, 2004. pp. 65 - 80.

23. N. Sridhar, J. O. Hallstrom, and P. A. Sivilotti.
“Container-based component deployment: A Case
Study,” Technical Report OSU-CISRC-2/04- TR08,
Computer Science and Engineering, The Ohio State
University, Columbus, OH, February 2004.

24. B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H.H.
Ngu. ”Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services,”. In 18th Int.
Conference on Data Engineering (ICDE), pages
297308, San Jose, CA, February 2002. IEEE
Computer Society.

25. F. Rauch, C. Kurmann, and T. M. Stricker, “Partition
Repositories for Partition Cloning OS Independent
Software Maintenance in Large Clusters of PCs,”

IEEE International Conference on Cluster
Computing, 2000, 233-242.

26. Chase, J., Grit, L., Irwin, D., Moore, J. and Sprenkle,
S. “Dynamic Virtual Clusters in a Grid Site
Manager”. In 12th International Symposium on High
Performance Distributed Computing (HPDC-12).
2003.

27. K. Keahey, I. Foster, T. Freeman, X. Zhang, and D.
Galron. “Virtual Workspaces in the Grid,” Europar
2005, Lisbon, Portugal, September, 2005.

28. K. Keahey, I. Foster, T. Freeman, and X. Zhang,
“Virtual Workspaces: Achieving Quality of Service
and Quality of Life in the Grid,” Scientific
Programming. 2006.

29. H. Sun, Y. Zhu, C. Hu et al. “Early Experience of
Remote and Hot Service Deployment with
Trustworthiness in CROWN Grid,” APPT 2005: 301-
312

30. J. Weissman, S. Kim, and D. England. “Supporting
the Dynamic Grid Service Lifecycle,” CCGrid04,
2004.

31. J. Weissman, S. Kim, and D. England. “A
Framework for Dynamic Service Adaptation in the
Grid: Next Generation Software Program Progress
Report,” 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05),
2005.

32. P. Watson and C. Fowler, “An Architecture for the
Dynamic Deployment of Web Services on a Grid or
the Internet,” Technical Report Series, CSTR- 890,
University of Newcastle upon Tyne

33. M. Smith, T. Friese, and B. Freisleben. “Towards a
Service-Oriented Ad Hoc Grid,” 3rd International
Symposium on Parallel and Distributed Computing/
Third International Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous
Networks (ISPDC/HeteroPar’04), 2004, pp.201-208.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

8

(
DDDD

)
B

20

12
Y
e
a
r

	Evaluating Performance of Web Services in Cloud ComputingEnvironment with High Availability
	Author's
	Keywords
	I. Introduction
	II. Research motivation
	III. Scope of this research
	IV. Problem definition
	V. Literature review
	VI. Experimental set-up
	VII. Simulation results
	a) Ideal server
	b) When single user request multiple times
	c) Threshold point
	d) Beyond Threshold
	e) Beyond threshold

	VIII. Performance analysis
	a) Comparison with existing methods
	b) Comparison using average response time
	c) Comparison using number of waiting requests
	d) Average response time on server 1
	e) Server Utilization (in %)

	IX. Conclusion and futuredirections
	X. Contributions
	References Références Referencias

