
© 2012. Muhammad Anwar- ur-Rehman Pasha & Shaheen Pasha. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Cloud & Distributed
Volume 12 Issue 11 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Missing Elements of Computer Science Curricula 2013
 By Muhammad Anwar- ur-Rehman Pasha & Shaheen Pasha

 University of Sargodha, Sargodha, Pakistan

Abstract - Rapidly expanding computing domain has forced educational institutions to up-grade
existing curricula of computing degree programs. Recently, a joint task force of Association for
Computing Machinery and IEEE-Computer Society has published the Strawman Draft of Computer
Science Curricula 2013. The Draft has introduced some new ideas to keep computing curricula
modern and relevant. The recommended curricula have designed in the light of 6% response rate of
the conducted survey. This paper has pointed out some important aspects which need attention to
meet the challenges of the 21st century. These aspects include an Ad-hoc approach towards the
core body of knowledge, incomplete curriculum guidelines, over-ambitious contents and learning
outcomes. Some other missing aspects include computing dispositions, global education, 21st
century skills, guideline for inclusion and the hidden curriculum. It is believed the recommendations
of this paper may generate some thought provoking ideas to make the computing curricula more
robust and effective.

Keywords : Computing Curriculum, Computer Science Curricula 2013, Computing Model Curriculum,
Dispositions in Computing, Hidden Curriculum in Computing, Global Education in Computing,
Flexible Computing Curriculum.

GJCST-B Classification: K.3.2

Missing Elements of Computer Science Curricula 2013

Strictly as per the compliance and regulations of:

Missing Elements of Computer Science
Curricula 2013

Muhammad Anwar- ur-Rehman Pasha α & Shaheen Pasha σ

Abstract - Rapidly expanding computing domain has forced
educational institutions to up-grade existing curricula of
computing degree programs. Recently, a joint task force of
Association for Computing Machinery and IEEE-Computer
Society has published the Strawman Draft of Computer
Science Curricula 2013. The Draft has introduced some new
ideas to keep computing curricula modern and relevant. The
recommended curricula have designed in the light of 6%
response rate of the conducted survey. This paper has
pointed out some important aspects which need attention to
meet the challenges of the 21st century. These aspects
include an Ad-hoc approach towards the core body of
knowledge, incomplete curriculum guidelines, over-ambitious
contents and learning outcomes. Some other missing aspects
include computing dispositions, global education, 21st century
skills, guideline for inclusion and the hidden curriculum. It is
believed the recommendations of this paper may generate
some thought provoking ideas to make the computing
curricula more robust and effective.
Keywords : Computing Curriculum, Computer Science
Curricula 2013, Computing Model Curriculum,
Dispositions in Computing, Hidden Curriculum in
Computing, Global Education in Computing, Flexible
Computing Curriculum.

I. Introduction

raditionally, computing is used as an umbrella term
to represent the following five disciplines:

1. Computer Engineering (CE) focuses on computing
hardware and associated computing aspects.

2. Computer Science (CS) focuses on computing
theory, methodology, innovation, development
(programming) of technologies and applications,
and applying computing to new disciplines.

3. Information Systems (IS) focuses on applying
computing in organizations and organizational
information management.

4. Information Technology (IT) focuses on solving
organizational computing challenges by integrating
technologies into solutions and deploying and
maintaining the solutions.

5. Software Engineering (SE) focuses on developing
large complex software systems.

Computing is a rapidly progressing domain. In
recent years many significant developments have been
made and many new concepts have been introduced.
For example, “Computational Lens” (Karp, 2011) which
articulates a new relationship between computer
science and other sciences, “Ternary Computing”
dealing with computing for the masses (Li, 2010), “e-
Science” managing massive experimental data and
collaborating via the Net, “Computational Thinking”
(Wing, 2006; 2008), Cloud Computing (Li & Zhang,
2009), Biological Computing (Garfinkel, 2000), etc. In
parallel, the integration of computing in other disciplines
introduces new disciplines such as “Computational-x”
(e.g., computational mathematics, computational
physics, computational finance, etc.) and “x-
Informatics” (e.g., bio-informatics, dental-informatics,
clinical-informatics, etc.) (ACM & IEEE-CS, 2012). Many
such developments compel the international community
to update the curricula of computing degree programs
to meet the needs of the time.

The practice of developing a model curriculum
in the computing domain started in 1965 when the
Association for Computing Machinery (ACM) for
Computer Science curriculum published their
recommendations (ACM, 1965). Since then the
international community has developed many model
curricula to keep computing discipline up-to-date.
Recently, the Joint Task Force on Computing Curricula
Association for Computing Machinery and IEEE-
Computer Society has published the Strawman Draft of
Computer Science Curricula 2013 (ACM & IEEE-CS,
2012). The recommendations made in this Draft have
introduced some new ideas to keep computing curricula
modern and relevant. The Draft has invited suggestions
& recommendations from the international community to
be included in the Ironman report going to be released
in 2013. In this paper we have pointed out some short
comings of the recommended curricula and made
recommendations to make it more robust and effective.
We believe the recommendations made in this paper
may generate some thought provoking ideas for
developing model curriculum for computing degree
programs.

The organization of this paper is as follow. A
review of the computing model curriculum development
efforts is presented in the next section. Some important
aspects of the Strawman Draft are outlined in the next
section. Section 4 has identified some shortcomings of

T

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

9

(
DDDD

)
B

20

12
Y
e
a
r

Author α : Department of Computer Science & Information
Technology, University of Sargodha, Sargodha, Pakistan.
E-mail : marpasha@yahoo.com
Author σ : Division of Education, University of Education, Lahore,
Pakistan. E-mail : drshaheenpasha@hotmail.com

the curriculum recommended in the Draft. Concluding
discussion and recommendations are presented in the
last section.

II. Computing model curriculum
development

In computing domain, the history of model
curriculum development started with the publication of
the recommendations of the ACM for Computer Science
curriculum (ACM, 1965). Since then many efforts have
been made to keep the computing curriculum up-to-
date. These efforts include, for example, Curriculum 68
(ACM, 1969), IEEE Computer Society Education
Committee/Model Curriculum (1976), Curriculum
recommendations for the Undergraduate Program in
Computer Science (ACM, 1977) and Curriculum 78
(ACM, 1979), IEEE Computer Society Educational
Activities Board/Model Program (IEEE-CS, 1983) and
ACM Task Force’s Report on the Core of CS (Dening &
et al.,1988)

In 1991, ACM and IEEE-CS jointly published
Computing Curricula 1991 for Bachelor’s degree
programs in CS and CE (ACM/IEEE-CS, 1991). In 2001,
ACM and IEEE joint task force produced Computing
Curricula 2001 (ACM/IEEE-CS, 2001) four distinct
disciplines - CS, CE, IS and SE. In 2005, once again
ACM & IEEE jointly published the Computing Curricula
2005 (ACM/IEEE-CS, 2005) which included IT as an
independent discipline. The interim review effort (2008)
(ACM/IEEE-CS, 2008) and the Strawman Draft of CS
Curricula 2013 (ACM/IEEE-CS, 2012) are among the
latest efforts to keep computing curricula modern and
relevant.

III. CS curricula 2013: the strawman
draft

The Draft has provided a comprehensive
revision of the existing curricula. It is prepared in the
light of following guidelines, as reported in (ACM/IEEE-
CS, 2012):

•

The “Big Tent” view of CS to accommodate the
challenges of emerging disciplines include more
cross-disciplinary work new programs of the form
“Computational Biology,” “Computational
Engineering,” and “Computational X”.

•

Flexible

models for different curricula without losing

the essence of a rigorous CS education.

•

To identify

and describe existing successful courses

and curricula to show how relevant knowledge units
are addressed and incorporated in actual programs.

•

To be applicable in a broad range of geographic
and cultural contexts, understanding that curricula
exist within specific institutional needs, goals, and
resource constraints.

The recommended curricula are based on
following ten principles:
1. Computer Science curricula should be designed to

provide students with the flexibility to work across
many disciplines.

2. Computer Science curricula should be designed to
prepare graduates for a variety of professions,
attracting the full range of talent to the field.

3. CS2013 should provide guidance for the expected
level of mastery of topics by graduates.

4. CS 2013 must provide realistic, adoptable
recommendations that provide guidance and
flexibility, allowing curricular designs that are
innovative and track recent developments in the
field.

5. The CS2013 guidelines must be relevant to a variety
of institutions.

6. The size of the essential knowledge must be
managed.

7. Computer Science curricula should be designed to
prepare graduates to succeed in a rapidly changing
field.

8. CS2013 should identify the fundamental skills and
knowledge that all computer science graduates
should possess while providing the greatest
flexibility in selecting topics.

9. CS2013 should provide the greatest flexibility in
organizing topics into courses and curricula.

10. The development and review of CS2013 must be
broadly based.

The Draft has organized the Body of Knowledge
into a set of 18 Knowledge Areas: “
1. AL - Algorithms and Complexity
2. AR - Architecture and Organization
3. CN - Computational Science
4. DS - Discrete Structures
5. GV - Graphics and Visual Computing
6. HC - Human-Computer Interaction
7. IAS - Information Assurance and Security
8. IM - Information Management
9. IS - Intelligent Systems
10. NC - Networking and Communications
11. OS - Operating Systems
12. PBD - Platform-based Development
13. PD - Parallel and Distributed Computing
14. PL - Programming Languages
15. SDF - Software Development Fundamentals
16. SE - Software Engineering
17. SF - Systems Fundamentals
18. SP - Social and Professional Issues

Many of these Knowledge Areas are derived
from CS curriculum 2001 (ACM/IEEE-CS (2001) and CS
curriculum 2008 (ACM/IEEE-CS, 2008) but have been
revised—in some cases quite significantly new.

The Draft has introduced three levels of
knowledge description: Tier-1 Core, Tier-2 Core, and

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

10

(
DDDD

)
B

20

12
Y
e
a
r

Elective. Topics have been identified as either “core” or
“elective”. The draft suggests that a curriculum should
include all topics in the tier-1 core and ensure that all
students cover this material. Also, all or almost all
topics in the tier-2 core should be taught to all students.
It has also been suggested that the curriculum should
include significant elective material as covering only the
“core” topics is insufficient for a complete curriculum
(ACM/IEEE-CS, 2008).

IV. Shortcomings of the cs
curriculum 2013

The Draft is prepared to keep the computing
curricula up-to-date and relevant but the following
aspects may raise questions about its effectiveness.

a) Low response rate
The Draft reports that “the survey was sent to

approximately 1500 Computer Science (and related
discipline) Department Chairs and Directors of
Undergraduate Studies in the United States and an
additional 2000 Department Chairs internationally. We
received 201 responses, representing a wide range of
institutions”. In this case the response rate is just 6%
which raises the question of reliability, validity and
acceptability of its recommendations. Studies suggest
that an achievable and acceptable rate is 75% for
interviews and 65% for self-completion postal
questionnaires (Arber, 2001; Sitzia & Wood,1998).
Similarly, Mundy (2002) comments that “There’s no
magic figure on response rates. Higher is better: 60%
would be marginal, 70% is reasonable, 80% would be
good, 90% would be excellent” (p. 25). The
recommendations made in the light of 6% response rate
can only represent the point of view of a specific
community. It cannot be generalized.

b) An Ad-hoc approach towards the core body of
knowledge

The Draft has added two new knowledge areas
in the core body of knowledge: “Information Assurance
and Security” and “Parallel and Distributed Computing”
as the survey respondents indicated a strong need of
these topics. There is no doubt the identified areas are
important but the concept of computing is evolving and
expanding with an unprecedented pace. The approach
of adding new concepts as they emerge will make the
computing core over-crowded and unmanageable.

c) Incomplete curriculum guidelines
The Draft includes guidelines regarding

knowledge areas, curricula and course exemplars,
institutional challenges, key principles & professional
practice, and characteristics of graduates. As a normal
practice, an effective curriculum provides guidelines for
students’ learning, contents for learning, sequence of
courses of study, instructional methods and activities,
instructional resources, educational settings, evaluation

methods for assessing student learning, accountability
measures for teaching-learning processes, etc. (Talbot,
2004; HEC, 2012; UNESCO, 2012). Whereas, the
recommendations of the Draft covers only few of these
aspects.

d) Inconsistency in the use of terms ‘Computing’ and
‘Computer Science’

A substantial amount of research efforts have
been carried out to define the distinctive features and
characteristics of five key disciplines of computing. In
the Draft, the term “computing” and “computer science”
are used interchangeably that make it unclear that the
proposed recommendations are for ‘Computer Science”
degree program or for the whole spectrum of computing
related degree programs. This aspect is making its
scope ambiguous.

e) Over-ambitious contents and learning outcomes

Topics included in the defined knowledge areas
can be considered over-ambitious and seems difficult to
cover within the proposed time span.

f) Dispositions: an ignored aspect

The concept of dispositions has become an
important element of an effective curriculum. It can be
thought of as habits of mind or tendencies to respond to
certain situations in certain ways. For example, curiosity,
friendliness, bossiness, meanness, and creativity are
dispositions, rather than of skills or items of

knowledge

(Katz, 1995). Preparing students for having the
disposition to be a programmer is more important than
having programming skills. This important aspect is
missing from the proposed curriculum.

g)

Other missing aspects

Global education, 21st

century skills, inclusive

education, and hidden curriculum are among the
important

aspects of 21st

century education. These

aspects have not been addressed in the Draft.

V.

Discussion & recommendations

Computing is a rapidly changing domain and
will continue to change for the foreseeable future. Both
institutions and faculty are striving to address how to
meet the needs of the students studying in computing
and other newly emerging disciplines as they are being
considered responsible of producing well-rounded
computing graduates equipped with professional
competencies ready to work in a more holistic way than
simply demonstrating technical skills. For this purpose
they need a flexible curriculum model that would take a
broader view of the field and provides guidelines to
meet the challenges of 21st

century education. The ACM
and IEEE-CS joint task force’s effort of producing the
Straman draft of Computer Science Curricula 2013 is a
valuable attempt in this direction. Yet below discussed

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

11

(
DDDD

)
B

20

12
Y
e
a
r

aspects need to be considered before producing a final
draft.

As discussed earlier, the Draft has increased
the size of the core body of knowledge by adding new
knowledge areas. In recent years many new concepts
have been introduced and will continue in the
foreseeable future. The approach of adding new
knowledge areas in the computing core will make it
unmanageable if new knowledge areas continue to
emerge. The wisdom suggests that in place of
increasing the size of the core, a more appropriate
approach has to be adopted for accommodating new
ways of thinking, application and evolution of
computing. We believe, in place of increasing the size of
the computing core, some common knowledge areas
should be identified which could strengthen students’
conceptual understanding required to study higher level
computing concepts. These common knowledge areas
should be equally important for both the students of
core computing disciplines and the students studying in
newly emerged fields. In this regard we recommend that
the computing core should be based on following
knowledge areas which are essential for a whole range
of computing degree programs including
“computational-x” and “x- informatics”. These
knowledge areas are:
1. Principles of Computing & Programming
2. Principles of Operating Systems
3. Principles of Database Systems
4. Principles of Software Engineering
5. Principles of Human Computer Interaction
6. Principles of Web Technologies.

Keeping a small core will allow institutions to
include newly emerging areas like quantum computing,
bilogical, cloud computing, etc. It will also allow them to
produce their own brands through offering special
topics or training. Branding in higher education is a
topic of great interest among the higher education
community (Brunzel, 2007; Lockwood & Hadd, 2007);
Temple, 2006). We also propose the following
curriculum structure for computing degree programs:

• Core Compulsory Courses (17%)

• Foundation Elective Courses (11%)

• Interdisciplinary Computing Supportive Elective
Courses (11%)

• General Education Elective Courses (9%)

• Domain Specific Elective Courses (38%)

• Specialization/Major Elective Courses (9%)

• Capstone Project/Internship (5%)

For the selection of course contents “Selective
Abandonment” strategy (Lovely & Smith, 2004) is
strongly recommended as it allows teachers to prioritize
the content of instructional material into three
categories: essential material must be covered and have
top priority, supportive may be dealt with in conjunction

with other material or as a cooperative or independent
learning experience, and extraneous material can be
included as time allows.

It could be argued that we have eliminated the
traditional core areas like computer programming, data
structure and algorithms, data-communication, digital
logic design and computer organization, etc. We believe
these subjects have different standpoints in different
domains. For example, low level computer programing
is more useful for computer engineering students as
compared to the students of information systems. Time
has come to realize that to develop an appropriate
mindset the students need to study material related to
that particular domain (Pasha & Pasha, 2012). Such
topics could be covered under the category of ‘Domain
Specific Elective Courses’. This way institutions can offer
different contents to the students of different degree
programs. Similarly, courses like discreet structures,
data-communication, digital logic design and computer
organization could be offered under ‘Computing
Supporting Elective Courses’. Science, Mathematics,
etc. could be covered under ‘Interdisciplinary supporting
Elective Course’. Course like Philosophy, Psychology,
Sociology, Comparative Study of Religions, etc. could
be taught under ‘General Education Electives’. The
Capstone project will allow students to demonstrate the
knowledge and skills they have learnt during the course
of their study.

Jackson (2008) argues that higher education
has a responsibility to help students to develop and
promote their understanding and awareness of their
own creativities, identity and lifelong learning
experiences. He further comments “Preparing students
for a lifetime of working, learning and living in uncertain
and unpredictable worlds that have yet to revealed is
perhaps one of the greatest responsibilities and
challenges confronting universities all over the world.”
Katz (1993) argues that “One of the major questions to
be addressed when developing a curriculum is, What
should be learned?” One way to answer this question,
as (Katz, 1991) explains, “is to adopt at least four types
of learning goals, those related to knowledge, skills,
dispositions, and feelings. The acquisition of both
knowledge and skills is taken for granted as an
educational goal, and most educators would also
readily agree that many feelings (e.g., self-esteem) are
also influenced by school experiences and are thus
worthy of inclusion among learning goals. However,
dispositions are seldom included, although they are
often implied by the inclusion of attitudes (e.g., attitudes
toward learning) as goals” (Katz, 1993).

The role of dispositions in computing education
is very important. For example, having the disposition to
be a programmer is much better that just having
programming skills. Similarly, and, having the
disposition to be a software engineer is much batter
than just having software engineering skills. Katz (1995)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

12

(
DDDD

)
B

20

12
Y
e
a
r

pointed out that “Dispositions are not learned through
formal instruction or exhortation. Many important
dispositions are in-born in all children like the
dispositions to learn and to make sense of experience.”
Many dispositions that most adults want children to
acquire or to strengthen - for example, curiosity,
creativity, cooperation, openness, friendliness—are
learned primarily from being around people who exhibit
them; they are strengthened by being used effectively
and by being appreciated rather than rewarded (Kohn,
1993).

To strengthen the dispositions computing
students should have, they must be provided with the
opportunity to express the dispositions in their behavior.
When manifestations of the dispositions occur, they can
be strengthened as the students observe their
effectiveness and the responses to them and
experiences satisfaction from them. Dweck (1991) argue
that an effective curriculum can strengthen certain
dispositions by setting learning goals rather than asking
teachers to set some performance goals. Therefore, it is
strongly recommended that the forthcoming Iransman
Draft must identify those dispositions which are
essential for computing students and make part of the
curriculum.

Hidden Curriculum is an important component
of any educational program (Jackson, 1968). Hidden
curriculum deals with the elements of socialization
embedded in the curriculum and are imparted to
students through daily routines, curricular content, and
social relationships, yet are not part of the formal
curricular content. Emile Durkheim views educational
systems reflect underlying changes in society because
the systems are a construct built by society, which
naturally seeks to reproduce its collectively held values,
beliefs, norms, and conditions through its institutions
(Giddens, 1972). He further comments, “Society can
survive only if there exists among its members a
significant degree of homogeneity; education
perpetuates and reinforces this homogeneity by fixing in
the child, from the beginning, the essential similarities
collective life demands". He also comments that
socializing children to hold particular values such as
those of "achievement" and "equality of opportunity" is
necessary to this consensus and is the primary function
of education (Giddens, 1972).

The Draft has addressed the issue of
professional practices and considers it as a discrete
area which has to be treated explicitly. We believe topics
like professional ethics, soft skills, public speaking,
critical thinking & reasoning, modern literacies, inter-
personal attributes, entrepreneurship, attitude towards
lifelong learning, other life & social skills should not be
considered discrete items and to be taught
independently. Such concepts should be threaded into
the entire fabric of the curriculum and taught as a
hidden curriculum. This approach will, on the one hand,

make room for other valuable concepts. On the other
hand, it will make students responsible citizen, ethically
sound professionals, and sociable members of the
society.

The biggest pitfall in selecting the contents and
learning outcomes for any learning activity is to be over-
ambitious for the time allocated. The over-ambitious
contents and learning outcomes is another aspect of the
Draft which must be addressed. Let’s take the example
of “Algorithms and Complexity (AL)” knowledge area.
The Draft has proposed the following contents, learning
outcomes and number of hours.

a) AL/Basic Analysis [2 Core-Tier1 hours, 2 Core-Tier 2
hours]

i. Topics [Core-Tier1]

•

Differences among best, average, and worst case
behaviors of an algorithm

•

Asymptotic analysis of upper and average
complexity bounds

•

Big O notation: formal definition

•

Complexity classes, such as constant, logarithmic,
linear, quadratic, and exponential

•

Empirical measurements of performance

•

Time and space trade-offs in algorithms

ii.

[Core-Tier2]

•

Big O notation: use

•

Little o, big omega and big theta notation

•

Recurrence relations and analysis of recursive
algorithms

•

Some version of a Master Theorem

iii.

Learning Outcomes

1.

Explain what is meant by “best”, “average”, and
“worst” case behavior of an algorithm. [Knowledge]

2.

In the context of specific algorithms, identify the
characteristics of data and/or other conditions or
assumptions that lead to different behaviors.
[Evaluation]

3.

Determine informally the time and space complexity
of simple algorithms. [Application]

4.

Understand the formal definition of big O.
[Knowledge]

5.

List and contrast standard complexity classes.
[Knowledge]

6.

Perform empirical studies to validate hypotheses
about runtime stemming from mathematical
analysis. Run algorithms on input of various sizes
and compare performance. [Evaluation]

7.

Give examples that illustrate time-space trade-offs
of algorithms. [Knowledge]

8.

Use big O notation formally to give asymptotic
upper bounds on time and space complexity of
algorithms. [Application]

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

13

(
DDDD

)
B

20

12

:

Y
e
a
r

9. Use big O notation formally to give average case
bounds on time complexity of algorithms.
[Application]

10. Explain the use of big omega, big theta, and little o
notation to describe the amount of work done by an
algorithm. [Knowledge]

11. Use recurrence relations to determine the time
complexity of recursively defined algorithms.
[Application]

12. Solve elementary recurrence relations, e.g., using
some forms of a Master Theorem. [Application]

Teaching of the above mentioned course
contents and expecting the mentioned learning
outcomes from students in just 4 hours seem unrealistic.
We believe the proposed learning outcomes require
more time on the part of both teachers and students for
their completion than is mentioned. Knight (2002)
argues that in the higher education contents should be
offered in order to maximize the chance that learners will
experience coherence, progression and deep learning.
If the contents and outcomes are over-ambitious
compare to the time available, these cannot go without
compromising the essential characteristics of the
learning experience (Barnett, et al., 2001; Pasha &
Pasha, 2012a). Di Carlo (2009) argues that attempting
just to cover the overcrowded course contents limit
students to simply learning facts without developing the
ability to apply their knowledge to solve novel problems.
It puts an extra cognitive load on students (Chandler &
Sweller, 1991). and makes both faculty and students
overburdened (Gibbs, 1981; Ironside, 2004). As a
result, the students’ academic achievements get
effected (Apple, 2001; Jones, 2008). For an effective
learning students need to be engaged in higher order
cognitive activities which are related to the upper half of
Bloom’s taxonomy (Bloom & David, 1959; Pasha &
Pasha, 2012a).

The high pace of knowledge exploration,
inventions of new technologies, and the convergence of
computing and other disciplines, the emergence of new
domains & disciplines have introduced new challenges
to curriculum development for degree programs. These
trends demand a flexible approach for curriculum
development which not only meets the existing
challenges but also have the potential to accommodate
the future needs as well (Pasha & Pasha, 2012a).
 We need to realize that the 21st century has
been labeled as an era of knowledge economies which
have manifested itself in many different ways like
science and technology bonding has become stronger
than ever before, innovation has become more
important for economic growth and competitiveness,
continuing education and lifelong learning have got
unprecedented importance in organizational practices,
investment in intangible assets has become more
valuable than investments in fixed capital (Pasha &

Pasha, 2012b). These trends have led to an increased
competition in the business world (Utz, 2006). Also the
relationship between knowledge and technology has
become more evident. Although, the economic activities
all over the world are increasingly becoming knowledge
oriented but the degree of knowledge and technology
integration into economic activity is now so great that
knowledge & technology have been recognized as the
drivers of productivity and economic growth (Kogut &
Zander, 1992; Nonaka, & Takeuchi, 2002; Choo, 2002;
Zítek & Klímová, 2011). In today’s world, the basic
economic resource - the means of production - is no
longer capital, nor natural resources, nor labor. It is and
will be the knowledge workers who possess high levels
of education and/or expertise in a particular area, and
who use their cognitive skills to engage in complex
problem solving. Such knowledge workers will be the
assets of the organization (Drucker, 2006). In this sense
transforming computing students into valuable
knowledge workers should be one of the key purposes
of a curriculum (Pasha & Pasha, 2012c).

Time has come to realize the changing patterns
of 21st century universities education which have
removed the identity of place, the identity of time, the
identity of the scholarly community, and the identity of
the student community. For accommodating these
changes, we need to understand the five contemporary
competing epistemological pressures on the higher
education curriculum. Brigges (2000) suggests that the
future of the higher education curriculum will hang
significantly on the way in which this competition is
resolved:
1. The deconstruction of the subject, as reflected in,

for example, the modularization of the curriculum;
2. The cross-curricular `key’ skills movement;
3. The learning through experience movement and the

shift of the seat of learning outside the academy;
4. The anarchic potential of web-based learning; and
5. The reaffirmation of the subject as the academic

and organizational identity.

We believed, similar to other disciplines, people
from computing domain must appreciate these
challenging aspects and find practical ways to resolve
these conflicts. We also believe giving considerations to
the following aspects would make computing curricula
more agile, responsive and accommodating:

The curriculum should:

• Equip students with 21st century skills;

• Include a hidden curriculum for teaching the
elements of socialization & other life skills;

• Include the aspects of Global Education &
Multicultural education;

• Promote inclusive education and define measures
to meet the needs of the students with special
needs;

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

14

(
DDDD

)
B

20

12
Y
e
a
r

http://www.aishe.org/readings/2005-1/donnelly-fitzmaurice-Designing_Modules_for_Learning.html#XKnight2002�

• Allow institutions to integrate the concept of
branding within their degree programs.

We believe that the recommendations made in
this paper may provide some useful ideas to be
included in the Ironman Draft which is going to be
released in 2013 [6].

VI. Acknowledgment

We express our sincere and deep gratitude to
our colleagues and professionals from teaching and
software Industry who made it possible to streamline our
thoughts for this research. We also pay our thanks to
our institutions for providing the opportunity to conduct
this research.

References Références Referencias

1.

ACM, 1965. ‘An Undergraduate Program in
Computer Science-Preliminary Recommendations’.
Communications of the ACM, 8(9), 543–552.

2.

ACM, 1969. ‘Curriculum 68: Curriculum Committee
on CS Recommendations for Academic Programs
in Computer Science’. Communications of the ACM,
11(3),

151–197.

3.

ACM Curriculum Committee on CS, 1977.
‘Curriculum recommendations for the
Undergraduate Program in Computer Science’,
SIGCSE Bulletin, 2,

1-16.

4.

ACM Curriculum Committee on CS, 1979.
‘Curriculum 78: Recommendations for the
Undergraduate Program in CS’. Communications of
the ACM, 22 (3),

147-166.

5.

ACM/IEEE-CS, 1991. Computing Curricula 1991:
Recommendations of ACM & IEEE-CS Joint
Curriculum Task Force, ACM Press, Baltimore, MD.

6.

ACM/IEEE-CS, 2001. Computing Curricula 2001:
Recommendations of ACM & IEEE Curriculum Task
Force on Computer Science, IEEE Computer
Society Press and ACM Press.

7.

ACM/IEEE-CS, 2005. Computing Curricula 2005:
The Overview Report, IEEE and ACM Press.

8.

ACM/IEEE-CS, 2008. Computer Science Curriculum
2008: An Interim

Revision of CS 2001, ACM/IEEE-

CS Joint Interim Review Task Force Report, ACM
Press.

9.

ACM/IEEE-CS, 2012. Strawman Draft: Computer
Science Curricula 2013. The Joint Task Force on
Computing Curricula Association for Computing
Machinery and IEEE-Computer Society.

10.

Apple, M. W., 2001. Educating the “Right” Way:
Markets, Standards, God, and Inequality. New York:
Rout ledge Falmer.

11.

Arber, S., 2001. Designing Samples. In: N. Gilbert
(Ed.) Researching Social

Life. London: SAGE

Publications.

12. Barnett, R., Parry, G. & Coate, K., 2001.
‘Conceptualising Curriculum Change’, Teaching in
Higher Education, 6(4), 436-449.

13. Bloom, B. S. & David, R. K., 1959. Taxonomy of
Educational Objectives: The Classification of
Educational Goals, by a committee of college and
university examiners. In: Handbook I: Cognitive
Domain, New York, Longmans, 1959.

14. Bridges, D., 2000. ‘Back to the Future: the higher
education curriculum in the 21st century’.
Cambridge Journal of Education, 30(1), 37-55.

15. Brunzel, D. L., 2007. ‘Universities Sell Their Brands’.
Journal of Product & Brand Management, 16(2),
152-3.

16. Chandler, P. & Sweller, J., 1991. ‘Cognitive Load
Theory and the Format of Instruction’. Cognition and
Instruction, 8, 293-332.

17. Choo, C. W., 2002.The Strategic Management of
Intellectual Capital and Organizational Knowledge,
Oxford University Press, New York, NY.

18. Denning, P. J. & et al., 1988. Report on the ACM
Task Force on the Core of Computer Science. New
York: ACM Press.

19. DiCarlo, S. E., 2009. ‘Too much content, not enough
thinking, and too little FUN!’. Advances in
Physiology Education, 33(4), 257-264.

20. Drucker, P. F., 2006. Classic Drucker, Boston, MA.
Harvard Business School Publishing Corporation.

21. Dweck, C. S., 1991. Self-theories and goals: Their
role in motivation, personality, and development. In:
Richard A. Dienstbier (Ed.), Nebraska symposium
on motivation: Vol. 38. Lincoln: University of
Nebraska Press. pp. 199-235.

22. Garfinkel, S. L., 2000. ‘Biological Computing’.
Technology Review, May/June, 71-77.

23. Gibbs, G., 1981. Twenty terrible reasons for
lecturing, SCED Occasional Paper No. 8,
Birmingham.

24. Giddens, A. ed., 1972. Emile Durkheim Selected
Writings, Cambridge, England: Cambridge
University Press.

25. HEC, 2012. National Reports on the Undergraduate
Curriculum, Traditional and Contemporary
Perspectives - Innovations in the Undergraduate
Curriculum, Higher Education Curriculum, Available
at: <http://education.stateuniversity.com/pages/
1896/Curriculum-Higher-Education.html>[Accessed
28 June 2012].

26. IEEE-CS, 1976. A Curriculum in Computer Science
and Engineering. IEEE Computer Society Education
Committee/Model Curriculum Subcommittee
Report, IEEE Computer Society.

27. IEEE-CS, 1983. Model Program in Computer
Science and Engineering, IEEE Computer Society
Educational Activities Board/Model Program
Committee Report, IEEE Computer Society.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

15

(
DDDD

)
B

20

12
Y
e
a
r

28. Ironside, P. M., 2004. ‘“Covering Content” and
Teaching Thinking: Deconstructing the Additive
Curriculum’, Journal of Nursing Education, 43(1), 5-
12.

29. Jackson, N., 2008. Tackling the Wicked Problem of
Creativity in Higher Education. In: International
Conference Brisbane at the ARC Centre for the
Creative Industries and Innovation.

30. Jackson, P., 1968. Life in Classrooms, New York:
Holt, Rinehart & Winston.

31. Jones, R. D., 2008. Student Engagement —
Creating a Culture of Academic Achievement,
International Center for Leadership in Education.

32. Karp, R., 2011. ‘Understanding Science through the
Computational Lens’. Journal of Computer Science
and Technology, 26(4), 569-577.

33. Katz, L.G., 1991. Pedagogical Issues in Early
Childhood Education. In: S. L. Kagan, (Ed.). The
Care and Education of America's Young Children:
Obstacles and Opportunities. Ninetieth Yearbook of
the National Society for the Study of Education. Part
I. Chicago: University of Chicago Press. pp. 50-68.

34. Katz, L. G., 1993. ‘Dispositions as Educational
Goals’. ERIC Digest.

35. Katz, L. G., 1995. Dispositions in early childhood
education. In: L. G. Katz (Ed.), Talks with teachers
of young children. Norwood, N: Ablex. pp. 380-232.

36. Knight, P. T., 2002. Being a Teacher in Higher
Education, Buckingham: SRHE/OU Press.

37. Kogut, B. & Zander, U., 1992. ‘Knowledge of the
firm, combinative capabilities, and the replication of
technology’. Organization Science, 3, 383-97.

38. Kohn, A., 1993. Punished by rewards: The trouble
with gold stars, incentive plans, A’s, praise, and
other bribes. Boston, MA: Houghton Mifflin.

39. Li, D. & Zhang, H., 2009. ‘Cloud Computing Beyond
Turing Machine’. Communications of the China
Computer Federation, 5(12), 8-16.

40. Li, G. (Ed.), 2010. Information Science and
Technology in China: A Roadmap to 2050, Science
Press Beijing and Springer-Verlag, Berlin.

41. Lockwood, R. C. & Hadd, J., 2007. ‘Building a
Brand in Higher Education: Why Business Practice-
Particularly Brand Strategies – are Becoming
Essential in Today’s Universities’. Gallup
Management Journal Online, 12, 1-6.

42. Lovely, S. & Smith, S., 2004. ‘Selective
abandonment: How and when to say no’. Principal
Leadership, 5(3), 35-38.

43. Margolis, E., (2001). The Hidden Curriculum in
Higher Education, Routledge.

44. Mundy, D., 2002. ‘A Question of Response Rate’,
Science Editor, 25(1), 25.

45. Nonaka, I. & Takeuchi, H., 2002. The Knowledge-
Creating Company. New York: Oxford University
Press.

46. Pasha, M. A. & Pasha, S., 2012a. ‘Rethinking of
Computing Curricula in Higher Education in
Pakistan’. International Journal of Advanced
Research in Computer Science, 3(3), 111-115.

47. Pasha, M. A. & Pasha, S., 2012b. Essentials of
Knowledge Management: Concepts, Theories and
Practices. Innovators Knowledge Services, Lahore,
Pakistan. Available at: < http://www. innovators.
edu.pk/?q=node/139> [Accessed 28 June 2012]

48. Pasha, M. A. & Pasha, S., 2012c. A Pragmatic
Approach for Implementing Knowledge
Management in Pakistani Organizations Using Open
Source Technologies, International Journal of
Computer Application (Submitted for publication
May 2012).

49. Sitzia, J. & Wood, N., 1998. ‘Response Rate in
Patient Satisfaction Research: An Analysis of 210
Published Studies’. International Journal for Quality
in Health Care, 10: 311–317.

50. Talbot, M., 2004. ‘Monkey See, Monkey Do: A
Critique of the Competency Model in Graduate
Medical Education’, Medical Education, 38: 587-
592.

51. Temple, P., 2006. ‘Branding higher education:
illusion or reality?’. Perspectives: Policy and Practice
in Higher Education, 10(1), 15-19.

52. UNESCO, 2012. Graduate Employability in Asia,
Asia and Pacific Regional Bureau for Education,
UNESCO Bangkok.

53. Utz, A., 2006. Fostering Innovation, Productivity, and
Technological Change: Tanzania in the Knowledge
Economy. World Bank Institute, the International
Bank for Reconstruction and Development/the
World Bank.

54. Wing, J., 2006. ‘Computational Thinking’.
Communications of the ACM, 49(3), 33-35.

55. Wing, J., 2008. ‘Computational Thinking and
Thinking about Computing’. Philosophical
Transactions of the Royal Society, 366(1881), 3717-
3725.

56. Zítek, V. & Klímová, V., 2011. Knowledge Economy
and Knowledge Infrastructure, Proceedings of
International Conference on Applied Economics, pp.
821-928.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

16

(
DDDD

)
B

20

12
Y
e
a
r

	Missing Elements of Computer Science Curricula 2013
	Author's
	Keywords
	I. Introduction
	II. Computing model curriculumdevelopment
	III. CS curricula 2013: the strawmandraft
	IV. Shortcomings of the cscurriculum 2013
	a) Low response rate
	b) An Ad-hoc approach towards the core body ofknowledge
	c) Incomplete curriculum guidelines
	d) Inconsistency in the use of terms ‘Computing’ and‘Computer Science’
	e) Over-ambitious contents and learning outcomes
	f) Dispositions: an ignored aspect
	g) Other missing aspects

	V. Discussion & recommendations
	a) AL/Basic Analysis [2 Core-Tier1 hours, 2 Core-Tier 2hours]
	i. Topics [Core-Tier1]
	ii. [Core-Tier2]
	iii. Learning Outcomes

	VI. Acknowledgment
	References Références Referencias

