
© 2012. Abdulrahman Hamed Almutairi & Abdulrahman Helal Alruwaili. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Hardware & Computation
Volume 12 Issue 10 Version 1.0
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Improving of Quicksort Algorithm Performance by Sequential
Thread or Parallel Algorithms
 By Abdulrahman Hamed Almutairi & Abdulrahman Helal Alruwaili

 King Saud University

Abstract - Quicksort is well-know algorithm used for sorting, making O(n log n) comparisons to sort a
dataset of n items. Being a divide-and-conquer algorithm, it is easily modified to use parallel
computing. The aim of this paper is to evaluate the performance of parallel quicksort algorithm and
compare it with theoretical performance analysis. To achieve this we implement a tool to do both
sequential and parallel quicksort on randomly generated arrays of different size in several runs to
provide us with enough data to draw conclusions about the efficiency of using the capability of
modern multicore processors together with algorithms designed to increase the speed of sorting
large arrays.

Keywords : Parallel computing, Parallel algorithms, Parallel Computing, Quicksort.

GJCST-A Classification: F.2.2

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

Strictly as per the compliance and regulations of:

Year 2012

Improving of Quicksort Algorithm Performance
by Sequential Thread or Parallel Algorithms

Abdulrahman Hamed Almutairi & Abdulrahman Helal Alruwaili

AAbstract - Quicksort is well-know algorithm used for sorting,
making O(n log n) comparisons to sort a dataset of n items.
Being a divide-and-conquer algorithm, it is easily modified to
use parallel computing. The aim of this paper is to evaluate the
performance of parallel quicksort algorithm and compare it
with theoretical performance analysis. To achieve this we
implement a tool to do both sequential and parallel quicksort
on randomly generated arrays of different size in several runs
to provide us with enough data to draw conclusions about the
efficiency of using the capability of modern multicore
processors together with algorithms designed to increase the
speed of sorting large arrays.
Keywords : Parallel computing, Parallel algorithms,
Parallel Computing, Quicksort.

I. Introduction and motivation

orting is among the fundamental problems of
computer science. Sorting of different datasets is
present in most applications, ranging from simple

user applications to complex software. Today, in this
modern age, the amount of data to be sorted is often so
big, that even the most efficient sequential sorting
algorithms become the bottleneck of the application. It
may be a database or scientific data.

Today, it is said that the problem is not the lack
of data but the need to sort and search in the huge
amount of data available to us. To be able to do those
tasks efficiently with the data available, the speed of
sorting becomes critical. A lot of work was done to
improve the speed of traditional sequential sorting
algorithms, be it optimizing the pivot selection for
quicksort or trying to come up with new, adapting
sorting algorithms.

With the appearance of parallel computing, new
possibilities have appeared to remove this bottleneck
and improve the performance of known sorting
algorithms by modifying them for parallel execution. At
first, this was achieved using distributed computing,
however with the hardware available today, it is possible
to do this even on home computers thanks to their
multicore processors.

In this paper, we present a parallel version of
the well know quicksort algorithm and compare its
performance to the performance of its simpler,
sequential quicksort algorithm. Comparing their
performance, we look for the threshold T, the size of the
array, at which the parallel algorithm becomes actually

Author : King Saud University, Master of Computer Science
Program-Parallel Processing Course , Dr.Abdullatif Alabdullatif.

slower than the sequential algorithm. By choosing a
value that promises the best performance, we then test
and compare the parallel and sequential versions of the
quicksort algorithm, providing us with enough data to
draw a conclusion about the increase in performance
when using the parallel quicksort algorithm.

II. Quicksort

Quicksort is a sorting algorithm developed by
Tony Hoare that requires, on average, O(nlogn)
comparisons to sort n items. In the worst case scenario,
it makes O(n2) comparisons, even though this is a rare
occurrence. In reality it is mostly faster than other
O(nlogn) algorithms [1]. The implementation of a simple
sequential Quicksort algorithm follows that we choose
for our needs is:
 Choose a pivot element. We use the last element

out of the sorting area
 Iterate through the sorting area, placing all numbers

smaller then the pivot to a position on its left, while
placing all other numbers to a position on its right.
This is done by swapping elements.

 The pivot is now considered to be in its sorted
position and we continue with the divide-and-
conquer strategy, applying the same algorithm on
the part to the left and the part to the right of the
pivot.

This way, the whole, original dataset is sorted
by recursively using the same algorithm on smaller and
smaller parts. This is done sequentially. However, once
the partitioning is done, the sorting of the new sorting
areas can be performed in parallel as there is no
collision.

Figure 1: Simple graphical representation of the
Quicksort algorithm

III. Related work

Several works were done into parallel sorting
algorithms. The first one, being restricted by hardware
not providing multicore processors were using private

S

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

1

(
DDDD

)
A

Values < Pivot Pivot Values > Pivot

PivotNew
Pivot

Values < New
Pivot

Values > New
Pivot Values > Pivot

Recursive Step

Initial Step

20
12

Y
e
a
r

virtual [3]. This required the solutions to communicate
between them using messaging witch not only
complicated the process of implementation, but also
increases the overhead of parallelism. The work
presented a fine-tuned parallel quick sort. The algorithm
used asynchronous multiprocessors with cache-
coherent shared memory. They pick the pivot using the
processor with the lowest ID. Afterwards, each
processor picks a blok from the left and one block from
the right side of the pivot, the size of the block chosen
so it can fit into the L1 cache. This two block processed
in a way so that one block contains values smaller then
the pivot, and the other block contains values larger or
equal, with again the CPU with lowest ID performing
some after-cleanup operations. Then the input array is
distributed between the processors and the recursion
sorting of quicksort begins until each group of
processors contains only one CPU or until the size of
arrays are below a certain limit and insertion sort is
performed. Here, we found especially the idea of a
threshold to use a simpler, sequential sorting algorithm
to save the computational cost when sorting small
arrays, especially interesting.

However, in last few years, improvements in
sorting have been made thanks to the works
incorporating multi core and multiprocessor computer
architecture [2].

IV. Theoretical analysis

With the parallel algorithm, we have to
remember that the cost of creating, monitoring and
managing of the parallel tasks is added to the total
computational cost. Let’s assume the average case of
quicksort with computational time O(nlogn).

When using parallel computing, the
computational cost consists of these values:
 picking the pivot – O(1)
 moving the elements to the left and right side of

pivot - O(n)
 creating new Tasks to sort the left and right part -

O(1)

Based on Figure 1 it’s easy to see, that the fully
developed parallel quicksort algorithm will have the
shape of a binary tree.

For each leaf node of this tree, we will be
required to perform a sequential quicksort algorithm, the
size of the leaf node depending on the threshold T we
choose.

For each node, the creation of new Tasks for
child nodes will add to the total computational cost.

The extreme condition would be where the last
leaf node would be smaller then T in case N is not
divisible by T. However, this has an minimal impact on
the overall performance and therefore we decided to
assume, which allows us to make our theoretical
analysis using a complete binary tree.

For a dataset of N elements, the binary tree will
have N/T leaf nodes. Therefore it can be easily seen,
that the tree will have nodes.

The number of the leaf nodes will be N/T, each
of it with the size of T. This means, the computational
cost to sort the leaf nodes using sequential quicksort will
be With this in mind, if we would ignore any overhead,
parallel quicksort would be able to provide us with this
increase in performance, as shown in Figure 2. In
theory, lower threshold values would provide us with
even better performance.

Figure 2 :

Theoretical comparison between Sequential
and Parallel quicksort, using threshold value of 500

However, given the binary tree, in each node we
have to select a pivot, move the elements to the left and
right side of the pivot and create the Tasks to do the
parallel sorting.

The limitation to speed increase of a parallel
algorithm as compared to a sequential algorithm are the
overhead caused by the need to create new, parallel
processes and their management.

V.

Practical analysis

For our practical analysis, we wrote a simple
program to test and compare a sequential and parallel
quicksort. This program first sorts a field of integers
using sequential quicksort and then sorts the same field
using parallel quicksort. To evaluate the overhead
needed to create new tasks, we implemented a version
of the

quicksort algorithm, where for each recursive call,
a new task is created, they are however executed not
parallel but sequential.

Our solution was implemented in C# as a
simple form application. The window can be seen in
Figure 3.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

2

(
DDDD

)
A

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

20
12

Y
e
a
r

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

3

(
DDDD

)
A

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

Figure 3 : The application used to compare the
performance sequential and parallel quicksort

From the point of user interface, the application
is very simple, providing 4 items for user interaction. The
first one is a textfield where wecan define the size of
arrays to be used for the testing. Next is the ‘Start
testing’ button which begins the sorting process. The
last button is the Copy to clipboard button which takes
the aggregated results of the tests run so far and copies
them into a table structure in the clipboard, which can
be easily pasted into Excel for further processing.

Figure 4 :

The core class design of the benchmarking

program

The base class is the AbstractSort, which
contains the code for benchmarking the sorting. The
derived classes override an abstract method called
InnerSort and implement either the sequential or parallel
version of quicksort.

This is the code for the public method Sort of
the AbstractSort called.

As can be seen, a copy of the array is created
so that when the other sorting algorithm is to be
benchmarked, it will be benchmarked on the same,
unsorted array. Afterward the current time is stored and
the sorting commences. When the sorting is finished,
the result time is computed as current time minus the
time stored before the sorting commenced.

The sequential quicksort is implemented in a
simple manner as the following pseudo code shows:
qsort(array,left,right)

int[] sorting=new int[array.Length];
Array.Copy(array, sorting, array.Length);
QSResult result=new QSResult();
DateTime start= System.DateTime.Now;
result.sorted = InnerSort(sorting);
result.time =
System.DateTime.Now.Subtract(start).Total
Milliseconds;
return result;

Our parallel implementation is only slightly
different. First, the size of the array to be sorted is
checked against a threshold. If the size is smaller than
the threshold, sequential quicksort is used as the
overhead of creating new tasks would slow the sorting
process too much. If the size of the array is bigger than
the threshold, instead of calling the quicksort for each
part directly, new Task is created for each of the call and
let’s them handle the sorting of each part of the array.
This is show in the next code snippet:

qsort(array,left,right)
{
 cur, last;
 if (left >= right) return;
swap(array,left,(left+right)/2);
last = left;
for(cur=left+1;cur<=right;++cur)
 {
 if(array[cur]<array[left])
 {
 ++last;

swap(array,last,cur);
 }
 }
 swap(array,left,last);
qsort(array,left,last-1);
qsort(array,last+1,right);
}

if ((last - left) < SEQ_THRESHOLD)

{

qsort(array, left, last - 1);

qsort(array, last + 1, right);

}

else

{

Task.WaitAll(

Task.Factory.StartNew(()=>

qsort(array,left,last-1)),

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

4

(
DDDD

)
A

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

Last, to test the overhead caused by creating a

new Task, we created a quicksort algorithm where new
Task is created for the initial sorting. This is done by the
following code when initializing he quicksort algorithm:

These algorithms were tested on the same
hardware, using a quad core processor.

To test we used 9 randomly generated arrays of
following sizes: 10; 100; 1 000; 10 000; 25 000; 50 000;
75 000; 100 000; 150 000. We did 100 separated runs,
algorithms in each run using the same data, but the
data being randomly generated between runs to provide
variability.

The hardware we run our test on was a Intel
Core i5 processor running at 2.53GHz. This is a dual
core processor capable of running four threads in
parallel. The computer had 3.8GB of memory. During
the test, no other program was running to provide a
interference-free environment.

First, by using a trial and error approach, we
established a suitable value for the SEQ_THRESHOLD
value to be 1000. We ran a full scale test on arrays of 9
different sizes with three different SEQ_THRESHOLD
values, 1000,5000 and 50 000. The resulting times can

be seen in Table 1 and in Figure 5.

Table 1:

Average run times for different threshold and

number of elements

 Figure 5 :

Comparison of parallel quicksort run

time with
different thresholds

 With the threshold set at 50000, the parallel
algorithm is actually slower, as the computational cost
of creating new tasks increases the total run time, but
the parallelism is not utilized enough to offset this. In
Figure 6 it can be clearly seen, that with the higher
threshold of 50000, the additional computation cost of
creating new threads cannot be compensated for by
doing parallel computation as the algorithm returns to
sequential quicksorting too soon.

 Figure 6 :

Ratio of run time, Parallel to Sequential
 We can see the comparison of a sequential and

parallel quicksort in Figure 7.

Figure 7 : Comparision of sequential and parallel
quicksort, T=1000

To compare the speed gained by using parallel
computing, we created a graph showing the speed up
ratio for different data size as shown in Figure 8.

Task.Factory.StartNew(()=>

qsort(array, last + 1, right)));

}

T=1000 T=5000 T=50000

10 0.01 0 0.010001

100 0.01 0.020001 0.050004

1000 0.250016 0.270011 0.260018

10000 2.010118 2.880166 3.060169

25000 5.380318 6.120344 9.15052

50000 11.36065 11.320644 19.61112

75000 18.14103 18.251045 28.60164

100000 24.91142 22.591294 34.19196

150000 36.41208 34.551976 46.99269

Thread thread=new Thread(delegate()

{
qsort(array, 0, array.Length - 1);

});

thread.Start();

while (thread.IsAlive)

Thread.Sleep(1);

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

5

(
DDDD

)
A

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

Figure 8 :

Graph showing speed up ratio by using

parallel quicksort

This graph was created by using the formula

As can be seen here, at low number of

elements no speed up is achieved. As the number of
elements increases, the speed of sorting actually
decreases. This is caused as stated before by the
overhead needed for creating the parallel tasks and as
there is not enough elements for the parallelism being
able to compensate for this. After the number of
elements increases enough, the overall speed and
speed gain increases as well by about 20%.

VI. Conclusion

We successfully implemented a parallel version
of quicksort algorithm. After choosing a appropriate
threshold value to switch from parallel to sequential
sorting, we observed the performance of the algorithm.
The results are obviously in favor of the parallel
quicksort algorithm. Using a reasonable threshold to
return to sequential quicksort, we are able to circumvent
the increased computational cost of creating new tasks
for small datasets, while with the bigger datasets we
take advantage of the parallelism possible by today’s
hardware. And thanks to simplicity of the parallel
implementation of quicksort algorithm it is easy to
achieve major, 20% increase of performance when
sorting a larger dataset.

References références referencias

1. S. S. Skiena, The Algorithm Design Manual, Second
Edition, Springer, 2008, p. 129

2. P. Tsigas, Y. Zhang, A Simple, Fast Parallel
Implementation of Quicksort and its Performance
Evaluation on SUN Enterprise 10000

3. Z. Chengyan, Parallel Quick sort algorithm with PVM
optimization, 1996

20

12
Y
e
a
r

This page is intentionally left blank

Improving of Quicksort Algorithm Performance by Sequential Thread or Parallel Algorithms

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

6

(
DDDD

)
A

20

12
Y
e
a
r

	Improving of Quicksort Algorithm Performance by SequentialThread or Parallel Algorithms
	Author's
	Keywords
	I. Introduction and motivation
	II. Quicksort
	III. Related work
	IV. Theoretical analysis
	V. Practical analysis
	VI. Conclusion
	References références referencias

