
© 2012. Er. Navneet Singh, Er. Gagandeep Kaur, Er. Parneet Kaur & Dr. Gurdev Singh. This is a research/review paper, distributed
under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-
nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Hardware & Computation
Volume 12 Issue 10 Version 1.0
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Analytical Performance Comparison of BNP Scheduling
Algorithms
 By Er. Navneet Singh, Er. Gagandeep Kaur, Er. Parneet Kaur & Dr. Gurdev Singh

 Adesh Institute of Engg. & Tech. Faridkot, Punjab, India

Abstract - Parallel computing is related to the application of many computers running in parallel to
solve computationally intensive problems. One of the biggest issues in parallel computing is efficient
task scheduling. In this paper, we survey the algorithms that allocate a parallel program represented
by an edge-directed acyclic graph (DAG) to a set of homogenous processors with the objective of
minimizing the completion time. We examine several such classes of algorithms and then compare
the performance of a class of scheduling algorithms known as the bounded number of processors
(BNP) scheduling algorithms. Comparison is based on various scheduling parameters such as
makespan, speed up, processor utilization and scheduled length ratio. The main focus is given on
measuring the impact of increasing the number of tasks and processors on the performance of these
four BNP scheduling algorithms.

Keywords : Parallel computing, Scheduling, DAG, Homogeneous processors.

GJCST-A Classification: D.4.1

Analytical Performance Comparison of BNP Scheduling Algorithms

Strictly as per the compliance and regulations of:

Year 2012

Analytical Performance Comparison of BNP
Scheduling Algorithms

AAbstract - Parallel computing is related to the application of
many computers running in parallel to solve computationally
intensive problems. One of the biggest issues in parallel
computing is efficient task scheduling. In this paper, we survey
the algorithms that allocate a parallel program represented by
an edge-directed acyclic graph (DAG) to a set of homogenous
processors with the objective of minimizing the completion
time. We examine several such classes of algorithms and then
compare the performance of a class of scheduling algorithms
known as the bounded number of processors (BNP)
scheduling algorithms. Comparison is based on various
scheduling parameters such as makespan, speed up,
processor utilization and scheduled length ratio. The main
focus is given on measuring the impact of increasing the
number of tasks and processors on the performance of these
four BNP scheduling algorithms.
Keywords : Parallel computing, Scheduling, DAG,
Homogeneous processors.

I. Introduction

arallel computing is a technique of executing
multiple tasks simultaneously on multiple
processors. The main goal of parallel computing

is to increase the speed of computation. Efficient task
scheduling & mapping is one of the biggest issue in
homogeneous parallel computing environment [1]. The
objective of Scheduling is to manage the execution of
tasks in such a way that certain optimality criterion is
met. Most scheduling algorithms are based on list-
scheduling technique [4][6][2][11]. There are two
phases in List-scheduling technique: task prioritizing
phase, where the priority is computed and assigned to
each node in DAG, and a processor selection phase,
where each task in is assigned to a processor in order
of the priority of nodes that minimizes a suitable cost
function. List scheduling algorithms are classified as
static list scheduling if the processor selection phase
starts after completion of the task prioritizing phase and
dynamic list scheduling algorithm if the two phases are

Author : Department of Information Technology Adesh Institute of
Engg. & Tech. Faridkot, Punjab, India.
E-mail : navneetrandhawa@yahoo.co.in
Author : Department Computer Science Engineering Adesh Institute
of Engg. & Tech. Faridkot, Punjab, India.
E-mail : gagan.deep86@hotmail.com
Author : Department Computer Science Engineering Adesh Institute
of Engg. & Tech. Faridkot, Punjab, India.
E-mail : virgo_parneet@yahoo.co.in
Author : Professor, Department of Information Technology, PTU,
Jalandhar. E-mail : singh.gndu@gmail.com

interleaved. A parallel program can be represented by a
node-and edge-weighted directed acyclic graph (DAG)
[2][3]. The Directed Acyclic Graph is a generic model of
a parallel program consisting of a set of processes. The
nodes represent the application process and the edges
represent the data dependencies among these
processes.

This paper surveys various scheduling
algorithms that schedule an edge-weighted directed
acyclic graph (DAG), which is also called a task graph,
to a set of homogeneous processors. We examine four
classes of algorithms: Bounded Number of Processors
(BNP) scheduling algorithms, Unlimited Number of
Clusters (UNC) scheduling algorithms, and Arbitrary
Processor Network (APN) & Task Duplication Based
(TDB) scheduling algorithms. Performance comparisons
are made for the BNP algorithms. We provide qualitative
analyses by measuring the performance of these four
BNP scheduling algorithms under useful scheduling
parameters: makespan, speed up, processor utilization,
and scheduled length ratio.
 The rest of this paper is organized as follows. In
the next section, we describe the generic DAG model
and discuss its variations & techniques. A classification
of scheduling algorithms is presented in Section 3.The
four BNP scheduling algorithms are discussed in
Section 4.The performance results and comparisons are
presented in Section 5, Section 6 concludes the paper.
Section 7 suggest about future scope of research.

II. Task scheduling problem & model

used

This section presents the application model used
for task scheduling. The number of processors could be
limited or unlimited. The homogeneous computing
environment model is used for the surveyed algorithms.
We first introduce the directed acyclic graph (DAG)
model of a parallel program. This is followed by a
discussion about some basic techniques used in most
scheduling algorithms & homogeneous computing
environment.

a) The DAG Model
 The Directed Acyclic Graph [2][3] is a generic
model of a parallel program consisting of a set of
processes among which there are dependencies. The
DAG model that we use within this analysis is presented
below in Fig.1:

P

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

17

(
DDDD

)
A

20

12

Er. Navneet Singh , Er. Gagandeep Kaur , Er. Parneet Kaur & Dr. Gurdev Singh

Y
e
a
r

Fig.1:

Representation DAG

A task without any parent is called an entry task

and a task without any child is called an exit task. A
node cannot start execution before it gathers all of the
messages from its parent nodes. The communication
cost between two tasks assigned to the same processor
is assumed to be zero. If node ni is scheduled to some
processor, then ST(ni) and FT(ni)denote the start-time
and finish-time of ni, respectively.After all the nodes
have been scheduled, the schedule length is defined as
maxi{FT(ni)}across all processors. The node-

and

edge-weights are usually obtained by estimation. Some
variations in the generic DAG model are:-

Accurate model [2][3]—

In an accurate model,

the weight of a node includes the computation time, the
time to

receive messages before the computation, and

the time to send messages after the computation. The
weight of an edge is a function of the distance between
the source and the destination nodes. It also depends
on network topology and contention which can be

difficult to model. When two nodes are assigned to a
single processor, the edge weight becomes zero.

Approximate model 1 [2][3] —

Here the edge weight is

approximated by a constant. A completely connected
network without contention fits this model.

Approximate model 2 [2][3]—

In this model, the
message receiving time and sending time are ignored in
addition to approximating the edge weight by a
constant.

An accurate model is useless when the weights
of nodes and edges are not accurate. As the node and
edge

weights are obtained by estimation, which is

hardly accurate, the approximate models are used. The
approximate models can be used for medium to large
granularity, since the larger the process grain-size, the
less the communication, and consequently the network
is not heavily loaded.

Preemptive scheduling: The preemptive
scheduling is prioritized. The highest priority process
should always be the process that is currently utilized.

Non-Preemptive scheduling: When a process
enters the state of running, the state of that process is
not deleted from the scheduler until it finishes its service
time.

The homogeneous computing environment
model is a set P of p identical processors connected in
a fully connected graph [4]. It is also assumed that:

Any processor can execute the task and
communicate with other processors at the same
time.

Once a processor has started task execution, it
continues without interruption, and on completing
the execution it sends immediately the output data
to all children tasks in parallel.

b)

Basic Techniques in DAG Scheduling

Most scheduling algorithms are based on list
scheduling. The basic idea of list scheduling is to assign
priorities to the nodes of DAG, then place the nodes in a
list called ready list according to the priority levels

and

then lastly map the nodes onto the processors in the
order of priority. A higher priority node will be examined
first for scheduling before a node with a lower priority. In
case any two or more nodes have the same priority,
then the ties are needed to

be break using some useful

method. There are various ways to determine the
priorities of nodes such as HLF (Highest level First), LP
(Longest Path), LPT (Longest Processing Time) and CP
(Critical Path).Frequently used attributes for assigning
priority are

[2][4][5]:-

t-level: t-level(Top Level) of the node ni in DAG
is the length of the longest path from entry node to ni
(excluding ni) i.e. the sum of all the nodes computational
costs and edges weights along the path.

b-level: The b-level (Bottom Level)of a node ni is
the length of the longest path from node ni to an exit
node . The b-level is computed recursively by traversing
the DAG upward starting from the exit node.

Static level: Some scheduling algorithms do not
consider the edge weights in computing

the b-level

known as static b-level. or static level.

ALAP time: The ALAP (As-Late-As-Possible)
start time of a node is measure of how far the node’s
start time can be delayed without increasing the
schedule length. It is also known as latest start time
(LST).

CP (Critical Path):It is the length of the longest
path from entry node to the exit node A DAG can have
more than one CP. b-level of a node is bounded by the
length of a critical path.

EST (Earliest Starting Time): Procedure for
computing the t-levels can also be used to compute the
EST of nodes. The other name for EST is ASAP (As-
Soon-As-Possible) start-time.

A DAG -

G = (V, E, w, c) -

that represents the application to be scheduled

V

 {vi: i = 1,….,

N } represents the set of tasks.

E {eij

: data dependencies between node ni and node nj

}

w(ni) represents the node ni's computation cost

(eij) represents the communication cost between node ni

and node nj

 .

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

18

(
DDDD

)
A

20

12
Y
e
a
r

 DL (Dynamic Level): Dynamic level of a node is
calculated by subtracting the EST from the ST.

III. A classification of dag scheduling

algorithms

 The DAG scheduling algorithms are basically
classified into the following four groups:-
a) BBounded Number of Processors (BNP) scheduling

[2][5][11]: BNP scheduling algorithms are non-task
duplication based scheduling algorithms. These
algorithms schedule the DAG to a bounded number
of processors directly [2][5]. The processors are
assumed to be fully-connected. No attention is paid
to link contention or routing strategies used for
communication. Most BNP scheduling algorithms
are based on the list scheduling technique.
Examples of BNP algorithms are: HLFET (Highest
Level First with Estimated Times) algorithm, MCP
(Modified Critical Path) algorithm, ISH (Insertion
Scheduling Heuristic) algorithm, ETF (Earliest Time
First) algorithm, DLS (Dynamic Level Scheduling)
algorithm and LAST (Localized Allocation of Static
Tasks).

b) Unbounded Number of Clusters (UNC) scheduling
[5][11]: UNC scheduling algorithms are non-task
duplication based scheduling algorithms. The
processors are assumed to be fully-connected and
no attention is paid to link contention or routing
strategies used for communication. The basic
technique employed by the UNC algorithms is
called Clustering. These algorithms schedule the
DAG to an unbounded number of clusters. At the
beginning of the scheduling process, each node is
considered as a cluster. In the subsequent steps,
two clusters are merged if the merging reduces the
completion time. This merging procedure continues
until no cluster is left to be merged. UNC algorithms
take advantage of using more processors to further
reduce the schedule length. Examples of UNC
algorithms are: The EZ (Edge-zeroing) algorithm,
DSC (Dominant Sequence Clustering) algorithm,
The MD (Mobility Directed) algorithm, The DCP
(Dynamic Critical Path) algorithm.

c) Task Duplication Based (TDB) scheduling [5][11]:
Scheduling with communication may be done using
duplication. The rationale behind the task-
duplication based (TDB) scheduling algorithms is to
reduce the communication overhead by redundantly
allocating some nodes to multiple processors.
These algorithms schedule the DAG to an
unbounded number of clusters. Different strategies
can be employed to select ancestor nodes for
duplication. Some of the algorithms duplicate only
the direct predecessors whereas some other
algorithms try to duplicate all possible ancestors.
Examples TDB algorithms are: PY algorithm (named
after Papadimitriou and Yannakakis[1990]), LWB
(Lower Bound) algorithm, DSH (Duplication
Scheduling Heuristic) algorithm, BTDH (Bottom-Up
Top-Down Duplication Heuristic) algorithm, LCTD
(Linear Clustering with Task Duplication) algorithm,
CPFD (Critical Path Fast Duplication) algorithm.

d) Arbitrary Processor Network (APN) scheduling
[5][11]: The APN scheduling algorithms perform
scheduling and mapping on the target architectures
in which the processors are connected via an
arbitrary network topology. APN scheduling
algorithms are non-task duplication based
scheduling algorithms. The number of processors is
assumed to be limited. A processor network is not
necessarily fully-connected. Contention for
communication channels need to be addressed.
For communication channels message routing and
scheduling must also be considered. Examples
APN algorithms are: MH (Mapping Heuristic)
algorithm, DLS (Dynamic Level Scheduling)
algorithm, The BU (Bottom-Up) algorithm, BSA
(Bubble Scheduling and Allocation) algorithm

IV. Bnp scheduling algorithms

 In this section, we discuss four basic BNP
scheduling algorithms: HLFET, ISH, MCP, and ETF. All
these algorithms are for a limited number of
homogeneous processors. The major characteristics of
these algorithms are summarized in Table 1[6]. In table,
p denotes the number of processors given.

Table 1: Some of the BNP scheduling algorithms and their characteristics

Algorithm Proposed by[year] Priority List Type Greedy
HLFET Adam et al. [1974] SL Static Yes

ISH Kruatrachue & Lewis [1987] SL Static Yes
MCP Wu & Gajski [1990] ALAP Static Yes
ETF Hwang et al. [1989] SL Static Yes

a) The HLFET (Highest Level First with Estimated
Times) Algorithm [12]: It is one of the simplest
scheduling algorithms. The algorithm is briefly
described below in Fig.2.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

19

(
DDDD

)
A

20

12
Y
e
a
r

Fig. 2 : HLFET algorithm

b) The ISH (Insertion Scheduling Heuristic) Algorithm
[12]: This algorithm uses the “scheduling holes “the
idle time slots—in the partial schedules. The
algorithm tries to fill the holes by scheduling other
nodes into them. The algorithm is briefly described
below in Fig.3.

Fig. 3 : ISH algorithm

c) MCP (Modified Critical Path) Algorithm [12]: This
algorithm uses the insertion approach but, this
insertion approach is different from ISH algorithm.
MCP looks for an idle time slot for a given node,
while ISH looks for a hole for a node to fit in a given
idle time slot. The algorithm is briefly described
below in Fig.4

Fig. 4 : MCP algorithm

d) The ETF (Earliest Time First) Algorithm [12]: This
algorithm schedules nodes based on b-level only.
The ETF algorithm is briefly described below in
Fig.5.

Fig. 5 :

ETF algorithm

V. Performance Results and

Comparison

 In this section, we present the performance
results and comparisons of the 4 BNP scheduling
algorithms discussed above. The comparisons are
based upon the following four comparison metrics
[2][4]:
1. Makespan: Makespan is defined as the completion

time of the algorithm. It is calculated by measuring
the finishing time of the exit task by the algorithm.

2. Speed Up: The Speed Up value is computed by
dividing the sequential execution time by the parallel
execution time.

1) Calculate the static b-level of each node.
2) Make a ready list in a descending order of

static b-level. Initially, the ready list
contains only the entry nodes. Ties are
broken randomly.

Repeat
3) Schedule the first node in the ready list to a

processor that allows the earliest execution,
using the non-insertion approach.

4) Update the ready list by inserting the nodes
that are now ready.

Until all nodes are scheduled.

1) Calculate the static b-level of each node.
2) Make a ready list in a descending order of

static b-level. Initially, the ready list
contains only the entry nodes. Ties are
broken randomly.

Repeat
3) Schedule the first node in the ready list to

the processor that allows the earliest
execution, using the non-insertion
algorithm.

4) If scheduling of this node causes an idle
time slot, then find as many nodes as
possible from the ready list that can be
scheduled to the idle time slot but cannot
be scheduled earlier on other processors.

5) Update the ready list by inserting the nodes
that are now ready.

Until all nodes are scheduled

1) Compute the ALAP time of each node.
2) For each node, create a list which consists of

the ALAP times of the node itself and all its
children in a descending order.

3) Sort these lists in an ascending
lexicographical order. Create a node list
according to this order.

Repeat
4) Schedule the first node in the node list to a

processor that allows the earliest execution,
using the insertion approach.

5) Remove the node from the node list.
Until the node list is empty.

1) Compute the static b-level of each node.
2) Initially, the pool of ready nodes includes only

the entry nodes.
Repeat
3) Calculate the earliest start-time on each

processor for each node in the ready pool. Pick
the node-processor pair that gives the earliest
time using the non-insertion approach. Ties are
broken by selecting the node with a higher
static b-level. Schedule the node to the
corresponding processor.

4) Add the newly ready nodes to the ready node
pool.

Until all nodes are scheduled.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

20

(
DDDD

)
A

20

12
Y
e
a
r

3. Scheduled length ratio (SLR): It is defined as the
ratio of the Makespan of the algorithm to Critical
path values of the DAG.

4. Processor Utilization: (total time taken of Scheduled
tasks/Makespan)*100

 The following parameters are used during
simulation of BNP scheduling algorithms:

Table 2 : The simulation parameters used

The performance comparison of the four BNP
scheduling algorithms (mentioned in Section IV.) are
based upon the four comparison metrics and the
simulation parameters discussed above and the results
are shown graphically.
 Case 1: 35 Task Nodes: From the graphs
shown below it is observed that using 35 task nodes the
MCP algorithm shows the least Makespan and SLR
values with highest SpeedUp and Processor Utilization.

Fig. 6 : Makespan for 35 Nodes

Fig. 7 : Processor Utilization for 35 Nodes

Fig. 8 : Scheduled Length Ratio for 35 Nodes

Fig. 9 : Speedup for 35 Nodes

Case2: 50 Task Nodes: From the graphs shown
below we observed that using 50 task nodes ISH
algorithm shows the least Makespan and SLR values
with highest SpeedUp and Processor Utilization.

Fig. 10 : Makespan for 50 Nodes

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

21

(
DDDD

)
A

20

12Computing
Environment

Homogeneous

Scheduling Algorithm Bounded No. of Processors(BNP):
ISH, HELFET, MCP, ETF

No. of Processors Five (P1,P2,P3,P4,P5)
with equal computational speeds

No. of Tasks 35 task nodes, 50 task nodes,
65 task nodes

Y
e
a
r

Fig. 11: Processor Utilization for 50 Nodes

Fig. 12 : Scheduled Length Ratio for 50 Nodes

Fig. 13 :

Speedup for 50 Nodes

Case3: 65 Task Nodes: Results obtained from
all the algorithms using 65 task nodes are entirely
different as observed with 35 and 50 task nodes.

 The ISH algorithm shows the least Makespan and
SLR values with highest SpeedUp and processor
utilization.

 The MCP and HLFET algorithms show throughout
the same values for Makespan, SLR, SpeedUp and
Processor Utilization.

 The ETF algorithm shows the highest Makespan
and SLR values with lowest SpeedUp and
processor utilization.

Fig. 14 : Makespan for 65 Nodes

Fig. 15 : Processor Utilization for 65 Nodes

Fig. 16 : Scheduled Length Ratio for 65 Nodes

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

22

(
DDDD

)
A

20

12
Y
e
a
r

Fig. 17 : Speedup for 65 Nodes

 CComparative Analysis:

a) Average Makespan: Lesser the makespan, more
efficient is the algorithm. Fig.18 shows the average
Makespan of the all 4 algorithms with various nodes
cases.

0

10

20

30

40

50

60

70

35 50 65

A v
er

ag
e M

ak
es

pa
n w

ith
 5

Pr
oc

es
so

rs HLFET

MCP

ETF

ISH

Fig.18 : Graph Representation of Average Makespan

It can be clearly observed that:
 With 35 task nodes, the MCP algorithm yields the

best (lowest) average value for Makespan and ISH
algorithm is the worst in this case with highest
makespan value.

 With 50 task nodes, the ISH gives lowest makespan
value and HLFET algorithm gives highest makespan
value.

 With 65 task nodes, again the ISH appears to be
more efficient with lowest makespan and ETF
algorithm gives highest value in this case.

b) Average Processor Utilization: Greater the
processor utilization the more efficient is the
algorithms. Fig.19 shows the Average Processor
Utilization of the all 4 algorithms with various nodes
cases.

0

10

20

30

40

50

60

70

35 50 65

Av
er

ag
e

Pr
oc

es
so

r
U

til
iza

tio
n

Number of Task Nodes

HLFET

MCP

ETF

ISH

Fig.19 : Graph Representation of Average Processor

Utilization

 With 35 tasks the processor utilization is efficient
with MCP algorithm as it gives highest value and the
ISH algorithm is the worst case with lowest
processor utilization rate.

 With 50 tasks, the ISH algorithm tends to be more
efficient than the other algorithms by giving highest
usage value. The HLFET gives lowest value.

 With 65 tasks, the processor utilization is same for
HLFET & MCP algorithm and again ISH is more
efficient with giving highest processor utilization
value. ETF gives lowest value here.

c) Average Scheduled Length Ratio: The lesser the
value of SLR, the lesser is the time taken by the
algorithm to execute the entire task and more
efficient is the algorithm. Fig. 20 provides the details
of SLR values for all the 3 tasks.

0

50

100

150

200

250

35 50 65

Av
er

ag
e

Sc
he

du
le

d
Le

ng
th

 R
at

io

Number Of Task Nodes

HLFET

MCP

ETF

ISH

Fig. 20 : Graph representing SLR of algorithms

 With 35 task nodes, the MCP algorithm gives lowest
SLR value with ISH algorithm giving highest SLR
value.

 With 50 tasks, the ISH shows the lowest SLR value
and HLFET gives highest SLR value.

 With 65 tasks, the ISH has the lesser SLR values
and ETF gives highest value.

d) Average Speedup: Higher the value of Speedup,
more efficient is the algorithm. Fig. 21 shows the
Speedup of the all 4 algorithms with various nodes
cases.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

23

(
DDDD

)
A

20

12
Y
e
a
r

0

50

100

150

200

250

300

350

35 50 65

A
ve

ra
ge

 S
pe

ed
 U

p

Number Of Task Nodes

HLFET

MCP

ETF

ISH

Fig. 21 : Graph representing Speedup of Algorithms

 When the tasks are 35, The MCP algorithm yields
highest Speedup value and ISH gives lowest
speedup.

 With 50 tasks the ISH yields highest Speedup value
and HLFET gives lowest Speedup.

 With 65 tasks, the ISH again yields highest Speedup
value and ETF gives lowest speedup. The Speedup
of ISH leads others.

VI. Conclusion and Future Scope

After Comparative analysis following results
were derived:

 Makespan of MCP algorithm is lowest for 35 task
nodes as compare to others. With 50 and 65 tasks,
ISH gives lowest makespan. HLFET and MCP
remained same for 65 tasks, but ETF showed large
increase.

 The average processor utilization of MCP is highest
for 35 tasks. With 50 and 65 tasks, ISH algorithm
proved to be better than other algorithms. MCP and
HLFET gives similar values for 65 tasks and ETF
showed large drop in utilization rate with 65 tasks.

 SLR for 35 tasks is lowest for MCP algorithm. With
50 and 65 tasks, the ISH was the one with lesser
SLR. The SLR remained almost the same for MCP
and HLFET with 50 and 65 tasks

 Same is the case with Speedup. With 35 tasks MCP
algorithm gives highest value. With 50 and 65 tasks
speedup of MCP and HLFET algorithms was same.
With 50 and 65 tasks again ISH was the algorithm
with higher SpeedUp.

So it can be concluded that for small number of
tasks (35) MCP is the best algorithm but, with increasing
number of tasks (50 & 65) ISH is one of the efficient
algorithm, considering the data gathered using the
scenarios and the performance calculated from them.

Future Scope: A lot of work can be done
considering more case scenarios:
 The number of tasks can be changed to create test

case scenarios.
 Heterogeneous environment can be considered.

 Both Homogenous and Heterogeneous can be
considered.

 More algorithms can be considered and Their
performance with other can be estimated.

 Further elaboration of various techniques like
network topology and communication traffic can
also be considered

References références referencias

1. Droro G. Feitelson, Larry Rudolph, Uwe
Schwiegelshohn, Kenneth C. Sevcik, Parkson Wong
“Theory and Practice in Parallel Job Scheduling”

2. Parneet Kaur, Dheerandra Singh, Gurvinder Singh,
“Analysis Comparison and Performance Evaluation
of BNP Scheduling Algorithm in parallel
Processing”, International journal of Knowledge
engineering.

3. Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu,
“Performance Comparison of Algorithms for Static
scheduling of DAG to Multi-processors”,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.42.8979&rep=rep1&type=pdf

4. T. Hagras, J. Janecek, “Static versus Dynamic List-
Scheduling Performance Comparison”, Acta
Polytechnica Vol. 43 No. 6/2003.

5. Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu,
“Analysis, Evaluation, and Comparison of
Algorithms for Scheduling Task Graphs on Parallel
Processors”, pp 1087-4087, IEEE 1996.

6. Kwok Y., Ahmed I., ”Benchmarking the Task Graph
Scheduling Algorithms”, Proc. IPPS/SPDP, 1998

7. Barney, Blaise. "Introduction to Parallel Computing".
Lawrence Livermore National Laboratory.

8. K.Hwang, “Advanced Computer Architecture;
Parallelism, Scalability, Programmability”, Mc Graw
Hill, NY, 1993

9. Manik Sharma, Dr. Gurdev Singh and Harsimran
Kaur “A STUDY OF BNP PARALLEL TASK
SCHEDULING ALGORITHMS METRIC’S FOR
DISTRIBUTED DATABASE SYSTEM” International
Journal of Distributed and Parallel Systems (IJDPS)
Vol.3, No.1, January 2012

10. J.K. Lenstra, A.H.G.Rinnoy Kan “An Introduction to
multiprocessor Scheduling Algorithm” Questi Vol 5,
March 1981.

11. T.L. Adam, K. Chandy and J. Dickson, “A
Comparison of List Scheduling for Parallel
Processing Systems,” Communications of the ACM,
17, No. 12, pp. 685-690, Dec.1974.

12. Yu-Kwong Kwok, Ishfaq Ahmad “Static Scheduling
Algorithm for Allocating Directed Task Graph to
multiprocessors”, ACM Computing Surveys, Vol. 31,
no. 4, December 1999.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

24

(
DDDD

)
A

20

12
Y
e
a
r

	Analytical Performance Comparison of BNP SchedulingAlgorithms
	Author's
	Keywords
	I. Introduction
	II. Task scheduling problem & modelused
	a) The DAG Model
	b) Basic Techniques in DAG Scheduling

	III. A classification of dag schedulingalgorithms
	IV. Bnp scheduling algorithms
	V. Performance Results andComparison
	VI. Conclusion and Future Scope
	References références referencias

