
© 2012 I.Elizabeth shanthi, v.vidhya rani. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 2 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - Associative rule mining is defined as the task that deals with the extraction of hidden knowledge

and frequent patterns from very large databases. Traditional associative mining processes are iterative, time

consuming and storage expensive. To solve these processes, a way of representation that reduces this size

and at the same time maintains all the important and relevant data needed to extract the desired knowledge

from transaction databases is needed. This paper proposes a method that merges the transactions in the

transaction database and uses FP-Growth algorithm for mining associative knowledge is presented. The

experimental results in terms of compression ratio, both in terms of storage required and number of

transactions, prove that the proposed algorithm is an improved version to the existing systems.

Keywords : Associative Rule Mining, Compact Transactional Database, FP-Growth, FP-Tree, Frequent Pattern

Generation, Merge Transactions.

GJCST Classification: H.2.8,H.2.4

An Enhanced Approach for Compress Transaction Databases

 Strictly as per the compliance and regulations of:

An Enhanced Approach for Compress
Transaction Databases

I.Elizabeth shanthi α, v.vidhya rani Ω

Abstract - Associative rule mining is defined as the task that
deals with the extraction of hidden knowledge and frequent
patterns from very large databases. Traditional associative
mining processes are iterative, time consuming and storage
expensive. To solve these processes, a way of representation
that reduces this size and at the same time maintains all the
important and relevant data needed to extract the desired
knowledge from transaction databases is needed. This paper
proposes a method that merges the transactions in the
transaction database and uses FP-Growth algorithm for
mining associative knowledge is presented. The experimental
results in terms of compression ratio, both in terms of storage
required and number of transactions, prove that the proposed
algorithm is an improved version to the existing systems.
Keywords : Associative Rule Mining, Compact
Transactional Database, FP-Growth, FP-Tree, Frequent
Pattern Generation, Merge Transactions.

I. INTRODUCTION

he beginning of the twenty first century has
brought considerable advances in the field of
computer-based information retrieval systems,

where data with “hidden asset” called “knowledge” is
quickly becoming the most valuable resource.
Associative rule mining (Park et al., 1995; Agrawal et al.,
1996) is defined as the task that deals with the
extraction of hidden knowledge and frequent patterns
from very large databases. Mining frequent patterns has
become a focused topic in data mining research with
the development of numerous interesting algorithms for
mining association, partial periodicity, constraint-based
frequent mining, associative classification and emerging
patterns.

The popular area of application is the market
basket analysis, which studies the buying habits of
customers by searching for sets of items that frequently
appear together. Associations among items of the same
transaction lead to correlation and identification of
frequent itemsets (Gionis et al., 2007). Traditional
associative mining processes are iterative, time
consuming and storage expensive. Once the database
becomes huge, it increases the number of Input/Output
(I/O) scans and also reduces space complexity. In order
to increase the performance of these applications,
methods that can present data in a compact form is
becoming crucial. The current need is to develop way
of representation which reduces this size so that it can
reside in the main memory and at the same time
maintains all the important and relevant data needed to
extract the desired knowledge from transactional
database.

This paper analyzes algorithms that produce

compact databases for knowledge discovery from large
transaction databases like market basket database and
web log databases. From these compact
representations, association rule mining is applied to
mine frequent patterns. In order to obtain a compact
representation of the database Dai et al.

(2008)
proposed an algorithm called M2TQT which uses a
‘Merge Transactions Scheme (MTS)’ to reduce storage
requirement during analysis. The algorithm is efficient in
two manners, namely (i) reduces database size and
prunes irrelevant transactions, which saves time and (ii)
Reduces the I/O time required. However, it has
disadvantages namely (i) Although some rules can be
mined from the new transactions, it still needs to scan
the database again to verify the result. This is because
the data mining step produces potentially ambiguous
results. (ii) The compressed database is reversible to its
original form (iii) It has the serious problem of scanning
the database multiple times, which results in high cost
of re-checking the frequent itemsets and (iv) Processing
time is still high when compared to uncompressed
mining algorithms. To solve the above difficulties, this
work enhances the M2TQT in the following manner.

•

Develop an algorithm to recover the original
transaction from the compressed database.

•

M2TQT uses apriori-like algorithm which is main
culprit for the multiple database scans. The
present research work proposes the use of FP-
Tree algorithm to avoid multiple scans of the
database

The rest of the paper is organized as follows.

Section 2 discusses the various existing methods
available to obtain a representation of transaction
databases. Section 3 presents the proposed method.
The experimental results are discussed in Section 4,
while Section 5 concludes the work with future research
directions.

 II.

EXISTING METHODS

 A compact representation of transaction
database can be derived in three ways. They are (i)
Compressing transaction database (ii) Transforming a
transaction database to a compact representation (iii)
Partitioning transactions in transaction database and (iv)

T

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

49

 Ja

nu
ar
y

 2
01

2

Merging transactions in transaction database. This
section briefly explains each of these techniques.

a)

Compressing transaction database

Data compression is a technique that has been
widely used to save storage requirement of transactional
database in secondary devices. A simple
characterization of data compression is that it involves
transforming a string of characters in some
representation (such as ASCII) into a new string (of bits,
for example) which contains the same information but
whose length is as small as possible. There are two
fundamentally different types of data compression:
lossless and lossy. A lossy compression technique
removes unwanted data which eventhough degrades
the output quality maintains overall important
information. Lossless compression technique, on the
other hand, attempts to compress data while retaining
all information. Examples include,

GZIP, BZIP, BOA and
PKZip. File systems like NTFS are also used. The main
disadvantage of these techniques is that they have to be
decompressed before analysis. So, even though the
problem of storage requirement is solved, the high
transfer rate needed still exists. Thus the problem area
still remains unsolved.

b)

Transforming a transaction database to a compact
representation

Another method used is to use compact data
structures to represent the transactions in the database.
Prefix tree (Bayardo, 1998) is an ordered tree data
structure that is used to store an associative array where
the keys are usually strings (items in transaction
database). Unlike a binary search tree, no node in the
tree stores the key associated with that node; instead,
its position in

the tree shows what key it is associated
with. All the descendants of a node have a common
prefix of the string associated with that node, and the
root is associated with the empty string. Values are
normally not associated with every node, only with
leaves and some inner nodes that correspond to keys of
interest, thus reducing same required to store a
database. Another compression approach using data
structure is to “unravel” the data structure into a single
byte array (Germann et al., 2009). This approach
eliminates the need for node pointers which reduces the
memory requirements substantially and makes memory
mapping possible which allows the virtual memory
manager to load the data into memory very efficiently.
Packing the trie (Liang, 1983) is another compression
approach used with prefix trees. Liang describes a
space-efficient implementation of a sparse packed trie
applied to hyphenation, in which the descendants of
each node may be interleaved in memory. The FP-
growth method uses another compact data

structure,
FP-tree (Frequent Pattern tree), to represent the
conditional databases. FP-tree is a combination of prefix
tree structure and node-links (Han et al., 2000).

All these algorithms efficiently reduce the both
the secondary and primary storage requirements. The
major disadvantage here is the number of scans

required during the construction of tree and during
frequent pattern mining process.

c)

Partitioning transactions in transaction database

A partition is a division of a logical database or
its constituting elements into distinct independent parts.
Database partitioning is normally done for
manageability, performance or availability reasons.
Partitioning databases increases performance of regular
transactional databases which are done by either
building separate smaller databases (each with its own
tables, indices, and transaction logs), or by splitting
selected attributes of the itemsets. Two types of
partitioning algorithms exist. They are horizontal and
vertical partitioning. Horizontal partitioning involves
putting different rows into different tables. Vertical
partitioning involves creating tables with fewer columns
and using additional tables to store the remaining
columns. Current high end database analysis systems
provide different criteria to split the database. Some
common criteria are range partitioning, list partitioning,
hash partitioning

and

composite partitioning. All these
partitioning schemes, however, require additional
computations and while finding frequent patterns, the
inter-relationship association between partitions might
be missed.

d)

Merging transactions in transaction database

Merging transaction approach to create
compact transaction database is used as a
preprocessing step prior to frequent pattern generation.
In this technique, several transactions are merged
together to create a new transactional database, which
has the following desirable properties.

•

Compact representation of the
transactional database reduces the
problem of memory requirement (both
secondary and primary)

•

Reduce processing time and I/O time for
identifying frequent itemsets and
association rules

•

Frequent data mining can be performed
over the compact representation without
losing any mining accuracy

•

Can be decompressed to get the original
database at any time

As this is the method that is used by this
work, the detailed description of the same is
provided in the following Section.

III.

PROPOSED METHOD

An Enhanced Approach for Compress Transaction Databases
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

50

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

This section presents the M2TQT along with
the enhanced M2TQT algorithm.

a) M 2TQT algorithm
The 2 usesM TQT Transaction algorithm a merge

Scheme (MTS) for producing a compact representation
of the transaction database. The MTS

is a two-step
procedure. Step 1 :

Preprocessing and Step 2 :
Frequent Pattern Mining. The preprocessing step, uses
lexical symbols, to first transform the original raw data
into a new data representation. This step is based on
the assumption that items in a transaction are sorted in
lexicographic order. The second step of preprocessing
then sorts all the transactions, groups them and then
merges each group into a new transaction. The details
on the algorithmic details of merging transaction
algorithm, please refer to Dai et al.

(2008).

b)

Enhanced M2tqt (E-M2tqt) Algorithm

The general process of E-M2TQT

is shown in
Figure 1. It consists of three steps, namely, preprocess,
compressing database and frequent pattern mining. The
proposed method focus on the problems of repeated
database scans and huge number of candidate
itemsets generated. The E-M2TQT

algorithm takes
advantage of the FP-Tree data structure of FP-Growth
algorithm to solve the first problem and the second
problem is solved by using a quantification table. The
usage of quantification table allows the algorithm to
retrieve the original database from the compressed form
and prunes irrelevant candidate itemsets, which further
reduce the size of the database. Reduction of database
indirectly helps to reduce the time required by the
mining process. Figure 2 presents the compression
algorithm.

The algorithm begins by identifying related
transactions and then merging these related
transactions together, for which a quantification table is
constructed. A transaction T1

is said to be related to
transaction T2,

if T1

is a subset of T2

or if T2 is a
superset of T2.

The distance between T1 and T2 is
calculated as the difference between the items of two
transactions. For example, if T1 = {ABCD}

and T2 =
{ABC},

the difference (D) between T1

and T2

is 1.
Similarly, if T1 = {A}

and T2 = {C},

the D is given as 2.

The next step is the creation of quantification
table, which is used to record details regarding the
transaction relationship. Since the items in a transaction
appear in a lexicographical order, the process starts
from the left-most item and is termed as a

prefix-item.
After finding the length of the input transaction (n), for
varying lengths (L = 1 .. n),

the frequency of count of
each itemset appearing in the transactions are
recorded. The quantification table has details for each
length where information

regarding the prefix-item and
its frequency count is recorded. Consider for example a
transaction database with five items, as shown in Table
I.

The quantification process begins by
considering the first transaction, {ABCDE} with TID

100
and length = 5. Consider each item one by one in the
transaction. Initially, For A, all the five counters L5

to L1

are incremented by 1. Second, for B, the counters L4

to
L1

are incremented. Similarly, for C, counters L3

to L1

are incremented, for D, L2

to L1 is incremented and
finally, for E, L1 is incremented by 1. Now
considering the next transaction {CDE}

with TID

200 and leng = 3.

Figure 1 : Proposed Algorithm

An Enhanced Approach for Compress Transaction Databases

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

51

 Ja

nu
ar
y

 2
01

2

Original Transactional
Database

Data Transformation

Merge Transactions

Merging Algorithms

Pruning Process

FP-Growth Algorithm

Frequent Pattern
Generation

Preprocessing

Compression

Frequent Pattern Mining

Figure 2 :

Compression Algorithm

The counters L3 to L1 is incremented by 1 for
C, L2 and L1 are incremented for D and for E, L1

is
incremented. Thus, L3

has C2, L2

has D2

and L1 has
E2.

Finally, for the last transaction, {ACD} (with length 3
and TID 300), A1

is changed to A2

in L3, L2

and L1, C2

is changed to C3 in L2

and L1

and D2

is changed to D3

in L1. The final result is shown in Table II. Now,
considering the minimum support, all the candidate
itemsets whose counters is less than the minimum
support can be pruned out. After pruning, the next step
performs the merging process. The merging process is
explained with an example below.

Table I :

Sample Database

Let d = 1. Consider two transactions {BCG}

and
{BG}. After merging these two transactions, the relation
transaction group will be {BCG=2.1.2}.

Consider
another transaction {B}. Compute relation distance for
{BCG=2.1.2}

and {B}. Since the relation distance is 1,
{B}

is merged into the relation transaction group and
thus becomes {BCG=3.1.2}. The next step calculates
the support count of items using a minimum-frequency
function. This function takes as input the original
transactions and merged transactions and returns the
minimum number of itemsets in a transaction. For
example, let C2

be {BC, AE}

and transaction T*

be
{{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE},
{C}}.

The minimum frequency function returns 2 for
both BC

(0+1+0+1+0=2)

and AE (1+0+0+1+0=2),

as the
number of itemsets in the transactions. These values
and the transaction set T*

is used by FP-growth
algorithm to generate frequent itemsets and association
rules.

Table II :

Quantification Table

c)

Decompression Algorithm

The main requirement of any compression
algorithm that produces a compact representation of the
original transaction database is to reproduce the original
database without any loss. The proposed algorithm
satisfies this requirement also.

The algorithm used for
this purpose is shown in Figure 3.

An Enhanced Approach for Compress Transaction Databases
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

52

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

For I = 1 to number of transactions
Create Quantification Table

Quantification table records the length of the transaction database (n) and records the
count of each itemset appearing in the transaction under each length (L1 – has single
length, L2 – has two itemset, …)

Compute length of transaction using quantization table
Calculate relation distance between transactions and relevant transaction groups
Relation distance is defined as number of different items between two transactions.
The smallest transaction of a relevant transaction group is grouped with the longest transaction of
the same relevant transaction group.
For d = 1 to n-1

Consider a transaction, if the relation distance between transaction and merged group = a
distance 'd', then merge the transactions.

End for
End for

TID Transactions
100 ABCDE
200 CDE
300 ACD

L5 L4 L3 L2 L1
A1 A1 A2 A2 A2

B1 B1 B1 B1
C2 C3 C3

D2 D3
E2

Figure 3 :

Decompression Algorithm

The decompression algorithm is the reverse
process of compression algorithm and is explained
using an example merged transaction. Consider a
merged transaction <ABCD>=3.1.4.2

which has the
smallest count of 1 (that is, the count of transaction
<ABCD> is 1).

Next, decrease the count of each item in
<ABCD> by 1 to obtained <ACD>=3-1. 4-1. 2-1 = 2.3.1.

Item B is removed since it has a zero count. Repeat this
process, to get, <AC>==2-1.3-1=1.2. Finally, <C>=2-1=1.
Combining the results we get the decompressed version
of the merged transaction <ABCD>=3.1.4.2

as {ABCD},
{ACD}, {AC}, {C}.

IV.

EXPERIMENTAL RESULTS

The efficiency of the proposed algorithm was
tested using various test data and performance metrics.
The proposed model was tested using synthetic dataset
as proposed by Agarwal and Srikanth (1994). These
transactions mimic the actual transactions in a retail
environment. Four synthetic datasets, namely,
T5I4D50K, T10I8D100K, T20I10D100K and
T20I12D200K

were used during experimentation. The
proposed algorithm

was analyzed using compression
ratio in terms of speed, number of transactions and
storage required. The average size of the potentially
large itemset is taken as 5 and minimum support is
varied from 5% to 25% in steps of five. The proposed
algorithm was compared with M2TQT. The algorithms
were developed in JAVA

with NetBeans 5.5 as front
end. All the experiments were conducted on a Pentium
IV machine with 512 MB RAM.

a)

Compression Ratio with Respect to Storage Space
Saved

The compression result in terms of storage size
is shown in Figure 4 for the selected four datasets.

Figure 4 :

Compression Ratio For Storage Space Saved

From the results, it could be seen that while
both the algorithms are efficient in generating a compact
version of the original database, the enhanced M2TQT

shows significant improvement in terms of storage size
reduction. The results also show that the E-M2TQT

algorithm scales with different sized datasets. An
interesting trend observed is that the maximum amount
of compression achieved was when the minimum
support is around 15% after which a slow decline in
compression rate is envisaged. This means that the
maximum performance of the algorithm can be
achieved by setting the support value to 15%. Another
pattern observed with respect to compression ratio is
the relation between size of dataset and average
compression achieved. As the size of the dataset

An Enhanced Approach for Compress Transaction Databases

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

53

 Ja

nu
ar
y

 2
01

2

1. Let merged transaction be expressed as <s1, s2… , sk .., sn-1,sn>= c1, c2…ck.. cn-1.cn, where s1,
s2… , sk , sn-1, sn are items and c1, c2…, ck, cn-1, cn are their corresponding support counts.

2. Identify the smallest count in ci (i=1..n) whose transaction is the longest transaction. Thus the count
of longest transaction is ck. Thus the transaction { s1, s2… , sk , sn-1, sn } is recovered and the
merged transaction becomes <s1, s2… , sn-1, sn>= c1-ck.c2-ck… cn-1-ck. cn-ck.

3. Remove items with a zero count from the merged transaction.
4. Repeat the above process to find the next longest transaction in the merged transaction until no

count left.

increases the compression efficiency decreases.
However, the efficiency gain is consistent with all
databases which imply that the enhanced approach is
better than the traditional algorithm. Thus, the results
show that the introduction of FP-Growth algorithm to
M2TQT provides effective data compression.

b) Compression Ratio with Respect to Number of
Transactions

Figure 5 shows the compactness efficiency in
terms of number of transactions. These experiments
were conducted to evaluate the performance of the
pruning algorithm introduced in the merging transaction
step of the compression algorithm.

T5I4D50K

0
0.05
0.1

0.15
0.2

5 10 15 20 25
Minimum Support

C
R

T10I8D100K

0

0.05

0.1

0.15

5 10 15 20 25
Minimum Support

C
R

The results of compression ratio with respect to
number of transactions again show that the Enhanced
M2TQT algorithm is an improved version. While
considering various minimum support, the results shows
that the minimum support and compression ratio are
directly proportional. This is evident from the increasing
trend line obtained. While analyzing the scalability of the
algorithm, the trend obtained shows that the efficiency is
not affected by different sized datasets and remains
consistent between 23% and 25%. In conclusion, it
could be seen that the pruning algorithm with merging
transaction scheme has improved the E-M2TQT

algorithm by 25.32%

on average.

c)

Execution Time

Table III shows the average execution time of
each dataset along with the efficiency gain obtained with
respect to execution speed. The speed is calculated in
seconds.

 Average Execution Speed (Seconds)

DATASET

M2TQT

E-M2TQT

EFFICIENCY (%)

T5I4D50K

1.692

0.970

42.67

T10I8D100K

1.872

1.114

40.49

T20I10D200K

2.222

1.560

29.79

T20I12D300K

2.312

1.840

20.42

As with compression ratio, the E-M2TQT
algorithm shows an average 33.34% speed efficiency
with respect to M2TQT algorithm. This shows that the
speed efficiency has improved in the enhanced version.
As expected, the algorithm takes more time to execute
large sized datasets than small sized datasets. The
small sized datasets (T5I4D50K

and T10I8D100K)
shows maximum speed efficiency of 42.67%

and
40.49%,

while it decreased to 29.79%

and 20.42%

with
large sized datasets (T20I10D200K

and T20I12D300K).

These results indicate that the performance of
E-M2TQT

algorithm in terms of compactness achieved
with respect to storage size, number of transactions and
execution speed with different datasets and different
minimum support is efficient when compared with to its
existing version.

V.

CONCLUSION

This research work proposed an enhanced
transaction database compacting algorithm for frequent

mining. Experiments were conducted to analyze the
performance of the algorithm. The results showed high
performance and there can be reliably used in various
applications where pattern mining is needed. Moreover,
the speed of the algorithms further makes it suitable for
online applications. In future, plans for including
frequent pattern-based clustering algorithms and
partitioning algorithm to further improve the efficiency of
the pattern-mining algorithm are considered.

REFERENCES

REFERENCES

REFERENCIAS

1.

Park, J.S., Chen, M.S. and Yu, P.S. (1995) An
effective hash-based algorithm for mining
association rules. Proceeding of the 1995 ACM-
SIGMOD International Conference on Management
of Data (SIGMOD’95), San Jose, CA, Pp 175–186

2.

Agrawal R. and Shafer, J.C. (1996) Parallel mining of
association rules: design, implementation and
experience, IEEE Transactions Knowledge Data
Engineering, Vol. 8, Pp.962–969.

3.

Gionis, A., Mannila, H., Mielikainen, T. and
Tsaparas, P. (2007) Assessing Data Mining Results
via Swap Randomization, ACM Transactions on
Knowledge Discovery from Data (TKDD), Vol. 1 ,
Issue 3, Article No. 14.

4.

Dai, J.Y., Yang, D.L., Wu, J. and Hung, M.C. (2008)
An Efficient Data Mining Approach on Compressed
Transactions, International Journal of Electrical and
Computer Engineering, Vol. 3, No. 2, Pp. 76-83

5.

Bayardo, R.J. (1998) Efficiently mining long patterns
from databases, Proceeding of the 1998 ACM-

An Enhanced Approach for Compress Transaction Databases
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

54

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Table III :

SIGMOD International Conference on Management
of Data (SIGMOD’98), Seattle, WA, Pp 85–93.

6. Germann, U., Joanis, E. and Larkin, S. (2009) Tightly
packed tries: how to fit large models into memory
and make them load fast, too, ACL Workshops:
Proceedings of the Workshop on Software
Engineering, Testing and Quality Assurance for
Natural Language Processing, Association for
Computational Linguistics, Pp. 31–39.

7. Liang, F.M. (1983). Word Hy-phen-a-tion By Com-
put-er, Doctor of Philosophy Thesis, Stanford
University.

8. Han, J., Pei, J. and Yin, Y. (2000) Mining frequent
patterns without candidate generation, Proceeding
of the 2000 ACM-SIGMOD International Conference
on Management of Data (SIGMOD’00), Dallas, TX,
Pp. 1–12.

9. Agrawal, R. and Srikant, R. (1994) Fast Algorithms
for Mining Association Rules, Proceedings of the
20th International Conference on Very Large Data
Bases, Pp. 487-499.

Figure 5 : Compression Ratio For No. Of Transaction

T20I10D100K

0
0.05
0.1

0.15
0.2

5 10 15 20 25
Minimum Support

C
R

T20I12D200K

0

0.05

0.1

0.15

5 10 15 20 25
Minimum Support

C
R

	An Enhanced Approach for CompressTransaction Databases
	Author's
	Keywords :
	I. INTRODUCTION
	II. EXISTING METHODS
	a) Compressing transaction database
	b) Transforming a transaction database to a compactrepresentation
	c) Partitioning transactions in transaction database
	d) Merging transactions in transaction database

	III. PROPOSED METHOD
	a) M 2TQT algorithm
	b) Enhanced M2tqt (E-M2tqt) Algorithm
	c) Decompression Algorithm

	IV. EXPERIMENTAL RESULTS
	a) Compression Ratio with Respect to Storage SpaceSaved
	b) Compression Ratio with Respect to Number ofTransactions
	c) Execution Time

	V. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

