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Abstract - Associative rule mining is defined as the task that deals with the extraction of hidden knowledge 

and frequent patterns from very large databases. Traditional associative mining processes are iterative, time 

consuming and storage expensive. To solve these processes, a way of representation that reduces this size 

and at the same time maintains all the important and relevant data needed to extract the desired knowledge 

from transaction databases is needed. This paper proposes a method that merges the transactions in the 

transaction database and uses FP-Growth algorithm for mining associative knowledge is presented. The 

experimental results in terms of compression ratio, both in terms of storage required and number of 

transactions, prove that the proposed algorithm is an improved version to the existing systems.  
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Abstract - Associative rule mining is defined as the task that 
deals with the extraction of hidden knowledge and frequent 
patterns from very large databases. Traditional associative 
mining processes are iterative, time consuming and storage 
expensive. To solve these processes, a way of representation 
that reduces this size and at the same time maintains all the 
important and relevant data needed to extract the desired 
knowledge from transaction databases is needed.  This paper 
proposes a method that merges the transactions in the 
transaction database and uses FP-Growth algorithm for 
mining associative knowledge is presented. The experimental 
results in terms of compression ratio, both in terms of storage 
required and number of transactions, prove that the proposed 
algorithm is an improved version to the existing systems.  
Keywords : Associative Rule Mining, Compact 
Transactional Database, FP-Growth, FP-Tree, Frequent 
Pattern Generation, Merge Transactions. 

I. INTRODUCTION 

he beginning of the twenty first century has 
brought considerable advances in the field of 
computer-based information retrieval systems, 

where data with “hidden asset” called “knowledge” is 
quickly becoming the most valuable resource. 
Associative rule mining (Park et al., 1995; Agrawal et al., 
1996) is defined as the task that deals with the 
extraction of hidden knowledge and frequent patterns 
from very large databases. Mining frequent patterns has 
become a focused topic in data mining research with 
the development of numerous interesting algorithms for 
mining association, partial periodicity, constraint-based 
frequent mining, associative classification and emerging 
patterns.  

The popular area of application is the market 
basket analysis, which studies the buying habits of 
customers by searching for sets of items that frequently 
appear together. Associations among items of the same 
transaction lead to correlation and identification of 
frequent itemsets (Gionis et al., 2007). Traditional 
associative mining processes are iterative, time 
consuming and storage expensive. Once the database 
becomes huge, it increases the number of Input/Output 
(I/O) scans and also reduces space complexity. In order 
to increase the performance of these applications, 
methods that can present data in a compact form is 
becoming crucial.  The current need is to develop way 
of representation which reduces this size so that it can 
reside in the main memory and at the same time 
maintains all the important and relevant data needed to 
extract the desired knowledge from transactional 
database.  

 
This paper analyzes algorithms that produce 

compact databases for knowledge discovery from large 
transaction databases like market basket database and 
web log databases. From these compact 
representations, association rule mining is applied to 
mine frequent patterns. In order to obtain a compact 
representation of the database Dai et al.

 

(2008) 
proposed an algorithm called M2TQT which uses a 
‘Merge Transactions Scheme (MTS)’ to reduce storage 
requirement during analysis. The algorithm is efficient in 
two manners, namely (i) reduces database size and 
prunes irrelevant transactions, which saves time and (ii) 
Reduces the I/O time required. However, it has 
disadvantages namely (i) Although some rules can be 
mined from the new transactions, it still needs to scan 
the database again to verify the result. This is because 
the data mining step produces potentially ambiguous 
results. (ii) The compressed database is reversible to its 
original form (iii) It has the serious problem of scanning 
the database multiple times, which results in high cost 
of re-checking the frequent itemsets and (iv) Processing 
time is still high when compared to uncompressed 
mining algorithms. To solve the above difficulties, this 
work enhances the M2TQT in the following manner.

 
•

 

Develop an algorithm to recover the original 
transaction from the compressed database.

 
•

 

M2TQT uses apriori-like algorithm which is main 
culprit for the multiple database scans. The 
present research work proposes the use of FP-
Tree algorithm to avoid multiple scans of the 
database

 
The rest of the paper is organized as follows. 

Section 2 discusses the various existing methods 
available to obtain a representation of transaction 
databases. Section 3 presents the proposed method. 
The experimental results are discussed in Section 4, 
while Section 5 concludes the work with future research 
directions.

 II.

 

EXISTING METHODS

 A compact representation of transaction 
database can be derived in three ways. They are (i) 
Compressing transaction database (ii) Transforming a 
transaction database to a compact representation (iii) 
Partitioning transactions in transaction database and (iv) 

T 
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Merging transactions in transaction database. This 
section briefly explains each of these techniques.



 

a)

 

Compressing transaction database

 

Data compression is a technique that has been 
widely used to save storage requirement of transactional 
database in secondary devices. A simple 
characterization of data compression is that it involves 
transforming a string of characters in some 
representation (such as ASCII) into a new string (of bits, 
for example) which contains the same information but 
whose length is as small as possible. There are two 
fundamentally different types of data compression: 
lossless and lossy. A lossy compression technique 
removes unwanted data which eventhough degrades 
the output quality maintains overall important 
information. Lossless compression technique, on the 
other hand, attempts to compress data while retaining 
all information. Examples include,

 

GZIP, BZIP, BOA and 
PKZip. File systems like NTFS are also used.  The main 
disadvantage of these techniques is that they have to be 
decompressed before analysis. So, even though the 
problem of storage requirement is solved, the high 
transfer rate needed still exists. Thus the problem area 
still remains unsolved.

 

b)

 

Transforming a transaction database to a compact 
representation

 

Another method used is to use compact data 
structures to represent the transactions in the database. 
Prefix tree (Bayardo, 1998) is an ordered tree data 
structure that is used to store an associative array where 
the keys are usually strings (items in transaction 
database). Unlike a binary search tree, no node in the 
tree stores the key associated with that node; instead, 
its position in

 

the tree shows what key it is associated 
with. All the descendants of a node have a common 
prefix of the string associated with that node, and the 
root is associated with the empty string. Values are 
normally not associated with every node, only with 
leaves and some inner nodes that correspond to keys of 
interest, thus reducing same required to store a 
database. Another compression approach using data 
structure is to “unravel” the data structure into a single 
byte array (Germann et al., 2009). This approach 
eliminates the need for node pointers which reduces the 
memory requirements substantially and makes memory 
mapping possible which allows the virtual memory 
manager to load the data into memory very efficiently. 
Packing the trie (Liang, 1983) is another compression 
approach used with prefix trees. Liang describes a 
space-efficient implementation of a sparse packed trie 
applied to hyphenation, in which the descendants of 
each node may be interleaved in memory.  The FP-
growth method uses another compact data

 

structure, 
FP-tree (Frequent Pattern tree), to represent the 
conditional databases. FP-tree is a combination of prefix 
tree structure and node-links (Han et al., 2000). 

 

All these algorithms efficiently reduce the both 
the secondary and primary storage requirements. The 
major disadvantage here is the number of scans 

required during the construction of tree and during 
frequent pattern mining process.

 

c)

 

Partitioning transactions in transaction database 

 

A partition is a division of a logical database or 
its constituting elements into distinct independent parts. 
Database partitioning is normally done for 
manageability, performance or availability reasons. 
Partitioning databases increases performance of regular 
transactional databases which are done by either 
building separate smaller databases (each with its own 
tables, indices, and transaction logs), or by splitting 
selected attributes of the itemsets.  Two types of 
partitioning algorithms exist. They are horizontal and 
vertical partitioning. Horizontal partitioning involves 
putting different rows into different tables. Vertical 
partitioning involves creating tables with fewer columns 
and using additional tables to store the remaining 
columns. Current high end database analysis systems 
provide different criteria to split the database. Some 
common criteria are range partitioning, list partitioning, 
hash partitioning

 

and

 

composite partitioning. All these 
partitioning schemes, however, require additional 
computations and while finding frequent patterns, the 
inter-relationship association between partitions might 
be missed.

 

d)

 

Merging transactions in transaction database

 

Merging transaction approach to create 
compact transaction database is used as a 
preprocessing step prior to frequent pattern generation. 
In this technique, several transactions are merged 
together to create a new transactional database, which 
has the following desirable properties.

 

•

 

Compact representation of the 
transactional database reduces the 
problem of memory requirement (both 
secondary and primary)

 

•

 

Reduce processing time and I/O time for 
identifying frequent itemsets and 
association rules

 

•

 

Frequent data mining can be performed 
over the compact representation without 
losing any mining accuracy

 

•

 

Can be decompressed to get the original 
database at any time 

 

As this is the method that is used by this 
work, the detailed description of the same is 
provided in the following Section. 

 

III.

 

PROPOSED METHOD

 

An Enhanced Approach for Compress Transaction Databases
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
 V

ol
um

e 
X
II
 I
ss
ue

  
II
  

V
er
si
on

 I
 

  
  
   

  

50

  
Ja
nu

ar
y 

 2
01

2

©  2012 Global Journals Inc.  (US)

This section presents the M2TQT along with 
the enhanced M2TQT algorithm.

a) M 2TQT algorithm
The 2 usesM TQT Transaction algorithm a merge



 

   

Scheme (MTS) for producing a compact representation 
of the transaction database. The MTS

 

is a two-step 
procedure. Step 1 :

 

Preprocessing  and Step 2 : 
Frequent Pattern Mining. The preprocessing step, uses 
lexical symbols, to first transform the original raw data 
into a new data representation. This step is based on 
the assumption that items in a transaction are sorted in 
lexicographic order. The second step of preprocessing 
then sorts all the transactions, groups them and then 
merges each group into a new transaction. The details 
on the algorithmic details of merging transaction 
algorithm, please refer to Dai et al.

 

(2008). 

 

b)

 

Enhanced M2tqt (E-M2tqt) Algorithm

 

The general process of E-M2TQT

 

is shown in 
Figure 1. It consists of three steps, namely, preprocess, 
compressing database and frequent pattern mining. The 
proposed method focus on the problems of repeated 
database scans and huge number of candidate 
itemsets generated. The E-M2TQT

 

algorithm takes 
advantage of the FP-Tree data structure of FP-Growth 
algorithm to solve the first problem and the second 
problem is solved by using a quantification table. The 
usage of quantification table allows the algorithm to 
retrieve the original database from the compressed form 
and prunes irrelevant candidate itemsets, which further 
reduce the size of the database. Reduction of database 
indirectly helps to reduce the time required by the 
mining process. Figure 2 presents the compression 
algorithm.

 

The algorithm begins by identifying related 
transactions and then merging these related 
transactions together, for which a quantification table is 
constructed. A transaction T1

 

is said to be related to 
transaction T2,

 

if T1

 

is a subset of T2

 

or if T2 is a 
superset of T2.

 

The distance between T1 and T2 is 
calculated as the difference between the items of two 
transactions. For example, if T1 = {ABCD}

 

and T2 = 
{ABC},

 

the difference (D) between T1

 

and T2

 

is 1. 
Similarly, if T1 = {A}

 

and T2 = {C},

 

the D is given as 2.

 

The next step is the creation of quantification 
table, which is used to record details regarding the 
transaction relationship. Since the items in a transaction 
appear in a lexicographical order, the process starts 
from the left-most item and is termed as a

 

prefix-item. 
After finding the length of the input transaction (n), for 
varying lengths (L = 1 .. n),

 

the frequency of count of 
each itemset appearing in the transactions are 
recorded. The quantification table has details for each 
length where information

 

regarding the prefix-item and 
its frequency count is recorded. Consider for example a 
transaction database with five items, as shown in Table 
I.

 

The quantification process begins by 
considering the first transaction, {ABCDE} with TID

 

100 
and length = 5. Consider each item one by one in the 
transaction. Initially, For A, all the five counters L5

 

to L1

 

are incremented by 1. Second, for B, the counters L4

 

to 
L1

 

are incremented. Similarly, for C, counters L3

 

to L1 

are incremented, for D, L2

 

to L1 is incremented and 
finally, for E, L1 is incremented by 1. Now 
considering the next transaction {CDE}

 

with TID

 

200 and leng = 3.

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Proposed Algorithm
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Original Transactional 
Database

Data Transformation

Merge Transactions

Merging Algorithms

Pruning Process

FP-Growth Algorithm

Frequent Pattern 
Generation

Preprocessing

Compression

Frequent Pattern Mining



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 :

 

Compression Algorithm

 
 

The counters L3 to L1 is incremented by 1 for 
C, L2 and L1 are incremented for D and for E, L1

 

is 
incremented. Thus, L3

 

has C2, L2

 

has D2

 

and L1 has 
E2.

 

Finally, for the last transaction, {ACD} (with length 3 
and TID 300), A1

 

is changed to A2

 

in L3, L2

 

and L1, C2

 

is changed to C3 in L2

 

and L1

 

and D2

 

is changed to D3

 

in L1. The final result is shown in Table II. Now, 
considering the minimum support, all the candidate 
itemsets whose counters is less than the minimum 
support can be pruned out. After pruning, the next step 
performs the merging process. The merging process is 
explained with an example below.

 
 

Table I :

 

Sample Database

 
 
 
 
 
 
 
 
 
 

Let d = 1. Consider two transactions {BCG}

 

and 
{BG}. After merging these two transactions, the relation 
transaction group will be {BCG=2.1.2}.

 

Consider 
another transaction {B}. Compute relation distance for 
{BCG=2.1.2}

 

and {B}. Since the relation distance is 1, 
{B}

 

is merged into the relation transaction group and 
thus becomes {BCG=3.1.2}. The next step calculates 
the support count of items using a minimum-frequency 
function. This function takes as input the original 
transactions and merged transactions and returns the 
minimum number of itemsets in a transaction. For 
example, let C2

 

be {BC, AE}

 

and transaction T*

 

be 
{{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE}, 
{C}}.

 

The minimum frequency function returns 2 for 
both BC

 

(0+1+0+1+0=2)

 

and AE (1+0+0+1+0=2),

 

as the 
number of itemsets in the transactions. These values 
and the transaction set T*

 

is used by FP-growth 
algorithm to generate frequent itemsets and association 
rules. 

 

Table II :

 

Quantification Table

 
 
 
 
 
 
 
 
 
 

c)

 

Decompression Algorithm

 

The main requirement of any compression 
algorithm that produces a compact representation of the 
original transaction database is to reproduce the original 
database without any loss. The proposed algorithm 
satisfies this requirement also.

 

The algorithm used for 
this purpose is shown in Figure 3.
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For I = 1 to number of transactions
Create Quantification Table

Quantification table records the length of the transaction database (n) and records the 
count of each itemset appearing in the transaction under each length (L1 – has single 
length, L2 – has two itemset, …)

Compute length of transaction using quantization table
Calculate relation distance between transactions and relevant transaction groups
Relation distance is defined as number of different items between two transactions.
The smallest transaction of a relevant transaction group is grouped with the longest transaction of 
the same relevant transaction group.
For d = 1 to n-1

Consider a transaction, if the relation distance between transaction and merged group = a 
distance 'd', then merge the transactions.

End for
End for

TID Transactions
100 ABCDE
200 CDE
300 ACD

L5 L4 L3 L2 L1
A1 A1 A2 A2 A2

B1 B1 B1 B1
C2 C3 C3

D2 D3
E2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 :

 

Decompression Algorithm

 

The decompression algorithm is the reverse 
process of compression algorithm and is explained 
using an example merged transaction. Consider a 
merged transaction <ABCD>=3.1.4.2

 

which has the 
smallest count of 1 (that is, the count of transaction 
<ABCD> is 1).

 

Next, decrease the count of each item in 
<ABCD> by 1 to obtained <ACD>=3-1. 4-1. 2-1 = 2.3.1.

 

Item B is removed since it has a zero count. Repeat this 
process, to get, <AC>==2-1.3-1=1.2. Finally, <C>=2-1=1. 
Combining the results we get the decompressed version 
of the merged transaction <ABCD>=3.1.4.2

 

as {ABCD}, 
{ACD}, {AC}, {C}. 

  

IV.

 

EXPERIMENTAL RESULTS

 

The efficiency of the proposed algorithm was 
tested using various test data and performance metrics. 
The proposed model was tested using synthetic dataset 
as proposed by Agarwal and Srikanth (1994). These 
transactions mimic the actual transactions in a retail 
environment. Four synthetic datasets, namely, 
T5I4D50K, T10I8D100K, T20I10D100K and 
T20I12D200K

 

were used during experimentation. The 
proposed algorithm

 

was analyzed using compression 
ratio in terms of speed, number of transactions and 
storage required. The average size of the potentially 
large itemset is taken as 5 and minimum support is 
varied from 5% to 25% in steps of five. The proposed 
algorithm was compared with M2TQT. The algorithms 
were developed in JAVA

 

with NetBeans 5.5 as front 
end. All the experiments were conducted on a Pentium 
IV machine with 512 MB RAM.  

 

a)

 

Compression Ratio with Respect to Storage Space 
Saved

 

The compression result in terms of storage size 
is shown in Figure 4 for the selected four datasets.

 

 

Figure 4 :

 

Compression Ratio For Storage Space Saved

 

From the results, it could be seen that while 
both the algorithms are efficient in generating a compact 
version of the original database, the enhanced M2TQT

 

shows significant improvement in terms of storage size 
reduction. The results also show that the E-M2TQT

 

algorithm scales with different sized datasets. An 
interesting trend observed is that the maximum amount 
of compression achieved was when the minimum 
support is around 15% after which a slow decline in 
compression rate is envisaged. This means that the 
maximum performance of the algorithm can be 
achieved by setting the support value to 15%. Another 
pattern observed with respect to compression ratio is 
the relation between size of dataset and average 
compression achieved. As the size of the dataset 
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1. Let merged transaction be expressed as <s1, s2… , sk .., sn-1,sn>= c1, c2…ck.. cn-1.cn, where s1, 
s2… , sk , sn-1, sn are items and c1, c2…, ck, cn-1, cn are their corresponding support counts.

2. Identify the smallest count in ci (i=1..n) whose transaction is the longest transaction. Thus the count 
of longest transaction is ck. Thus the transaction { s1, s2… , sk , sn-1, sn } is recovered and the 
merged transaction becomes <s1, s2… , sn-1, sn>= c1-ck.c2-ck… cn-1-ck. cn-ck.

3. Remove items with a zero count from the merged transaction. 
4. Repeat the above process to find the next longest transaction in the merged transaction until no 

count left. 

increases the compression efficiency decreases. 
However, the efficiency gain is consistent with all 
databases which imply that the enhanced approach is 
better than the traditional algorithm. Thus, the results 
show that the introduction of FP-Growth algorithm to 
M2TQT provides effective data compression.  

b) Compression Ratio with Respect to Number of 
Transactions

Figure 5 shows the compactness efficiency in 
terms of number of transactions. These experiments 
were conducted to evaluate the performance of the 
pruning algorithm introduced in the merging transaction 
step of the compression algorithm. 

T5I4D50K

0
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0.15
0.2

5 10 15 20 25
Minimum Support

C
R
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The results of compression ratio with respect to 
number of transactions again show that the Enhanced 
M2TQT algorithm is an improved version. While 
considering various minimum support, the results shows 
that the minimum support and compression ratio are 
directly proportional. This is evident from the increasing 
trend line obtained. While analyzing the scalability of the 
algorithm, the trend obtained shows that the efficiency is 
not affected by different sized datasets and remains 
consistent between 23% and 25%. In conclusion, it 
could be seen that the pruning algorithm with merging 
transaction scheme has improved the E-M2TQT

 

algorithm by 25.32%

 

on average.    

 

c)

 

Execution Time

 

Table III shows the average execution time of 
each dataset along with the efficiency gain obtained with 
respect to execution speed. The speed is calculated in 
seconds.

 Average Execution Speed (Seconds)

 

DATASET

 

M2TQT

 

E-M2TQT

 

EFFICIENCY (%)

 

T5I4D50K

 

1.692

 

0.970

 

42.67

 

T10I8D100K

 

1.872

 

1.114

 

40.49

 

T20I10D200K

 

2.222

 

1.560

 

29.79

 

T20I12D300K

 

2.312

 

1.840

 

20.42

 
 

As with compression ratio, the E-M2TQT 
algorithm shows an average 33.34% speed efficiency 
with respect to M2TQT algorithm. This shows that the 
speed efficiency has improved in the enhanced version. 
As expected, the algorithm takes more time to execute 
large sized datasets than small sized datasets. The 
small sized datasets (T5I4D50K

 

and T10I8D100K) 
shows maximum speed efficiency of 42.67%

 

and 
40.49%,

 

while it decreased to 29.79%

 

and 20.42%

 

with 
large sized datasets (T20I10D200K

 

and T20I12D300K).

 

These results indicate that the performance of 
E-M2TQT

 

algorithm in terms of compactness achieved 
with respect to storage size, number of transactions and 
execution speed with different datasets and different 
minimum support is efficient when compared with to its 
existing version.  

 

V.

 

CONCLUSION

 

This research work proposed an enhanced 
transaction database compacting algorithm for frequent 

mining. Experiments were conducted to analyze the 
performance of the algorithm. The results showed high 
performance and there can be reliably used in various 
applications where pattern mining is needed. Moreover, 
the speed of the algorithms further makes it suitable for 
online applications. In future, plans for including 
frequent pattern-based clustering algorithms and 
partitioning algorithm to further improve the efficiency of 
the pattern-mining algorithm are considered.
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