
© 2012 Elinda Kajo Mece, Lorena Kodra. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 1 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - Web application security is a critical issue. Security concerns are often scattered through

different parts of the system. Aspect oriented programming is a programming paradigm that

provides explicit mechanisms to modularize these concerns. In this paper we present a technique for

detecting and preventing common attacks in web applications like Cross Site Scripting (XSS) and

SQL Injection using an aspect oriented approach by analyzing and validating user input strings. We

use an aspect to capture input strings and compare them to predefined patterns. The intrusion

detection aspect is implemented in AspectJ and is woven into the target system. The resulting

system has the ability to detect malicious user input and prevent SQL Injection and Cross Site

Scripting. We present an experimental evaluation by applying it to an insecure web application. The

results of our tests show that our technique was able to detect all the attempted attacks without

generating any false positives.

Keywords : symbolic information, artificial intelligence, Flow control, Architecture.

GJCST Classification: D.4.6, K.6.5,H.2.7

Towards full protection of web applications based on Aspect Oriented Programming

Strictly as per the compliance and regulations of:

Towards full protection of web applications based
on Aspect Oriented Programming

Elinda Kajo Meceα, Lorena KodraΩ

Abstract - Web application security is a critical issue. Security
concerns are often scattered through different parts of the
system. Aspect oriented programming is a programming
paradigm that provides explicit mechanisms to modularize
these concerns. In this paper we present a technique for
detecting and preventing common attacks in web applications
like Cross Site Scripting (XSS) and SQL Injection using an
aspect oriented approach by analyzing and validating user
input strings. We use an aspect to capture input strings and
compare them to predefined patterns. The intrusion detection
aspect is implemented in AspectJ and is woven into the target
system. The resulting system has the ability to detect
malicious user input and prevent SQL Injection and Cross Site
Scripting. We present an experimental evaluation by applying it
to an insecure web application. The results of our tests show
that our technique was able to detect all the attempted attacks
without generating any false positives.

I. INTRODUCTION

ser and critically important company information
is managed using web applications. For this
reason, web applications serve as a door for

attacks. The vulnerabilities present in the application can
be exploited by an attacker. Even with the rapid
development of Internet technologies, web applications
have not achieved the desired security levels. As a
result, web servers and web applications are popular
attack targets.

Two common attacks on this type of systems
are Cross Site Scripting (XSS) and SQL Injection. SQL
Injection is a technique where an intruder injects SQL
code into the user input field in order to modify the
original structure of the query to post hidden data, or
execute arbitrary queries in the database. Cross Site
Scripting occurs when an intruder injects and executes
scripts written in languages like JavaScript or VBScript.

Aspect Oriented Programming is a
programming paradigm that provides explicit
mechanisms to modularize crosscutting concerns
(behavior that cuts across different divisions of the
software) such as security. This makes it a good
candidate for applying security to a system.

Author α Ω

: Department of Computer Engineering, Polytechnic
University of Tirana, Tirana, Albania.

E-mails : ekajo@fti.edu.al, lorena.kodra@gmail.com

In this paper, we propose an Aspect Oriented
protection system that detects and prevents attacks on
web applications. This system analyzes and validates

user input strings. We use an aspect to capture input
strings and compare them to predefined patterns. The
intrusion detection aspect is implemented in AspectJ
and is woven into the target system. The resulting
system has the ability to detect malicious user input and
prevent SQL

Injection and Cross Site Scripting. The
advantage in using aspect oriented programming lies in
separating the security code from application code. In
this way it can be developed independently to adapt to
new attacks.

The rest of the paper is organized as follows.
Section 2 presents principles of SQL

Injection, XSS

and
AOP. Section 3 presents related work in this area and
our proposed solution. Section 4 describes in detail the
architecture of our system and its integration with the
web application. Section 5 describes the
experimentation and evaluation results. Section 6
concludes and discusses some future work.

II.

BACKGROUND

a)

SQL Injection

SQL Injection consists in inserting malicious
SQL commands into a parameter that a web application
sends to a database in order to execute a malicious
query. As a result, database contents can be corrupted
or destroyed. The most popular techniques used in SQL
injection are tautology, union, and comments.

The general idea behind tautology is finding a
disjunction in the WHERE

clause of a SELECT

or
UPDATE

statement and inserting malicious code into
one or more conditional statements so that they always
evaluate as true. Let us consider the case where the
web application authenticates users by executing the
following query:

SELECT * FROM users WHERE username =
‘admin’ and password = ‘pass’

This query doesn’t select any rows because the password is
incorrect. Injecting ’

OR 1=1

gives:

SELECT * FROM users WHERE username =
‘admin’ and password = ‘‘ OR 1=1’

This causes the WHERE

clause to be true for
every row and all table rows are returned.

The UNION

clause allows the chaining of two
separate SQL

queries. An attacker can use this clause

U

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

33

 Ja

nu
a r
y

 2
01

2

to manipulate an SQL statement into returning rows from
another table. As an example, consider the following
query that allows users to get the product name by
inserting the product ID.

Keywords : symbolic information, artificial intelligence,
Flow control, Architecture.

SELECT productName FROM products WHERE
productID = '5'

An attacker can use the UNION clause to modify the
structure of this query to:

SELECT productName FROM products WHERE
productID = '5' UNION SELECT username,
password FROM users

As a result, this query will display the product
name together with the usernames and passwords of
the users table.

Another type of SQL

Injection uses comments
to cut an SQL

query and change its structure. The part
of the SQL

statement that comes after the comments
will not be executed and the query will return the results
that the attacker wanted. For example the following SQL
statement:

SELECT * FROM users WHERE username =
‘alice’ and password = ‘alice123’

can be
transformed in the following way:

SELECT * FROM

users WHERE username =
‘admin’ --

and password = ‘’

The query will return all the information about
the admin user.

b)

Cross Site Scripting

Cross Site Scripting (XSS)

is an attack done
towards the user’s browser in order to attack the local
machine, steal user information or to spoof the user
identity. The attacker uses a web application to send
malicious code usually in the form of a script. Together
with the legitimate content, the users get the malicious
script from the web application. This attack is successful
in web applications that do not validate user input.

c)

Aspect Oriented Programming and Security

Aspect Oriented Programming is a
programming paradigm whose aim

is to solve problems
like code scattering and code tangling that cannot be
solved by traditional programming methodologies. Code
scattering means that the problem code is spread over
multiple modules. This means that when developers
want to fix a bug they

have to modify several source
files. Code tangling means that the problem code is
mixed with other code. In the case of web applications,
security code needs to be applied in different modules
of the system. This process is error prone and difficult to
deal with. AOP

is a good candidate for applying security
in web applications. The security code can be
encapsulated into modules called aspects which can be
maintained separately from the web application in order
to adapt to new attacks.

III.

RELATED WORK AND PROPOSED
SOLUTION

During recent years, different solutions have
been proposed to address security issues in web
applications. The most efficient way to protect against

XSS

and SQL

Injection attacks is to inspect all the data
the user inserts into the system, hence most of the work
in this area treats user input.

Zhu and Zulkerine propose a model-based
aspect-oriented framework for building intrusion-aware
software systems [2]. They model attack scenarios and
intrusion detection aspects using an aspect-oriented

Unified Modeling Language (UML)

profile. Based on the
UML

model, the intrusion detection aspects are
implemented and woven into the target system. The
resulting target system has the ability to detect the
intrusions automatically.

Mitropoulos and Spinellis propose a method for
preventing SQL

Injection attacks by placing a database
driver proxy between the application and its underlying
relational database management system [1]. To detect
an attack, the driver uses stripped-down SQL

queries
and stack traces to create SQL

statement signatures
that are later used to distinguish between injected and
legitimate queries. The driver depends neither on the
application nor on the RDBMS.

Hermosillo et al. present “AProSec”
implemented in AspectJ

and in the JBoss AOP
framework, a security aspect for detecting SQL

Injection
and XSS [3]. They use the same aspect for dealing with
SQL

Injection and XSS.

Their experiments show the
advantage of runtime platforms such as JBoss

AOP

for
changing security

policies at runtime.

We propose a system that performs a two-step
validation of user input. In the first step it is validated
syntactically to check whether it contains dangerous
characters that can be used in XSS

and SQL

Injection.
In the second step, the input is validated by the SQL
validator in the context of a query to check whether it
contains always true statements, comments or
combinations of SQL

keywords. In contrast to the
systems described above, our system analyzes directly
user input before it

is being used as part of an SQL
query. This facilitates the analyzing process. Another
advantage of our system is the fact that the SQL
validator checks the presence of SQL

keywords in the
user input. This prevents attacks that do not contain
comments or always true statements but contain SQL
keywords that can modify the original structure of the
SQL

query. Our system does not generate false
positives because it considers as attack the presence of
a combination of SQL

keywords and not the presence of
a single SQL

keyword such as “Union” that might be
part of a legitimate user name.

Towards full protection of web applications based on Aspect Oriented Programming
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

34

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

IV. SYSTEM ARCHITECTURE

Our system consists of three parts. The first and
the most important part is an aspect called
WebAppInputFilter that contains the logic of the whole
defense process. It defines the advices that control the
validation process as well as the steps to be taken
(code to be executed) based on the results of the

validation. The aspect also contains the pointcuts that
define the vulnerable points of the web application and
allow the weaving with the advice code. The second part
consists of a validators class that validate against XSS
and SQL

Injection attacks the input defined in the
advices. The third part consists of an encoder which
encodes dangerous characters by converting them to
their decimal equivalent, leaving them harmless.

The basic idea behind our technique is to
capture user input and validate it by comparing it to
predefined patterns. In the case of SQL

Injection, in
contrast with current solutions [1, 2, 3], the user input is
validated before being used as part of a query. The final
query is a combination of user input and a partial SQL
statement defined by the developer. We consider as
safe the part of the query that is defined by the
developer, so there is no need to validate it and we only
validate the user input part. This facilitates and speeds
up

the evaluation process.

The validation process happens in two steps.
First the user input is validated to check whether it
contains dangerous characters such as ‘<’,’ >’, ‘=’

and’
–‘ that can be used to perform XSS

and SQL

Injection
attacks. In the second

step, the SQL

Validator analyzes
the input in the context of the query. This is done to
check whether the query contains combined SQL
keywords that can modify the original structure of the
query or SQL

code that can transform the original query
in an SQL

statement that results always true.

Figure 1 shows the flow of information within the
defense system. The aspect captures the user input
string and sends it to the first analyzer. If the string is not
dangerous it is passed on to the second validation step.
If the string is dangerous it is send to the encoder. It
encodes the dangerous characters and the result is
passed to the SQL

Validator. If the string is not
considered dangerous, it is passed on to the web
application as a legitimate request. If it is considered
dangerous, it is erased.

Fig. 1 :

The flow of information within the defense
system

a)

The WebAppInputFilter Aspect

This aspect is implemented in AspectJ [7]. This
is the most widely used language for aspect oriented
programming. It represents the extension of Java for
dealing with aspects. The aspect defines pointcuts in
the vulnerable points of the web application. It

monitors
the traffic in servlets and captures some specific calls
that implement the ServletRequest

and
HttpServletRequest

interfaces. The pointcuts are:

pointcut pcGetParameter(): call(String
javax.servlet.http.HttpServletRequest.ge
tParameter (String))

pointcut
pcGetParameterValues():call(String []
javax.servlet.ServletRequest.getParamete
rValues(String))

b)

The Validators

The validators class handles both XSS and SQL

Validators. It uses regular expressions and pattern
matching to validate user input against specific patterns.

The syntactic validator, analyzes separately
each character of the user input string and acts as a
filter that allows only characters ‘a-z’, ‘A-Z’,

numbers ‘0-
9’,

spaces and characters like “.” and “,”. The rest of
the characters are considered dangerous and will be
sent to the encoder.

The SQL

Validator consists of several validation
strings in the form of regular expressions that are
matched against user input according to different
possibilities of injecting SQL

code into the user input
field of the web application. The validation criteria
include: always true comparisons (both string and
numeric), presence of quotes or comments, keywords
for executing stored procedures, combinations of SQL
keywords like UNION, SELECT, DROP, INSERT, ALL,

etc. As regards this least evaluation criterion, it protects
in cases where no comments or always true statements
are present in the query but it still may contain
dangerous keywords that can execute arbitrary

Towards full protection of web applications based on Aspect Oriented Programming

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

35

 Ja

nu
a r
y

 2
01

2

operations in the database. We would also like to
emphasize that the SQL Validator doesn’t simply detect
the presence of SQL keywords, but the presence of
combined SQL keywords that would potentially modify
the original structure of the query. This means that input
strings that simply contain SQL keywords (like UNION)
will not be considered dangerous unless they contain
some other SQL keyword that would create a risk for
SQL Injection. This eliminates the false positive case of
detection when a legitimate user has for example the
word “Union” in their name.

V. EVALUATION RESULTS

We evaluated our system by using it against a
vulnerable web application [8]. First we tried all sorts of
SQL Injection and XSS injection attacks to see how the
system behaved. Then we protected it using our system

but were unable to bypass the application’s security.

For example, let’s assume that an attacker tries
to input the following script into the web application:

<script>alert(document.cookie)</script>

The system will detect the dangerous
characters “<”, “>”, “(“, “)”

and “/”

and encode them. In
this way this input string will be considered as a simple
string and not as a script and will not be interpreted by
the browser. A wiser attack would be to encode the
input string by using some encoding scheme (decimal,
hexadecimal, octal, Unicode, etc) prior to inserting it into
the web application. For example, the above string in
hexadecimal format (\xNN) would be:

\x3c\x73\x63\x72\x69\x70\x74\x3e\x61\x6c
\x65\x72\x74\x28\x64\x6f\x63\x75\x6d\x65
\x6e\x74\x2e\x63\x6f\x6f\x6b\x69\x65\x29
\x3c\x2f\x73\x63\x72\x69\x70\x74\x3e

Even in this case the attack wouldn’t be
successful because the system detects the usage of “\”
and encodes the string to make it harmless. We tested
our defense system by using other encodings (decimal,
octal and Unicode) and none of the attacks were
successful.

In the case of SQL Injection, let’s assume that
an attacker tries to inject a query that contains a
statement that is always true into the system:

SELECT * FROM user_data WHERE last_name
= 'Smith' OR ‘1’=’1’

The SQL Validator will detect that there is a
statement that is always true and will delete this string
without passing it to the web application.

In order to evaluate the impact of the defense
system in the performance of the web application we
measured its response time using [9] under two
scenarios. We measured the response time first in the
absence of any defense and then in the presence of our
defense

system. We used a mix of input strings:
harmless, XSS

attack and SQL

Injection attack strings.
For every scenario we used 356 POST

and 104 GET
requests which make a total of 460 requests. We
executed the series of requests 5 times and measured
the average

response time. Our defense system
introduced an average overhead of 2.11%. We feel that
this is an acceptable level of overhead for use in many
production environments and it will not be noticeable by
the user.

VI.

CONCLUSIONS AND FUTURE WORK

We have presented our approach for building a
security system for a web application. This system
detects XSS

and SQL

Injection attacks in requests. Our
system was built separately and the initial code of the
web application was not modified. This allows the

separation of security concerns and allows the security
system to be evolved independently from the web
application to adapt to new attacks.

As an advantage to similar solutions, besides
checking for comments and always true statements, our
SQL

Validator

also checks for the presence of a
combination of SQL

keywords in the input string. This
can protect in cases where comments or always true
statements are not present in the query but it still may
contain dangerous keywords that can execute arbitrary
operations in the database. Our system does not simply
check for SQL

keywords but for a combination of them.
This is considered as an advantage in eliminating false
positives like in the case of having for example the word
“Union” as part of a legitimate user name. Furthermore,
in contrast to usual solutions, when protecting against
SQL

Injection our system analyzes directly the user input
before being used as part of a query. There is no need
to analyze the whole query because the other parts of it
are defined by the developer and are considered safe.
This has the advantage of facilitating and speeding up
the evaluation process.

Our system can be improved in some
directions. A possible improvement might be the
implementation of defense against other form of attacks.
Also new techniques like machine learning

and neural
networks

can be used to detect more sophisticated
attacks. Another direction of improvement might be the
implementation of runtime weaving

using the JBoss
AOP

Framework [10].

REFERENCES

REFERENCES

REFERENCIAS

1.

M. Dimitris, and Diomidis Spinellis, "SDriver:
Location-specific signatures prevent SQL injection
attacks", Computers & Security, Vol.28, No. 3-4,
2009, pp. 121-129.

2.

J. Zh. Zhi, and Z. Mohammad, "A model-based
aspect-oriented framework for building intrusion-
aware software systems", Information and Software
Technology, Vol.51, N.5, 2009, pp. 865-875.

Towards full protection of web applications based on Aspect Oriented Programming
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

36

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

3. H. Gabriel, G. Roberto, S. Lionel, and D. Laurence,
"AProSec: An aspect for programming secure web
applications", in Proceedings of the The Second
International Conference on Availability, Reliability
and Security, 2007, pp. 1026-1033.

4. K. Engin, J. Nenad, K. Christopher, and V. Giovanni,
"Client-side cross-site scripting protection",
Computers & Security, Vol.28, N. 7, 2009, pp 592-
604.

5. M. Matias, L. Edward, W. Jacob, and c. Brian,
"Watch What You Write: Preventing Cross-Site
Scripting by Observing Program Output", in OWASP
AppSec Conference, 2008.

6. J. Etienne, and Z. Pavol, "Preventing SQL Injections
in Online Applications: Study, Recommendations
and Java Solution Prototype Based on the SQL
DOM", in OWASP AppSec Conference, 2008.

7.

AspectJ, http://www.eclipse.org/aspectj/

8.

WebGoat,

9.

http://www.owasp.org/index.php/Category:OWASP_
WebGoat_Project

10.

Apache Jmeter, http://jakarta.apache.org/jmeter/

JBoss www.jboss.org/jbossaop

Towards full protection of web applications based on Aspect Oriented Programming

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

37

 Ja

nu
a r
y

 2
01

2

AOP, http://

Towards full protection of web applications based on Aspect Oriented Programming
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

38

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

This page is intentionally left blank

Ea
rly

 V
iew

	Towards full protection of web applications basedon Aspect Oriented Programming
	Author's
	Keywords :
	I. INTRODUCTION
	II. BACKGROUND
	a) SQL Injection
	b) Cross Site Scripting
	c) Aspect Oriented Programming and Security

	III. RELATED WORK AND PROPOSEDSOLUTION
	IV. SYSTEM ARCHITECTURE
	a) The WebAppInputFilter Aspect
	b) The Validators

	V. EVALUATION RESULTS
	VI. CONCLUSIONS AND FUTURE WORK
	REFERENCES REFERENCES REFERENCIAS

