
© 2011I . Dr. Ashok Kumar, Bakhshsish Singh Gill. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 23 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Maintenance vs. Reengineering Software Systems
By Dr. Ashok Kumar, Bakhshsish Singh Gill

Kurukshetra University, Kurukshetra

Abstract -

Maintenance and reengineering terms are closely coupled with each other. These

terms came from the world of hardware objects. Now these entered the world of software and
are well suitable for software systems. It is difficult to draw a clear cut line between these two
terms. Many a times these are used interchangeably. Reengineering of software systems is a
topic of importance and in coming time it will be gaining more attention in the world of software
systems. Software managers are often confused over maintenance and reengineering. These
two terms should be separated to promote the subject matter because one is problem for the
other. I will try to put them in different non overlapping regions. Maintenance and reengineering
are two different areas in software engineering. Maintenance is for running the system till the age
of the system where as the reengineering make the system new to work for another life span.
Scope of reengineering is vast and challenging as compared to maintenance. Reengineering is
to reduce the expenses on software systems in the organizations. Reengineering has more
scope in the world of software than in the world of hard ware objects. Software systems and
software objects do not wear and tear out like hardware objects in the real world. Maintenance is
close to repair/mend where as reengineering is very close to new development.
Keyterms :

Object, reengineering zone, maintenance zone, transition state, reverse engineering

 Maintenance vs. Reengineering Software Systems

 Strictly as per the compliance and regulations of:

GJCST Classification : D.2.7

Maintenance vs. Reengineering Software
Systems

Dr. Ashok Kumar α, Bakhshsish Singh GillΩ

Abstract - Maintenance and reengineering terms are closely
coupled with each other. These terms came from the world of
hardware objects. Now these entered the world of software
and are well suitable for software systems. It is difficult to draw
a clear cut line between these two terms. Many a times these
are used interchangeably. Reengineering of software systems
is a topic of importance and in coming time it will be gaining
more attention in the world of software systems. Software
managers are often confused over maintenance and
reengineering. These two terms should be separated to
promote the subject matter because one is problem for the
other. I will try to put them in different non overlapping regions.
Maintenance and reengineering are two different areas in
software engineering. Maintenance is for running the system
till the age of the system where as the reengineering make the
system new to work for another life span. Scope of
reengineering is vast and challenging as compared to
maintenance. Reengineering is to reduce the expenses on
software systems in the organizations. Reengineering has
more scope in the world of software than in the world of hard
ware objects. Software systems and software objects do not
wear and tear out like hardware objects in the real world.
Maintenance is close to repair/mend where as reengineering is
very close to new development.

Keyterms : Object, reengineering zone, maintenance
zone, transition state, reverse engineering.

I. INTRODUCTION

oftware engineering is a topic of importance in the
age of software and is gaining attention. It is
developing fast area and not existing from

centuries. Software maintenance and software
reengineering both fall in the ambit of software
engineering. Both terms came from the real hard ware
objects. These are more suited to software systems and
software objects as these do not wear or tear out like
real world physical objects.

These two terms are yet young and developing.
There is not clear cut line between them. These terms
are mingled and the people are using them
interchangeably. One is the problem in the developing

Author

α

:

Professor, Chairman (HOD) Department of Computer
Science & Applications, Kurukshetra University, Kurukshetra, Phone:
01744-238195(Office), 01744-239231(Residence)

Author Ω

:

Programmer, Computer Centre, Guru Nanak Dev University,
Amritsar-143001, E-mail : bbssgill@yahoo.com, Phone 0183-2258802-
09 Ext. 3297(Office), 0183-2502813(Residence) , Mobile 9988112620

the subject

matter of the other. Now software is gaining
importance in every sphere of life and these two are very

closely associated to software system life cycle. It is
time to differentiate the two and promote the subject
matter of these two concepts.

 II.

SOFTWARE MAINTENANCE

 Software maintenance is one of the stages in
the software development life cycle. It starts after the
deployment of software in the working field. It is to
remove the defects and deficiencies which encounters
while starts actually working in the

field.

According to IEEE Std. 610.12 [7] ‘Software

maintenance is the process of modifying a software
system or component after delivery to correct faults,
improve performances or other attributes, or adapt to a
changed environment’.

a)

Nature and Scope of Maintenance

Software maintenance has good scope in future

times. In the world of fast changes, maintenance
expertise will gain more importance which can sustain
the working of software systems. Maintenance means
modifying software system or a component of the
software system to make it working on the platform and
adapt to the minor changes in the requirements,
environment or technology. Every system needs
maintenance for the whole life period. Maintenance is
preservation of the legacy software system.

Many surveys have shown that software

maintenance can account for 60 to 80 percent of the
cost of total life cycle of software product. According to
Erlikh

more than 90 % of the total cost of software goes
to maintenance and evolution of the software product
[1]. According to Lientz and Swanson many
organizations were spending 20% to 70% of their
computing efforts on maintenance [8].

 Software maintenance is of following four types

1.

Corrective maintenance:

As its name implies, activities of correcting bugs

in the software are included in this type of maintenance.
It is for making the software system to conform to the
real situation.

2.

Adaptive Maintenance

It deals with making the software adjustable to
the changed environment

S

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

59

20
11

D
ec

em
be

r

3. Preventive Maintenance
Modification of the software to detect and

correct hidden faults (bugs) before becoming active.

This paper will help the software managers to
recognize and make the best use of these two terminologies
for right treatment of software systems.

4.

Perfective maintenance

It is modification of the software for better
performance, maintenance and reliability. The activities
related to

updating the software are included in this type
of maintenance.

The efforts (cost) distributions for these four
types of maintenance are as under

•

Corrective maintenance 21%

•

Adaptive Maintenance 25%

•

Preventive Maintenance 4%

•

Perfective maintenance 50% [6].

It is suggested from the above figure that
perfective maintenance consumes major part of cost
estimation. Preventive maintenance is not taken to any
significant level in software industry.

Software maintenance and reengineering are
hot topics in theses days. Software managers use these
two interchangeably. It is time to differentiate
maintenance and reengineering in software industry.
Software maintenance is last stage in the software
development life cycle. Maintenance starts after the
delivery of the software. The ability to accurately
estimate the time and cost of software maintenance is
the key factor for successful of maintenance project.

Software maintenance starts after delivery of the
software system. It goes on increasing with the
increasing age of software as depicted in the following
figure 1.

Figure 1

Accumulated affects of maintenance makes the
system complex and deteriorate the system’s
architecture. Software system goes on aging with time
and maintenance cost increases. When maintenance
cost is too much high or difficult to maintain, it means
system is to retire. Then reengineering is solution at this
point. Reengineered software starts working with normal
maintenance for another life span. Reengineering
should be done at right time. If we overlook this time,
reengineering will be costly or even not feasible and
then we have to throw the costly legacy software under
utilized.

III.

REENGINEERING

Reengineering is the analysis of existing
software system and modifying it to constitute into a
new form. Chikofsky and Cross define reengineering as
‘the examination and alteration of a subject system to
reconstitute it in a new form and subsequent
implementation of that form’ [9].

According to IEEE Std. 1998 ‘A system-
changing activity that results in creating a new system
that either retains or does not retain the individuality of
the initial system’ [10].

a)

Nature and Scope of Reengineering

When maintenance cost is not feasible, we go
for reengineering the software system. Reengineering
makes the software system new. Reengineering has the
following three stages.

1.

Reverse engineering

2.

Architecture transformations

3.

Forward engineering

Reverse engineering

In this stage software is thoroughly understood.
It is untied and underlying technology is perceived.
Business process is improved and requirements are
updated. Objects are added or deleted according to the
new system planned. In this stage we go from code
level to higher level abstraction. It is vertically upward
step shown in the fig. 2

Architecture transformations

Software architecture is changed. It is modified,
improved to fit in the new technology and new
environment. It is the architecture designing stage. It is
horizontally right ward step as shown in the figure 2

Forward engineering

In this stage, we move from higher level of
abstraction to code level. In

this stage software
integrated according to new design. It is vertically
downward step as shown in the fig. 2.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

60

20
11

D
ec

em
be

r
Maintenance vs. Reengineering Software Systems

Figure 2

In the above figure, updation of user’s
requirements and improvement in architecture of
software is done in transformation phase.

We

can express reengineering by the following
equation.

Reengineering = Reverse engineering + ▼ + forward
engineering

The symbol in the above equation represents
the enhancement and design change.

In the coming
future, reengineering can solve the problem of software
backlogs and it can lower the software investment in
organizations. Reengineering can increase the software
age.

IV.

MAINTENANCE VS. REENGINEERING

Maintenance and reengineering are closely
related to each other. Software maintenance starts after
delivery of the software to correct faults, to improve
performance and other attributes of the software.
Maintenance plays an important role in the life cycle of a
software system. Maintenance is the last stage of the
software development life cycle. When maintenance
exhaust, reengineering is called. Maintenance problems
are a driving force behind re-engineering. Reengineering
is the only way to avoid new development cost.
Following are the models for diversification of
maintenance and reengineering.

a)

Thoroughfare model

According to this model, life span (age) of
software system is divided into two zones as depicted in
figure 3. Software life span is from point A to point B.
Point T is the transition state from maintenance to
reengineering zone. Transition state is new term defined
by the author of this paper. It is the state in the life of
software when reengineering is best possible with
optimal cost. Software system is candidate for
maintenance in the first zone and candidate for
reengineering in the second zone. Maintenance phase
is always first and reengineering phase starts after
maintenance phase. When maintenance exhausts,
reengineering phase is ready to serve the software
system. Both zones are separated by red point T and
must not overlap each other.

Figure 3

Maintenance increases the age of the software
and reengineering gave a fresh age period to software
system. T is the transition point, beyond point T; it is not
feasible to maintain the system. System should be
reengineered at the point T.

Reengineering cost will be
optimal at the critical point T. If we do not reengineering

the System at T and go on maintaining the software with
high cost, reengineering zone will be exhausted and
reengineering is not possible with feasible cost. Then
there is no other option than to throw the legacy
software and purchase costly new one. Legacy software
will be added to the backlog of wasted software.

Maintenance phase keeps the software up to
date with environment changes and changing user
requirements. Reengineering will give another life span
to software with normal maintenance.

b)

Cost based Model

Following figure 4 depicts the graph of
maintenance cost and reengineering cost of Software
system. Maintenance cost starts from the point O
(Origin) and goes on increasing with time. It starts
increasing rapidly from point T because software
completes ten

years, the normal age of the software.
According to literature, software age is seven years for
structured systems and ten years for object-oriented
software systems. Reengineering cost is all most same
up to point T because software is within age at the point
T. After point T reengineering cost also starts increasing
but with normal rate but maintenance cost increases at
high rate. This happens because maintenance zone is
over and the software is in reengineering zone beyond
point T. Maintenance cost and reengineering cost are
equal at the point T as depicted in the figure 4. If both
the costs are equal then we must go for reengineer.
Reengineering will make the system new on the new
platform with new design. Reengineering of the system
is needed to bring down the maintenance cost. At this
point we think of reengineering or retiring the software. If
we retire the system then we have to bear the cost of
new software. Cost of new software is much high than
the cost of reengineering.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

61

20
11

D
ec

em
be

r

Maintenance vs. Reengineering Software Systems

Figure 4

If we do not reengineering the software system
at point T, maintenance cost will increase sharply (as
shown in the figure 4) it will be difficult to maintain the
system at such a high cost. Maintenance after the point
T increases the complexity of the system and decreases

the quality of software where as reengineering improves
the quality of the software, controls the maintenance
cost and increases the life span of the software system.

The software system is old at the point T and
high maintenance cost is required. It is difficult to
maintain the system with such a high maintenance cost.
At this point system should be reengineered or retired. If
we reengineer the software at this point, Reengineering
cost will be lowest (optimal). Reengineered Software
will be new one with another life span and Maintenance
cost will be ordinary.

c)

Object based Model

This is object based model for differentiation of
maintenance and reengineering. Maintenance is done to
make the faulty object fine. As the system ages,
software architecture deteriorate with ripple effects of
maintenance. System object becomes faulty and
maintenance makes it fine. The number of faulty objects
increases with time and maintenance becomes difficult.
Then what to Do? Software should be reengineered but
when? This is the question. It is to be determined on the
basis of the faulty objects. In this work, object is seen at
a higher level of abstraction and is taken as conceptual
module that can be plugged in and plugged out from
the software system. Reengineering identifies reusable
components (objects) and analyzes the changes that
would be needed to regenerate them for reuse within
new software architecture. The use of

a repeatable,
clearly defined and well understood software objects,
has make reengineering more effective and reduced the
cost of reengineering. Maintenance and reengineering
will be separated on the basis of faulty objects.

The object oriented approach attempts to
manage the complexity inherent in the real world
problems by abstracting

out knowledge and
encapsulating it [2]. Object is an instance of a class and
has an identity and stores attribute values [3].

All objects of the candidate software system are
untied (Reverse engineering). Faulty objects are
indentified and modified. Then

redesigning of the
structure (transformation of the architecture) of the
system according to new modern design is done. Then
according to new design objects are integrated
(Forward Engineering).

Abstraction is good tool for reengineering
object oriented

design as it helps in reducing
complexity. Large systems are complex having more
objects as each additional object increases the
complexity of the system [4]. Reengineering of software
system is accomplished by reengineering the faulty
objects in the system. Software system is untied, objects
are identified for reengineering. Identified objects for
reengineering are called faulty objects. Faulty objects
are reengineered independently and made Fine objects,
software architecture is changed, and all the objects
(now all objects are fine) are integrated according to the
new architecture.

Fine object is an object which conforms to our
requirements and functions well in the system. As
software ages some objects becomes faulty. Faulty
object is an object which does not conform to our
requirements and does not function well with in the
system. We go on maintaining the faulty objects to
maintain the software system. With maintenance of the
faulty objects again and again, architecture of the
software deteriorates. We reach at a point where
reengineering of the system is needed. But what is that
point? Let us suppose there are N objects in system
which is our candidate system. Let it be O1, O2,
O3,……………..ON.

Go on maintaining the software till half of the
objects are not faulty. When half of the objects (N/2) are
faulty in your application go for reengineering the
software. The reengineering cost of the candidate
system with N/2 faulty objects will be one forth (25%) of
the new development cost [5]. This is the optimal cost
according to the research paper ‘Cost of Reengineering
(Object-Oriented Software Systems) versus Developing
new One-

A Comparison’ by the same author. Hence
you reach the stage where reengineering starts.

When N/2 or more objects are faulty (System
with N objects) stop maintenance and reengineer
software system. When N/2 objects become faulty; it is
a transitional state from maintenance to reengineering.
This is vital stage in the software life span for transition
from maintenance to reengineering. If the software
managers pay no heed to this transitional stage and go

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

62

20
11

D
ec

em
be

r
Maintenance vs. Reengineering Software Systems

on maintaining with high cost, it means they are
overlapping the reengineering zone. It this way, they will
strike in a situation when reengineering is not feasible.
The cost of reengineering is very much high or equal to
the new development. Then they will have to retire the
legacy software. It will be financial loss to the
organization as more investment on software is needed
to purchase new software.

d)

Discrete Model

Software issues

Maintenance

Reengine
ering

When software is
delivered

yes

No

When software is
young

yes

no

When software is old

No

Yes

Cost comparison

(software is not old)

Less

more

Cost comparison

(software is old)

More

Less

Cost comparison

(Transitional state)

equal

equal

Software age

Age increases

New life
span
started

Subject Area

Software
engineering

Software
engineerin
g

Architecture

No change

change

Business process

No change

change

Addition of attributes

yes

yes

Additions of objects

yes

yes

System change

renovate

fresh
(New)

Type of activity

Repair

developm
ent

Man power

Skilled

Highly
skilled

Scope

equal

equal

Origin

Hardware objects

Hardware
objects

Software managers

(Interest)

More

Less

functioning

More

less

No. faulty objects
less than half

yes

no

No. faulty objects
greater than half

no

yes

Table 1

V.

SUMMARY AND CONCLUSIONS

In this piece of work four models are presented
for differentiation in maintenance and reengineering as
under

1.

Thoroughfare differentiation model

2.

Cost comparison model

3.

Object based model

4.

Discrete model

These models are valuable to software
managers for reengineering the software systems at the
right time. Reengineering is not feasible before and after
the transition state. These models will help to
reengineering the software and escape the burden of
purchasing costly new software. Software investment
expenditure curve will fall in the organizations. There will
be full utilization of the software and software backlog
will be decreased.

In this work three new terms ‘Transition state’,
‘Reengineering Zone’ and ‘Maintenance Zone’ are
coined and added to reengineering subject matter.

VI.

FUTURE WORKS TO BE DONE

These given Models are new in the field of
Reengineering of object oriented software systems. The
future work is to test these models for suitability to fit on
the basis of analysis of current and past data. These
models can be accepted as it is or improved or rejected.
Once fit and fine these models will help in reengineering
the legacy software with optimal cost.

This work will be beneficial to the both
communities, the software managers and the software
engineers. Software managers can order for
reengineering at transitional point where maintenance
zone ends and reengineering zone starts.

REFERENCES

REFERENCES

REFERENCIAS

1.

Erlikh, L, “Leveraging legacy system dollars for E-
business” (200), (IEEE) IT Pro, pp. 17-23. Retrieved
24-02-2011 from http://users.jyu.fi/~koskinen/

smcosts.htm

2.

Brock R W, Wilkerson B, Wiener L , “Designing
Object-Oriented Software” (2007), Prentice-Hall of
India, New Delhi pp. 5.

3.

Bernd Bruegge, Dutoit Allen H , “Object-Oriented
Software Engineering Using UML, Patterns, and
Java”, (2004), Pearson Education (Singapore),
pp.724

4.

Halladay S, Wiebel M, “Object-Oriented Software
Engineering”, BPB Publications, New Delhi. P. 35

5.

Bakhshish Singh Gill, ‘Cost of Reengineering
(Object-Oriented Software Systems) versus
Developing new One-

A Comparison’ Research
paper, Serials Publication, New Delhi, 1-04-2011.

6.

Robert S. Arnold, “Software Reengineering”, (1993)
IEEE Computer Society Press Los Alamitos,
California, pp 60.

7.

IEEE Std. 610.12, “Standard Glossary of Software
Engineering Terminology”, (1990) IEEE Computer
Society Press, Los

Alamitos, CA

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

63

20
11

D
ec

em
be

r

Maintenance vs. Reengineering Software Systems

8. Lientz,B and Swanson, E B “Software Maintenance
Management”, (1980) Addison-Wesley.

9. E. Chikofsky and J.H.Cross, “Reverse Engineering
and Design Recovery: A Taxonomy”, IEEE Software
Engineering journal, (Jan. 1990), pp 13-17.

10. IEEE Std 1219-1998, In IEEE Standards Software
Engineering, 1999 Edition, Volume Two, Process
Standards, IEEE Press.

BIBLIOGRAPHY

1.

Sal Valenti, “Successful Software Reengineering”,
(2002) IRM Press, 1331 E., Chocolate Avenue,
Hershey.

2.

Robert S. Arnold, “Software

Reengineering”, (1994)
IEEE Computer Society Press Los Alamitos,
California.

3.

Roger S. Pressman, “Software engineering”, 3rd ed.,
(1992) McGraw-Hill, New York,

4.

Grady Booch, “Object Oriented Analysis and Design
with Applications”, (2003) Pearson Education,
Singapore.

5.

IAN Sommerville, “Software Engineering”, (1994)
Addison-Wesley Publishing Company, Singapore.

6.

K.K.Aggarwal and Yogesh singh, “Software
engineering”, (2002) New age International (P) Ltd.,
Publishers, New Delhi.

7.

Gill Nasib Singh, “ Software Engineering: software
reliability, Testing and Quality Assurance”, (2002)
Khanna Book Publishing Co.(P) Ltd., New Delhi.

8.

P. Jalote (1996), “An Integrated Approach to
Software Engineering”, Narosa Publishing House,
New Delhi.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

64

20
11

D
ec

em
be

r
Maintenance vs. Reengineering Software Systems

	Maintenance vs. Reengineering Software Systems
	Authors
	Keyterms
	I. INTRODUCTION
	II.SOFTWARE MAINTENANCE
	a)Nature and Scope of Maintenance

	III.REENGINEERING
	IV.MAINTENANCE VS. REENGINEERING
	a)Thoroughfare model
	b)Cost based Model
	c)Object based Model
	d)Discrete Model

	V.SUMMARY AND CONCLUSIONS
	VI.FUTURE WORKS TO BE DONE
	REFERENCESREFERENCESREFERENCIAS
	BIBLIOGRAPHY

