
© 2011 . Vishal Verma, Ashok Kumar. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

 Global Journal of Computer Science and Technology
Volume 11 Issue 22 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Representing Aspect Model as Graph Transformation
By Vishal Verma, Ashok Kumar

Kurukshetra University, Kurukshetra

Abstract - In this paper we discussed a new method for representing aspect models. This
method uses the basics of UML to devise a new way for specifying the model level aspects and
transformations among them. The resultant model is effective from both expression and scaling
point of view. The work in this paper is based on assumed transaction processing system in a
bank.

Keywords : Aspect - Oriented, Graph Transformation, UML.

Representing Aspect Model as Graph Transformation

Strictly as per the compliance and regulations of:

GJCST Classification : D.2.9

Representing Aspect Model as Graph
Transformation

Vishal Verma α, Ashok Kumar Ω

Abstract - In this paper we discussed a new method for
representing aspect models. This method uses the basics of
UML to devise a new way for specifying the model level
aspects and transformations among them. The resultant
model is effective from both expression and scaling point of
view. The work in this paper is based on assumed transaction
processing system in a bank.
Keywords : Aspect - Oriented, Graph Transformation,
UML.

I. INTRODUCTION

n most of the software development techniques
identification and presentation of aspects is done only
at some specific levels which pose constraints on the

designer and developers to follow a predefined
pattern/steps for development process. In this method
we try to develop a technique which can be used for
representing and composing aspect at any level of
software development. With the advent of new
techniques for software development it is quite common
and natural, that aspect can occur during any of the
development phase i.e. requirement [1], analysis [8]
and design [12]. Aspect if modularized during software
modeling can leads to a clear boundary among aspects
and concerns and they become more maintainable,
understandable and organize-able within the model. On
the other hand if aspect modules are composed with the
development of base module then it helps to fully
understand and analyze the model with aspects, and
any ambiguity, conflicts and omissions can be avoided.
Hence, the mechanism used for specification of aspect
at the modeling level must be complemented with
mechanism used for composition, that weave the
aspect model into base model. Lack of expression and
scalability are the major problems faced by the
researchers for development of mechanism like this.
Composition at the modeling level can be extremely rich
in nature [14]. Existing models do not provide support
for expressing the richness in compositions. However,
increase in the degree of expressiveness can lead to the
problem of scalability because a large effort is required
by the developers to specify the composition. The
method discussed in this paper is capable to handle the

Author α

: Department Of Computer Science and Application,
Kurukshetra University Post Graduate Regional Centre, Jind.

E-mail : vishal.verma@kuk.ac.in

Author Ω

: Department Of Computer Science and Application,
Kurukshetra University, Kurukshetra.

problem

of scalability and expressiveness and the result

of this paper is a practical technique that can be used
for defining and composing aspect oriented model for
best modeling purpose.

 The method used in this model is based on two
basic technology i.e. Role Based Meta Modeling
language [2] and graph transformation [3, 5]. Role
Based Meta Modeling language provides a precise,
simple graphical means for specifying a model level
aspect in a way that is consistent with UML

[13]. It is

used for modeling the structural part of security aspects
[6] as well as model behavioral UML

aspects [8]. The

base problem faced while using RBML

is that they do

not scale up to marks since a lot of effort is required to
specify the cross cuts among the core modes. Our
discussed method shows clearly the reduction in level of
effort to be done for models. Transformations using
graphs have been applied in a number of problems
related to the software engineering and to the problem
of merging of different systems together [9], but in none

 of the implementations it has been categorically
addressed how to apply them, in general way, to handle
the aspect at any level of UML

modeling. The aim of this

paper is to combine together the RBML and graph
transformations to achieve

a) General implementation of UML based aspect

modeling and composition at any stage of
abstraction.

b) To implement the proper scalability of aspect
composition.

This paper illustrates the approach with an assumed
transaction execution system based closely on an
existing application used by banks.

II. MODEL LEVEL ASPECTS

Aspect oriented models are models which
represent the cross cut, points cut and concern in a well
arranged manner along with aspects. From the view
point of problem discussed in this paper it can be
defined as a model that crosscuts other model at the
same level of abstraction. Here the words “same level of
abstraction ” plays very important role i.e. a model is
considered to be an aspect if it crosscut the other
model of same interactions e.g. if requirement cut
requirement model, requirement artifact cuts
requirement artifact only then they are considered as
aspects. In particular case a use case may not be
aspect. Although a use case is suppose to always cut

I

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

17

20
11

D
ec

em
be

r

across multiple implantations module, it is only
considered

to be an aspect if it cuts across other use

case.
 Discussion in this paper is restricted to the

definition of an aspect oriented model with a condition
that a model is an aspect only if it crosscuts other model
built with same perspective e.g. any model which is
build for global interpretation of interaction cannot cut a
model build with local interpretation of interaction and
hence is not at same level of abstraction but they have
different perspective-

local and global. These types of

models are not considered in this paper.

a)

Representation of Aspect in Role Based Modeling
Language

 Role Based Modeling Language [2] is used in
this paper to represent the Aspect-Oriented Modules.
This language is further complemented by France et al
[10]. RBML

is considered as a special case of UML

 Meta model in which each element of RBML

is treated

as a role. It is also considered that a role is a constraint
of a UML

Meta class with a set of optional properties

that any element must possess. Because RBML

is
considered as a special case of UML

hence each UML

diagram must have a corresponding RBML diagram in
which model elements are roles e.g. state roles and
transitions of RBML

represents a generic state that can

be made concrete by assigning it to a concrete role.
Proper care is to be taken that only those model
elements which satisfy the property of a role should be
treated as a role. RBML

model defines a generic model

that can be instantiated in many ways by assigning
elements to its entire role [14]. Any UML

model is said

to conform to a RBML

model if there is a valid argument

of elements in the UML

model to the roles of RBML

 model [14].
 RBML model is used to formalize the design

pattern [2] and to represent model level aspect [4]. This
was extended to behavioral aspect in [8] and [7]. As per
the original definition in [10] all RBML

model elements

must be roles i.e. they are Meta –

level elements. As per

[8] for representing aspects it is useful to allow object-
level elements in RBML

as well. The result is an

extended RBML, represented by eRBML, in which an
element may be Meta level or object level element [14].
Fig.1 shows the sequence of aspect in eRBML. It clearly
shows that whenever the user get ack of failed
transaction the HOST

itself record the status in STATUS

 file and at the same time shut down the USER

side as

well. Fig 1 shows the combination of object level
elements meta-level role together in one go. This type of
combination is preferred since status like objects are
remains unchanged and their relative updation
dependent on the varying values of roles only.

i.

Instantiation: it means to assign some concrete

Fig.1 :

Handling of Failed Transactions

values

to the elements or one –

to –

one mapping from
role to model elements. In context of eRBML

each
aspect model must be instantiated before it can be
composed with a base model. Instantiation is basically
used to define what the aspect should like in context

of
a particular application i.e. the aspect is identified and
specialized to a context. Fig.2 shows another example
of how aspects cross cuts each other. Sequence
diagram in Fig. 2 is taken as base for further discussion
and is part of our case study in coming sections. From
fig. 2 it is enough to conclude that there is a controller
which keeps control of accessing request from user and
sending it to the server for processing. Controlling all
aspect of transaction is the sole responsibility of the

Fig. 2 :

Base Sequence Diagram for user Transactions

controller, it also provide the necessary GUI for
processing. Failure handling is not considered as part of
this discussion. Instantiation is used to propose the
aspect for composition with the base. In the example
discussed here following instantiations are specified by
the modeler: | USER -> CONTROLLER| CONTROLLER-
> SERVER

and failure are not considered.

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

18

20
11

D
ec

em
be

r

 Transaction Fwd Save Status

 Failed Ack

 Shut Down

 USER HOST STATUS

Enable Store Initial Status

Store Initial Status

 Send Id & Pwd

 Acknowledge with Acceptance

 Request for Transaction

 Reply for Transaction

 Update the final status after transaction

Activate for next User

SCREEN USER CONTR
OLLER

SERVER STATUS

Fig.3 shows the result of composition of Fig. 1

and Fig. 2 and instantiate the aspect with base modeler.
Message to deal with intermediate REQ

is included and
is provided as an alternate execution path using UML
2.0

alt interaction fragment.

 ii.

Conformance

A

UML model is said to conform w.r.t. eRBML

if
their exist an instantiation of eRBML

model in a way that
all elements of instantiated eRBML

are present in UML

model along with existence of constraints. The
constraints are suppose to include the message
ordering, sequence diagram, transition ordering and
additionally specified properties of eRBML

roles with
respect to an UML

model there may exist any number
of different eRBML

models that conforms dependency
upon the availability of additional transaction. There may
be any number of additional transactions that exist in
between starting and closing transaction i.e.
intermediate transactions. Hence conformance should
be considered as a type of refinement.

 Fig. 3 : Composite of Fig.1 and Fig. 2

b) Aspect Composition
Model level aspect can be specified in a well

defined way in eRBML with respect to the aspects of
any UML diagram. As it is necessary to represent the
model aspect in a modular fashion, composing the
model aspect with base model is also important. Here
we are comparing the composition approaches of
France et al [11] and Whittle [8] to identify the limitations

of existing method to model. Fist one out of these two
approaches use templates to represent aspects.
Instantiation of eRBML aspect before composition is
mandatory in both of the approaches, though both of
the approaches [11] and [8] have different way of
implantation of composition.

 We have discussed a single method for
composition in Fig. 3. This figure though uses simple
technique, yet there are many alternates by using which
composition could be done. In fig.3 the intermediate
transaction is introduced which can be placed at
different level of execution and can produce different
compositions accordingly. Although it is simple in
nature, it may be not be suitable in many cases.
Common limitations of this method is that it is not able
to specify the fact that how the aspect messages should
be interleaved with the base model, or to specify that the
aspect messages define a sequence executed in
parallel with the base model message. As an alternative
there are many possible ways that composition could
occur. Challenging part to find a way for specifying
composition that admits a high degree of
expressiveness, with minimum effort to be applied for
modeling. To find the response on expressiveness and
scalability below we compare the techniques discussed
in [11] and [8].

 The method discussed in [11] allows the
modeler to describe the composition directive that finally
tailors the tailor algorithm. These composition directives
permit the user to specify the aspect message
interleaved with base or as an alternative or to run in
parallel of it. “Addition”, “deletion”, and “move”,
statements are supposed to be used as directives to
make the composed model. To merge the base and
instantiated model first of all their elements with the
same name are merged together. On completion of
merging of elements with same name in first go
directives are tailored to drive the exact form of
composition. This all method of tailoring demands a lot
pressure on modeler. Manual composition in this way
demands a composition to be implemented by first
applying the directive in each and every model’s
element also in the base model. This type of procedure
can’t

be scaled at all.

 In contrast to this the method discussed in [8] is
at higher level of abstraction. In this method the
composition operators are used instead of composition
directives. Specifically AND, OR

and IN

operators are

used. AND

operator is used

to interleave the base
model with aspect model. OR can be used to provide
the alternative sequence among base and aspect
model. IN has some special use and it is used to insert
the aspect message in any base sequence. Operators
used in this approach offer a high level view of
composing aspect models. This approach is more
suitable and easy then the one discussed in [11] since
user is not required to work with element by element

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

19

20
11

D
ec

em
be

r

Enable Store Initial Status

Store Initial Status

 Send Id & Pwd

 Acknowledge with Acceptance

 Request for Transaction

 Reply with Latest Value

 Intermediate Request

 Update the final status after transaction

Activate for next User

SCREEN USER CONTR
OLLER

SERVER STATUS

alt

manner. The only drawback of this approach is limited

number of operators for performing all desired tasks.

 III.

NEW METHOD OF COMPOSITION

 Techniques

discussed in sec 2 have limitations
with respect to scalability. In that technique it is the sole
responsibility of modeler to specify a set of role
instantiations for each aspect and for each base model
that is cross cut by aspect. It is obvious that for

large
aspect more number of instantiations is required to be
supplied. From fig. 3 it is clear that all the instantiations
are given in non graphical and in low level format that
are time consuming to understand and ultimately make
the maintenance of the model more difficult for the user.
In comparison the method discussed in this paper
provide a clean and clear way of separation of aspects
and the base model. The newly discussed technique
provides a new way of representing and composing
model aspects in a

way that maintains aspect
modularity along with scalability. Basically graph
transformation rules are used for representing
composition and is represented by a rule (L -> R)

bearing left hand side and right hand side. Left side is
responsible for keeping points where the aspect should
be applied and right side keeps the aspects in it.

 a)

Aspect as Graph Transformation

A graph transformation discussed in [5] is a rule

represented by r and has L

as left hand side and R

as
right hand side. Rule r is supposed to be applied on a
graph G and the process of applying r finds a graph
homomorphism, h, [5] from L

to G

and replacing h (L)

in
G

with h(R). To avoid any kind of unreferenced edges
i.e. edges with missing resources or

target node - L(R)

is applied into G in such a way that all edges connected
to a removed node in h(L)

are reconnected to a
replacement node in h(R).

UML

diagram can be represented in the form of
a graph because it is defined by the UML

meta-model
which is a graph where the nodes are Meta classes and
the edges are meta-relationships [13]. Hence it is
possible to represent transformation over UML

model
as graph transformation. Particularly we see
composition of an aspect model with a base UML

model as a graph transformation LHS

and RHS

both are
eRBML

models. As above L

side specifies the points
where the aspect should be applied and the R side
specifies the crosscutting structure/behavior that should
be inserted at those points.

Fig 4

: Composition as Graph Transformation and
handling Failure Aspects

Fig 4 represents how aspects from fig. 1 can be
represented by using graph transformation. It shows two
parts of aspects definition. Left side defines the aspects
itself and Right side defines the composition strategy.
On applying composition it would become possible to
deal with message for future that is inserted as an
alternative sequence after all instances of send
data/ack, a message sent from CONTROLLER

to
USER. The approach used here helps to define the
expressiveness and scalability related to composition in
an easy way. It becomes clear from fig. 4 that it become
possible to keep a complete separation of the aspects
and its composition strategy. It helps to reuse of the
aspects and application of the same aspects with
different purpose and different

composition strategy.
This technique is a fully expressive way of defining
composition strategy –

as one is shown in Fig. 4(it is
one other alternative may be used). This strategy uses
the number of instantiations required to design a model.
In the example discussed in Fig . 4 only one instantiation
is required to be provided by the modeler i.e. failure ack.
Rest all roles can be instantiated by graph matching
against a base mode, the left side of the graph
transformation is required to be matched with base
model instantiating USER, SERVER

, send data/ack
(only failure ack is required to be instantiated). In fig.4
the UML 2.0

ref fragment is used to specify the
placeholder for a sequence of messages in the base.
This is an easy way to match against a message
sequence whose position in the composed model can
then be specified exactly on the R.H.S

of the

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

20

20
11

D
ec

em
be

r

Send data/ack

Send data/ack

 Update Status

 Failure ack

 Shut Down

 USER

 other

CONTROLLER

ref

 USER CONTROLLER STATUS

 other
ref

alt

transformation w.r.t eRBML, the base definition must be
modified. When matching against the Left side of the

transformation rule r, it is mandatory to discuss the
instantiation for the role elements. In this context the
base definition is modified as the graph transformation
applies to a UML model if and only if the Left side of
transformation has a graph match i.e. module
conformance exist there. The method in terms of
scalability and expressiveness can be defined as:

i. Scalability
Main limitation of the scalability of all aspect

approaches based on RBML is that the modeler must
instantiate the role elements for each base model
crosscut by the aspects. Use of graph transformations
reduce this effort because instantiating the role elements
become automated to some extent. Instantiation place a
need to find a base model over which graph
transformation can be applied- i.e. finding a match for
left hand side of the transformation rule. As per above
discussion we apply the module conformance while
applying an aspect i.e. while working with the eRBML

model, R (rule), match a UML model say U, modulo
conformance if and only if there is an instantiation of the
role element Ø, such that Ø(R) conforms to model U. as
is clear from Fig. 4 it has modulo conformance with the
base model and hence problem of scalability is
managed well by graph transformations.

ii. Expressiveness
As shown in Fig. 4 and sec 3.1 the Right side of

the graph transformation rule, r, defines the manner in
which the aspect cross cuts a base model. Since Right
side is a model in itself, it completely reflects the
expressiveness and how the cross cutting is defined.
Here the aspect messages can be defined as an
alternative to a base message or messages, as
interleaved with the base message, accessing in parallel
with the base message or any other combination of
above discussed alternatives. The composition operator
discussed in sec 2.2.2 can be defined as special case
but graph transformation allows any combination of
these operators to be specified, or needed for new
operators to be specified. The composition directive in
sec 2.2.1 are subsumed by the graph transformation
approach because there is no longer any need to tailor
the aspect composition algorithm to add, delete or
remove elements - these modifications are rather
defined explicitly in the Right side of the transformation.

IV. CASE STUDY

For the purpose of doing the case study of the
expected system to be developed, we assume a system
in general which is responsible for processing of
transactions raised by user in terms of bank
transactions. Every user of bank is supposed to execute
a set of queries (may be predefined) for completion of
desired tasks. We assume a system for study in which

each user is required to first authenticate him/herself for
executing other transactions. After authentication use is
provided with a GUI

by using which rest all requests can
be processed. Some of the simplest form of query is
deposit and withdraw of amount and to get a balance or
mini statement from the bank. In all of this type of
queries a proper integrity among user interface window
and ATM

machine is mandatory i.e. any transaction
which affect the balance in the account must be
effective at all place and do the final status change at
some common location. These type of queries are
expected to be executed form ATM

machine, from
online based banking system, mobile based banking
system or from a window in a bank’s office where a
bank officer is supposed to execute desired on
verification of credentials from user. Important among all
these alternatives of query execution is that they must
do final status change at common location which is
accessed by all means of query execution and all the
time latest updated value must be available at that
location i.e. SERVER. Data integrity is clearly an
important issue to be maintained in design of this type
of systems. Any user who is permitted to use his
account by a number of means is dependent on one
central location i.e. SERVER

for latest updated values.
The design of this system is done by using the two –

phase commit protocol for maintaining serializability
among the transactions to keep the commonly used
values updated at all the time. The stress here is on the
application implementation of protocol not on its
practical details and is embedded in the working of
CONTROLLER. Following we are showing the
embedding of protocol in the CONTROLLER (core)
functionality and how the protocol is implemented via
aspects. This implementation is easily readable and
hence any desired changes in integrity are easily
implementable. The design is done in UML

by keeping
the dynamic nature of the design.

Importantly two situations demands the close
look upon the updated data i.e. first when a user is
accessing the account by bank window and at the same
time accessing via the mobile banking services and
second when transaction through ATM

is under
process and at the same time mobile banking
transaction is executing. Both of the situations demand
the very proper execution of two phase commit protocol.

Fig. 5 and Fig. 6 shows the base sequence

execution of transaction models corresponding to the
execution of query’s from WINDOW

and MOBILE

at a
time and from ATM

and MOBILE

at a time. In second
discussed scene the execution of query and updation in
final value may be delayed for some time because
updation done through ATM

may take some time for
final updation in the system. In fig. 6 we are introducing
a new syntax (all) used for processing the number of
transactions together finally at the common server

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

21

20
11

D
ec

em
be

r

transformation. At the time of defining the graph

location. Transfer of amount among the inter bank
accounts processed in this way cause delayed

execution. The intermediate results may get stored in
CONTROLLER

and are finally updated to the SERVER.
Here the two phase commit protocol is not modeled as
part of the core

Fig. 5 : Maintain Serializaibility among parallel execution
of Window and Mobile banking (single user)

functionality. Rather it is modeled separately for easy
modification if needed. In Fig.5 and Fig. 6 every time the
trigger of transaction is initialized by initializing both the
server as well as client by CONTROLLER. Then first of
all data (initial) is updated at sever and first GUI

is
provided to the client. In steps proceeding further the ID

and PWD

is submitted from USER

to the SEVER

and on
receiving the ACK (POSITIVE)

further transactions are
processed.

Two phase commit protocol is modeled and
shown in Fig. 7. It is build by considering the aspectual
view of transaction and keeping them in sequence in an
eRBML. Aspects are used to define a general pattern of
communication to be used by

Fig. 6 : Maintain Serializaibility among parallel execution
of Window and Mobile banking (single user) (Updated

Fig. 5)

protocols and are easy to modify for reusability at any
stage of application development. Two identified
elements in Fig. 7 are USER

and COMMIT SERVER.
Interaction among the two is given in the form of
message role so that it can be instantiated whenever
required with any specific message names. Important
implication of Fig. 7 is that it commit any of the
transaction only if both the USER

as well as COMMIT

SEVER

agrees on the transaction. This all is modified
and is shown in Fig. 8

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

22

20
11

D
ec

em
be

r

Enable Initialize

 Initialize

 Update Initial Status

 Send Id & Pwd (Mobile Bank)

 Acknowledge with Acceptance

 Request for Transaction

 Reply against Transaction

 Latest Value Updated

 Credential Verify (Bank Window)

 Verify Ack

 Transaction Request

 Transaction Processed

 Latest Value Updated

SCREEN USER CONTR
OLLER

SERVER STATUS

Enable Initialize

 Initialize

 Update Initial Status

 Send Id & Pwd (Mobile Bank)

 Acknowledge with Acceptance

 Request for Transaction

 Reply against Transaction

 Latest Value Updated

 Credential Verify (Bank Window)

 Verify Ack

 Transaction Request

 Update may pending

 Store to temp. Server

 (all) Transaction Processed

 (all) Latest Value Updated

SCREEN USER CONTR
OLLER

SERVER STATUS

Fig. 9 and Fig. 10 shows the left side and Right
side of graph transformation for refined aspect
discussed in Fig. 6. Important to note here is that the
Left side says that we have to apply the aspect at the
points at which prepare for commit will appear and the
same should preceded by Initialize message. The
enable is true for both of first and second scene. Here it
is possible to process the step by step manner or to
execute a separate algorithm for execution of
transactions. Right side of graph is shown in Fig. 10. In
this fig other messages are included to take into
consideration all or any kind of transaction which not be
used in general by all user but is expected to execute in
some special case only. The messages are supposed to
be executed only if the reply from the two phase commit
protocol is true. Two phase commit protocol is able to
reply true or false depending on the execution of
transactions. The base and aspect model are
composed in such a way that match for all other
messages is done only after point of successful
commitment. The use of existing method discussed in
[11] and [8] are not able to specify the conditions. The
method presented by [8] may allow the weaving in the
way which we want to describe. In method discussed in
[11] it is needed to specify a list of composition
directives that give the instructions to composition
algorithm where to placethe messages matching with
other messages. Hence the messages

Fig. 8 : Updated Two Phase Commit Protocol

discussed

in [11] and [8] are not appropriate for
presenting the directives in easy way and are time
consuming and error-

prone too. In comparison to these
two methods the graph transformation is an easy
graphical method to specify the directives. In the
method suggested in this paper it is very easy to place
any additional messages anywhere in the Right side of
the graph transformation rule. Along with is also
possible to specify a different composition way to
simplify|modifying the Right side of the Rule.

V.

CONCLUSION AND RELATED WORK

All

of the existing approaches used to identify,
compose and represent aspect at various level of
software development faces a number of limitations
especially the problem of scalability. The approach
discussed in this paper for representing aspect at any
level of software development using the

UML
methodology based on role modeling language. Various
level of hierarchy are used to structure aspects and their
possible instances. The problem of scalability is sorted
out in this method since graph transformation allow the
matching at any level of development and it
automatically compose aspects along with the problem
of expressiveness is also sorted out as use

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

23

20
11

D
ec

em
be

r

 (all) Prepare to Commit

 (all) Transaction Ready to Commit

 (all) ACK about Commit

 (all) Commit Complete

 (existing) Commit Complete

(all) Pending all incomplete Commit

 (Exit) for Reject of Commit

(all) Pending all Incomplete Commit

 USER COMMIT SERVER

alt

alt

Fig. 7 : Two Phase Commit Protocol

 (all) Prepare to Commit Update Initial Status

 (all) Transaction Ready to Commit

 (all) ACK about Commit

(all) Commit Complete

 Update Committed Status

 (existing) Commit Complete

(all) Pending all incomplete Commit

(Exit) for Reject of Commit

(all) Pending all Incomplete Commit

 USER

alt

alt

COMMIT
SERVER

STATUS

Fig. 10 :

Right Hand Side of Graph Transformation

of graphical method in terms of graph transformation
expresses all implementations. The validity of approach
is reflected through its use on bank’s transactions.

The approach discussed in this method is more
close to syntactic implementations a lot of modifications
can be done in terms of syntax related issues so that
immediate implementations in programming language
can be done. The modification to resolve the conflict
among the aspects can also be done. The matching

process discussed in this paper is also open to be
modified. The modification in terms of forward and
backward movements on matching at any level of
transformation can be done.

REFERENCES

REFERENCES

REFERENCIAS

1.

A. Rashid, A. Moreira and J. Araujo, (2003)
“Modularisation and Composition of Aspectual
Requirements”. AOSD 2003 Boston, USA, ACM
Press, pp 11-20, March 2003.

2.

Dae-Kyoo Kim, Robert France, Sudipto Ghosh and
Eunjee Song, “A Role-

Based Metamodeling
Approah to Sepecifying Design Patterns”,
COMPSAC 2003, Dallas, Texas, 2003.

3.

D-K. Kim, “A Metamodeling Approach to Sepcifying
Patterns”, PhD Thesis, Colorado State Univreisity,
2004.

4.

G. Georg and R. France, “UML Aspect Specification
using Role Modles”,OOIS,France, Lecture Notes in
Computer Science, Springer, Vol. 2425, pp 186-191,
September 2002.

5.

G. Rozenberg, editor. “Handbook of Graph
Grammers and Computing by Graph
Transformation, Volume 1: Foundations.” World
Scientific, 1997.

6.

I.Ray, N. Li, R. B. France and D-K.Kim, “Using UML
to Visualize Role-based Access Control
Constraints.” SACMAT 2004: 115-124.

7.

J. Araujo, J. Whittle and D. K,Kim, “Modeling and
Computing Scenario-

Based Requirements with
Aspects.” RE 2004,Kyoto, Japan, IEEE CS Press,
2004.

8.

J. Whittle

and J. Araujo, “Scenario Modeling with
Aspects”, IEEE Proceedings Software,Vol 151(4) pp.
157-172,2004.

9.

M. Goedicke,B. Enders, T. Meyer, G. Taentzer,
“ViewPoint-Oriented Software Development : Tool
Support for Integrating Mutiple Prespective by
Distributed Graph Transformation.” TACAS 2000;
43-47.

10.

R. France, /D-K,Kim,S.Ghosh andE. Song. “A UML-

Based Pattern Sepcification Technique.” IEEE
Transactions on Software Engineering, Vol 30(3), pp
193-206,2004.

11.

R. France I. Ray,G. Georg and S. Ghosh, “An
Aspect-Oriented Approach to Design Modeling”,
IEEE Proceedings Software, Vol 151(4), pp 174-186,
August 2004.

12.

S. Clarke and R. J. Walker, “Composition Patterns :
An Approach to Designing Reusable Aspects”. ICSE
2001, Toronto, Canada, IEEE CS Press, pp 5-
14,2001.

13.

UML version 2.0 Available from the Object
Management Group, 2005, http://www.omg.org.

14.

Whittle. Jon, Araujo. Joao, Moreira. Ana,
“Composing Aspect Models with Graph
Transformations”, EA 06, Shanghai, China. 2006.

Representing Aspect Model as Graph Transformation

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II

V
er
si
on

 I

24

20
11

D
ec

em
be

r

Fig. 9 : Left Hand Side of Graph Transformation

Initialize

 (all) Prepared for Commit

 SCREEN
COMMIT
SERVER STATUS

 Messagesref

(all) Prepare to Commit Update Initial Status

 (all) Transaction Ready to Commit

 (all) ACK about Commit

 (all) Commit Complete

(existing) Commit Complete Update Commit Status

(all) Pending all incomplete Commit

(Exit) for Reject of Commit

 Update Reject of Commit Status

(all) Pending all Incomplete Commit

 Update Incomplete Commit Status

 USER

alt

alt

 COMMIT SERVER STATUS

 Messagesref

	Representing Aspect Model as Graph Transformation
	Authors
	Keywords
	I. INTRODUCTION
	II. MODEL LEVEL ASPECTS
	a)Representation of Aspect in Role Based ModelingLanguage
	b) Aspect Composition

	III.NEW METHOD OF COMPOSITION
	IV. CASE STUDY
	V.CONCLUSION AND RELATED WORK
	REFERENCESREFERENCESREFERENCIAS

