
© 2011 . K Munivara Prasad, A Rama Mohan Reddy, V Jyothsna. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

 Global Journal of Computer Science and Technology
Volume 11 Issue 21 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Modeling and Counter Measures of Flooding Attacks to
Internet Threat Monitors (ITM): Using Botnet and Group-
Testing approach

By K Munivara Prasad, A Rama Mohan Reddy, V Jyothsna

Sree Vidyanikethan

Engg.College, Tirupati

Abstract

-

The Internet Threat Monitoring (ITM),is a globally scoped Internet monitoring system whose

goal is to measure, detect, characterize, and track threats such as distribute denial of service(DDoS)
attacks and worms. To block the monitoring system in the internet the attackers are targeted the ITM
system. In this paper we address flooding attack against ITM system in which the attacker attempt to
exhaust the network and ITM’s resources, such as network bandwidth, computing power, or operating
system data structures by sending the malicious traffic. We propose an information-theoretic frame work
that models the flooding attacks using Botnet on ITM.we propose a novel group testing (GT)-based
approach deployed on back-end servers, which not only offers a theoretical method to obtain short
detection delay and low false positive/negative rate, but also provides an underlying framework against
general network attacks.

General Terms :

Computer networks, network security, Attacks and Internet.

Keywords :

Internet Threat Monitors (ITM), DDoS, Flooding attack, Botnet and Honeypot, Group testing.

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors ITM Using Botnet and Group-Testing approach

Strictly as per the compliance and regulations of:

GJCST Classification : K.6.5

Modeling and Counter Measures of Flooding
Attacks to Internet Threat Monitors (ITM): Using

Botnet and Group-Testing approach

Abstract - The Internet Threat Monitoring (ITM),is a globally
scoped Internet monitoring system whose goal is to measure,
detect, characterize, and track threats such as distribute denial
of service(DDoS) attacks and worms. To block the monitoring
system in the internet the attackers are targeted the ITM
system. In this paper we address flooding attack against ITM
system in which the attacker attempt to exhaust the network
and ITM’s resources, such as network bandwidth, computing
power, or operating system data structures by sending the
malicious traffic. We propose an information-theoretic frame
work that models the flooding attacks using Botnet on ITM.we
propose a novel group testing (GT)-based approach deployed
on back-end servers, which not only offers a theoretical
method to obtain short detection delay and low false
positive/negative rate, but also provides an underlying
framework against general network attacks.
General Terms : Computer networks, network security,
Attacks and Internet.
Keywords : Internet Threat Monitors (ITM), DDoS,
Flooding attack, Botnet and Honeypot, Group testing.

I. INTRODUCTION

nternet security is increasing in importance. Yet,
despite decades of research, we are still unable to
make secure computer networks. Further, more

sophisticated and new attacks are expected to continue
posing a greater degree of threat to Internet services. As
a result, a more fundamental model, in terms of
theoretical and system perspectives, regardless of
attack types must be investigated. An essential problem
to overcome for any defense mechanism is the fact that
malicious traffic/packets can be similar to legitimate
ones.

Denial-of-Service (DoS) is a major security
problem in computer systems and networks. In a DoS
attack, a group of attackers try to make a service
unavailable to legitimate clients for unacceptably long
periods of time. Service-level DoS attacks target server
resources by issuing legitimate-like service requests at a
high rate to overwhelm the victim servers. These attacks,
attempt to exhaust the victim’s resources, such as
network bandwidth, computing power, or operating
system data structures. Flood attack, Ping of Death
attack, SYN attack, Teardrop attack, DDoS , and Smurf

attack are the most common types of DoS attacks. The
hackers who launch DDoS attacks typically target sites
or services provided by high-profile organizations, such
as government agencies, banks, credit-card payment
gateways, and even root name servers.

A flooding-based Distributed Denial of Service
(DDoS) attack is a very common way to attack a victim
machine by sending a large amount of unwanted traffic.
Network level congestion control can throttle peak traffic
to protect the network. Network monitors are used to
monitor the traffic in the networks to classify them as
genuine or attack traffic and also these monitors gives
the traffic as an input to several DDoS detection
algorithms for detection of DDoS attacks. However, it
cannot stop the quality of service (QoS) for legitimate
traffic from going down because of attacks. Two
features of DDoS attacks hinder the advancement of
defense techniques. First, it is hard to distinguish
between DDoS attack traffic and normal traffic. There is
a lack of an effective differentiation mechanism that
results in minimal collateral damage for legitimate traffic.
Second, the sources of DDoS attacks are also difficult to
find in a distributed environment. Therefore, it is difficult
to stop a DDoS attack effectively.

The Internet Threat Monitoring (ITM) System
basically has two main components one is centralized
data center and another is the number of monitors
which are distributed across the Internet. Each monitor
covers the range of IP addresses and monitors the
traffic to send the traffic logs to data center. The data
center now collects the traffic logs from monitors and
analyzes the collected traffic logs to publish reports to
ITM system users.
 The collected logs, as a random sample of the
Internet traffic, can still provide critical insights for the
public to measure, characterize, and track/detect
Internet security threats. The idea of ITM systems dates
back to DShield and CAIDA network telescope [4], [5],
which have been successfully used to analyze the
activities of worms and DDoS attacks [3], [6].The reason
is that if an attacker discovers the monitor locations, it
can easily avoid detection (by ITM systems) by
bypassing the monitored IP addresses and directing the
attack to the much larger space of unmonitored IP
addresses. Furthermore, such an attacker may even
mislead the reports published by an ITM system by

I

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

15

20
11

D
ec

em
be

r

Author α: Assistant Professor(SL) Sree Vidyanikethan Engg.College,
Tirupati. E-mail : prasadkmv27@gmail.com
Author Ω : Professor and Head Dept.of CSE Sri Venkateswara
university college of Engg.S V University,Tirupati.

K Munivara Prasad α, A Rama Mohan ReddyΩ , V Jyothsnaβ

Author β : Assistant Professor, Department of Information technology,
Sreevidyanikethan Engineering College, Tirupati

manipulating traffic to the identified monitors, generating
highly skewed samples. Since ITM reports are trusted
by the public as a random (unbiased) sample of Internet
traffic, the confidentiality of monitor locations is vital for
the usability of ITM systems.

The monitor locations of an ITM system can be
compromised by introducing several attacks by the
attackers which includes Localization attacks [1] and
DDoS Attacks which exploits some vulnerability or
implementation bug in the software implementation of a
service to bring that down or that use up all the available
resources at the target machine or that consume all the
bandwidth available to the victim machine, this is called
as Bandwidth attacks.

The main goal of our work is to perform the
identification of attackers much faster by testing them in
group instead of one by one. This will help to detect the
flooding attacks, So that if any ITM is found under
attack, we can immediately identify and filter the
attackers out of its client set. Apparently, this problem
resembles the group testing (GT) theory [14] which aims
to discover defective items in a large population with the
minimum number of tests where each test is applied to
a subset of items, called pools, instead of testing them
one by one. Therefore, we apply GT theory to this
network security issue and propose specific algorithms
and protocols to achieve high detection performance in
terms of short detection latency and low false
positive/negative rate.

In this paper we introduce an information
theoretic frame work model to existing flooding attacks
on ITM system monitors. In the flooding attack the
attacker sends the large volume of unwanted traffic to
the targeted monitor by using the botnet or huge
number of compromised systems. Based on the
Information-theoretic model we propose a Group
Testing based approach to detect flooding attacks.

II. RELATED WORK
Probing traffic based Localization attack [7][8]

in which an attacker sends high rate short length port
scan messages to the targeted network to compromise
the monitor locations in ITM system. Then, attacker
queries the data center to determine whether a short
spike of high-rate traffic appears in the queried time-
series data, for confirmation of the attack.

A steganographic localization attack [9] an
attacker launches a stream of low-rate port-scan
probing traffic which is marginally modulated by a secret
Pseudonoise (PN) code. While the low-rate property
prevents the exhibition of obvious regularity of the
published traffic data at the data center, based on the
carefully synchronized PN code, the attacker can still
accurately identify the PN-code-modulated traffic in the
retrieved published traffic data from the data center.
Thereby, the existence of monitors in the targeted
network can be compromised. To this end, the PN-

code-based steganographic attack presented in our
paper can be understood as a covert channel problem
[10], because the attack traffic encoded by a signal
blends into the background traffic and is only
recognizable by the attacker which knows the secret
pattern of the PN code.

 In [1] introduced the information theoretic
framework to evaluate the effectiveness of the
localization attacks by using the minimum time length
required by an attacker to achieve a predefined
detection rate as the metric. But this frame work is
defined in specific to the localization attacks only; they
are not given any solution for other DDoS attacks. The
frame work allows the ITMs which are registered within
the data center given, and the access is restricted to
that private region only. But public access of the ITMs
and data center allows more scope to provide security
against different attacks.

 Group Testing (GT) based approach [17] is
used to detect the application denial of service attacks,
there the efficiency of the attack detection is improved
by testing the traffic by group instead of one by one. The
GT approach also minimizes the false positives and
false negatives comparatively to the input traffic. But the
GT approach can be applied to the DDoS detection
whenever the number of attackers known in advance.
This assumption will not be suitable for all DDoS
attacks.

 III. PROPOSED WORK

 In [1] the authors define a model in which the
ITMs

in the networks sends the traffic logs periodically
to the data center and the data center collects the traffic
logs and publishes the reports to ITM

system users
which are registered, that means it creates the private
environment or region .In the private region the scope
for DDoS

attacks are very less, and they are restricted
this model only for Localization attacks. In this section

 we have defined a model which will provide the following
extensions.

 Public accessing

: Public accessing of the data
center increases the network usage and provides better
communication with the outside world rather than private
environment. In this any user from outside the private
region can get the communication with the private
network, if the user is genuine he can get the status of
the monitor before sending the data to internal monitors,
to avoid the attacks. If the user is an attacker, then this
status information can be misused to perform the
attacks on the monitor. The data center sends the status
information to any users (public or private) based on the
request query, but the private (internal) users can get
the highest priority.

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

16

20
11

D
ec

em
be

r

Usage of Botnets for Flooding Attack : A denial-
of-service (DoS) attack is an explicit attempt by
attackers to prevent an information service’s legitimate
users from using that service. In a DDoS attack, these

attempts come from a large number of distributed hosts
that coordinate to flood the victim with an abundance of
attack packets simultaneously. The attacker may use the
botnets [11], [12] and other alternatives to launch the
attack.

a)

Flooding

Launching a flooding attack

: Once the DDoS

network has been set up and the infrastructure for
communication between the agents and the handlers
established, all that an attacker needs to do is to issue
commands to the agents to start sending packets to the
victim host. The agents try to send unusual data packets
(all TCP

flags set, repeated TCP SYN packets, Large
ICMP

packets) to maximize the possibility of causing
disruption at the victim and the intermediate nodes.
There are certain basic packet attack types which are
favorites of the attack tool designers. All the attack tools
use a combination of these packet attack types to
launch a DDoS

attack. The basic attack types are

i.

TCP

floods

: A stream of packets with various flags

(SYN,RST, ACK) are sent to the victim machine.
The TCP SYN flood works by exhausting the TCP

connection queue of the host and thus denying
legitimate connection requests. TCP ACK

floods
can cause disruption at the nodes corresponding to
the host addresses of the floods as well. Also the
one known tool that uses TCP ACK

flooding
(mstream [13]) has been

known to cause
disruptions in a router even with a moderate packet
rate. Both TCP SYN flooding and the mstream
attack constitute a group of attacks known as
asymmetric attacks (Attacks where a less powerful
system can render a much more powerful system
useless).

ii.

ICMP

floods (e.g ping floods)

: A stream of ICMP

packets is sent to the victim host. A variant of the
ICMP

floods is the Smurf attack in which a spoofed
IP packet consisting of an ICMP ECHO_REQUEST

is sent to a directed broadcast address. The RFC

for ICMP

specifies that no ECHO_REPLY packets
should be generated for broadcast addresses, but
unfortunately many operating systems and router
vendors have failed to incorporate this into their
implementations. As a result, the victim host (in this
case the machine whose IP

address was spoofed
by the attacker) receives ICMP ECHO_REPLY
packets from all the hosts on the network and can
easily crash under such loads. Such networks are
known as amplifier networks and thousands of such
networks have been documented.

iii. UDP floods

: A huge amount of UDP

packets are
sent to the victim host. Trinoo is a popular DDoS

tool that uses UDP

floods as one of its attack
payloads.

b)

Bots

Studying the evolution of bots and botnets
provides insight into their current capabilities. One of the
original uses of computer bots was to assist in Internet

Relay Chat (IRC) channel management [14]. IRC

is a
chat system that provides one-to-one and one-to-many
instant messaging over the Internet. Users can join a
named channel on an IRC

network and communicate
with groups of other users. Administering busy chat
channels can be time consuming, and so channel
operators created bots to help manage the operation of
popular channels. One of the first bots was Eggdrop,
which was written in 1993

to assist channel operators
[1].

In time, IRC

bots with more nefarious purposes
emerged. The goal of these bots was to attack other
IRC

users and IRC

servers. These attacks often involved
flooding the target with packets (i.e., DoS attacks). The
use of bots helped to hide the attacker because the
attack packets were sent from the bot rather than
directly from the attacker (assuming a non-spoofed
attack). This new level of indirection also allowed
multiple computers to be grouped together to perform
distributed attacks (DDoS)

and bring down bigger
targets. Larger targets required more bots, and so
attackers looked for methods to recruit new members.
Since very few users would agree to have their
computers utilized for conducting packet floods,
attackers used

trojaned files and other surreptitious
methods to infect other computers.

c)

IRC-

based Command and Control

A bot must communicate with a controller to
receive commands or send back information. One
method for establishing a communication channel is to
connect directly to the controller. The problem is that
this connection could compromise the controller’s
location. Instead, the bot controller can use a proxy
such as public message drop point (e.g., a well-known
message board). However, because websites and other
drop points can introduce significant communication
latency, a more active approach is desirable. A well-
known public exchange point that enables virtually
instant communication is IRC.

IRC

provides a common protocol that is widely
deployed across the Internet and has simple text-based
command syntax. There is also a large number of
existing IRC

networks that can be used as public
exchange points. In addition, most IRC

networks lack
any strong authentication, and a number of tools to
provide anonymity on IRC

networks are available. Thus,
IRC

provides a simple, low-latency, widely available,
and anonymous command and control channel for
botnet communication. An IRC

network is composed of
one or more IRC

servers as depicted in Figure 1.

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

17

20
11

D
ec

em
be

r

In a typical botnet, each bot connects to a
public IRC network or a hidden IRC server on another
compromised system. The bot then enters a named
channel and can receive commands directly from a
controller or even from sequences encoded into the title
of the channel.

d)

Group Testing

The first application of group testing was during
WWII; instead of testing every blood sample
individually, groups of samples were pooled together
and tested collectively. If the outcome of the group test
is negative, all samples in the group are good (disease-
free). Although group testing has been used since

then
in many security and networking applications, such as
data forensics, cryptography, multiple-access channels,
and broadcast security against jamming, our work is the
first to apply this powerful theory to the DoS

attack
problem.

Group testing aims mainly at identifying the
defective (special) members of a population with few
tests. There are two classes of group-testing
mechanisms. “Non-adaptive”, or single-stage, specifies
all tests simultaneously without the benefit of using the
outcomes of previous

tests to determine the present
test. Adaptive (multi-stage) group testing uses feedback
from previous test results to determine subsequent
tests.

ii.

Detection of defective members

The detection algorithm discovers the defective
members using the result vector and Members Test
(defectives underlined) Results. An example of a group-
testing matrix. the matrix. The algorithm we use in this
paper works by excluding a negative (non-defective)
member if it participates in a “large enough” number of
tests with a negative result. For instance, if we assume
that a member has to participate in only one negative
test to be excluded, then in the above example;
members 1, 3, 4, 5, 7, 9, and 10 will be excluded. This
leaves us with the defective members 2, 6, and 8 as
suspects. In this specific example, all defective elements
are detected, and all non-defective members are
cleared.

iii.

Apply to Attack Detection

A detection model based on GT

can be
assumed that there are T

virtual servers and N

clients,
among which d clients are attackers shown in fig.
Consider the matrix M

,the clients can be mapped
into the columns and virtual servers into rows in M,
where M [i,j]=1 if and only if the requests from client j

are distributed to virtual server i. With regard to the test
outcome column V, we have V [i]=1

if and only if virtual
server i

has received malicious requests from at least
one attacker, but we cannot identify the attackers at
once unless this virtual server is handling only one client.
Otherwise, if V [i]=0, all the clients assigned to server i
are legitimate. The d

attackers can then be captured by
decoding the test outcome vector V

and the matrix M.

iv.

False Positive and False Negative Probabilities

A false positive is when a non-defective
member gets falsely identified as defective, while a false
negative is when a defective member ends up being not
detected. In the example above, both the false positive
probability and the false negative probability are 0. In
general, simple detection algorithm discussed above
detects all defective members with the false positive
probability

FP = [1−p(1−p)d]T ,

Where d

is the number of defective members in
the group and T

is the number of tests used to detect
defective members. By differentiating the above
equation with respect to p, the optimal value of p, the
value that yields the minimum false positive probability,

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

18

20
11

D
ec

em
be

r

is 1/d+1. Thus, the minimum false positive probability for
a given number of tests T is:

Finally, from Eqn. 1 we derive the number of
tests, Tfp, required to achieve a target false positive
probability fp:

i. Basic Idea
The basic group testing is modeled as a T × N

matrix, where N is the total number of members, and T
is the number of tests. Matrix rows represent tests and
columns represent group members. When a matrix
element (i, j) is set to 1, this means that member j
participates in test i. An example of a group testing
matrix for a population of 10 members with 4 tests is
shown in Figure 1. Test results are represented as a
vector with an element for each test. For simplicity we
assume that the test results are binary. So, a test result
is set to 1 if the corresponding test returns a positive
result, that is, if the test was applied to a group with at
least one defective member. In the example shown in
Figure 1 the 2nd, 6th, and 8th members are defective.

Figure 1 : Compromised computers. In a distributed
denial-of-service attack (DDoS), these computers serve

three major roles: master controller, command and
control server, and bot.

txn

As we will show later, Tfp

is O(d), that is, the
number of tests is in the order of number of defective

members attackers) not the total number of members
(N).

The false negative probability is

Figure 2 : Work flow of flooding attacks using botnet.

Where ῤattack refers the the probability of
attack and d is the expected number of attackers.

IV. PROPOSED MODEL

In this paper we divided the entire model into
two regions namely private region and public region.
The Internet Threat Monitors (ITM) are distributed
across the Internet and each monitor records the traffic
addressed to range of IP addresses and send the traffic
logs periodically to the data center. The data center then
analyzes the traffic logs collected from the monitors and
publishes the reports to ITM

system users. The

collection of monitors under the data center forms the
private region because the ITMs

are registered before

sending the logs to the data center. Any user can get
the reports of the requested ITM

by sending the query

request to the data center and the data center is
answerable to all the ITMs

which are registered.

The public region of our

model specifies the

unregistered users of the data center who does not have
any permission to access the data center, but they can

get the traffic reports related to any ITM

by sending the

query request to the data center. The data center scope
is extended to the public domain but it can only give the
traffic reports to the public users. Allowing the public
users or network accessing to the data center and
monitors, causes decrease in the performance because
of the overload of the data center. These can be

balanced by introducing the priorities to the users; the
internal or private region users have the highest priority
than the public users .This priorities does not disturb the
existing scenario but this can enhance the service to the
public domain ,this will not be a over burden to the data
center.

In This section we are constructing the botnet
as the public user network without having any
registration with data center and performing the flooding
attack on the ITM

which is local to the data center.

i.

Generation of flooding attack with Botnet

 A DDoS

(Flooding) attack mechanism typically

includes a network of several compromised computers
[15]. These compromised computers serve three major
role -master controller, command and control (C&C)

server,

and bot. An attacker prepares a DDoS

attack by

exploiting vulnerabilities in one computer system and
making it the DDoS

“master controller.” From here, the

attacker identifies and communicates with other

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

19

20
11

D
ec

em
be

r

compromised systems. A C&C server is a compromised
host with a special program running on it, this server
distributes instructions from the attacker to the rest of
the bots, which form a botnet[11]. (A bot is a
compromised host that runs a special program.) Each
C&C server is capable of controlling multiple bots, each
of which is responsible for generating a stream of
packets to the intended victim. Often, the bots
employed to send the flood of requests are infected with
a virus that lets attackers use them anonymously.

A Flooding attack happens in several phases :
• Discover vulnerable hosts. To launch a DDoS

attack, attackers first build a network of computers
that they can use to produce the volume of traffic
needed to deny services to legitimate users. To
create this network, they first scan and identify
vulnerable sites or hosts. Vulnerable hosts are
usually those that run either no antivirus software or
an out-of-date version, or those that aren’t properly
patched. Attackers use these compromised hosts
for further scanning and compromises.

• Establish a botnet. After gaining access, attacker
must then install attack tools on the compromised
hosts to form a botnet.

• Launch an attack. In the next phase, attackers send
commands to C&C servers for their bots to attack
by sending hundreds of thousands of requests to
the target simultaneously.

• Flood a target. In the final phase, monitor receives a
flood of requests to the point where they can’t
operate effectively.

ii. Conformation of attack
The attacker queries the data center for the

traffic reports. Such traffic reflects both flooding
requests traffic and other traffic collected from all
monitors. Then the attacker confirms the attack by
checking the status of the ITM in the traffic reports
published by the data center.

V. PREVENTION

Preventive mechanisms attempt either to
reduce the possibility of DDoS attacks or enable
potential victims to endure the attack without denying
services to legitimate users.
• System security mechanisms increase a host’s

overall security posture and prevent it from
becoming part of a botnet or a DDoS victim.
Examples of system security mechanisms include
reliable firewall filtering, proper system
configuration, effective vulnerability management,
timely patch installation, robust antivirus programs,
controlled and monitored system access, and solid
instruction detection.

• Resource multiplication mechanisms provide an
abundance of resources to counter DDoS threats,

such as increasing the capacity of network
bandwidth, routers, firewalls, and servers. Additional
examples include deploying information services at
diverse network locations and establishing clusters
of servers with load-balancing capabilities.
Resource multiplication essentially raises the bar on
how many bots must participate in an attack to be
effective. While not providing perfect protection, this
last approach has often proved sufficient for small-
to mid-range DDoS attacks.

Preventing Flooding Attacks
In this section we introduce a general

methodology to prevent flooding attacks. It is based on
the following line of reasoning:

1) To mount a successful Flooding attack, a large
number of compromised machines are necessary.

2) To coordinate a large number of machines, the
attacker needs a remote control mechanism.

3) If the remote control mechanism is disabled, the
Flooding attack is prevented.

 Our methodology to mitigate flooding attacks
aims at manipulating the root-cause of the attacks, i.e.,
influencing the remote control network. Our approach is
based on three steps:

1. Infiltrating the remote control network.
2. Analyzing the network in detail.
3. Shutting down the remote control network.

In the first step, we have to find a way to
smuggle an agent into the control network. In this
context, the term agent describes a general procedure
to mask as a valid member of the control network. This
agent must thus be customized to the type of network
we want to plant it in. The level of adaptation to a real
member of the network depends on the target we want
to infiltrate. For instance, to infiltrate a botnet we would
try to simulate a valid bot, maybe even emulating some
bot commands.

Once we are able to sneak an agent into the
remote control network, it enables us to perform the
second step, i.e., to observe the network in detail. So we
can start to monitor all activity and analyze all
information we have collected.

In the last step, we use the collected information
to shut down the remote control network. Once this is
done, we have deprived the attacker’s control over the
other machines and thus efficiently stopped the threat of
a flooding attack with this network. Again, the particular
way in which the network is shut down depends on the
type of network.

VI. DETECTION OF FLOODING ATTACKS

In this section we present efficient way of
detecting the attacks on the ITMs in the given
information theoretic frame work. We divide the attack

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

20

20
11

D
ec

em
be

r

detection process into two phases, Firstly the primary
detection of DDoS attacks on the ITMs and the later is
the detection of flooding attacks on the ITMs.

In the primary detection phases the system
detects the attacks based on traffic information
aggregated from all monitors in the ITM system. If the
overall traffic rate (e.g., volume in a given time interval)
exceeds a predetermined threshold, the defender issues
an alarm. The threshold value can be maintained either
at data center or the individual ITMs based on the type
of schemes used [1] in the network.In the primary
detection phase the system detects some attack was
happened in the network. If the detection scheme is
centralized, then whenever the aggregate traffic exceeds
the threshold maintained at the data center then the
data center finds the attack and that attacked monitor
can be identified by verifying the individual traffic logs of
each ITM from the report. Otherwise if the detection
strategy is distributed then each monitor maintained an
individual threshold and checked the aggregate traffic
regularly. If the traffic exceeds the threshold then it find
the attack was happened and sends the status as
attacked to the data center. After getting the attacked
status from the ITM the data center blocks the
corresponding ITM and displays the status of the ITM
as blocked in the status reports, which will avoids the
further traffic to or from the attacked ITM with the rest of
the networks.

The second stage of detection specifies the
detection of the flooding attacks. Once the attack is
conformed then the data center identifies the attacked
monitor and the traffic logs will be handover to the
flooding detection phase. The flooding detection phase
then performs the group testing (GT) on the traffic, then
identifies the attackers from the client traffic set.

In this section we define group testing (GT)
based DDoS detection methods for flooding detection
on ITMs in information frame work defined, and also
detection of false positives and false negatives in the
network for large flow size.

a) BOTNET Detection
Botnets are a very real and quickly evolving

problem that is still not well understood. In this paper,
we outline the problem and investigate methods of
stopping bots. We identify three approaches for
handling botnets:
1) Prevent systems from being infected,
2) Directly detect command and control

communication among bots and between bots and
controllers, and,

3) Detect the secondary features of a bot infection
such as propagation or attacks.

The first approach is to prevent systems from
being infected. There are a range of existing techniques,
including anti-virus software, firewalls, and automatic
patching.

The second approach is to directly detect
botnet command and control traffic. Botnets today are
often controlled using Internet Relay Chat (IRC) and one
possible method of detecting IRC-based botnets is to
monitor TCP port 6667 which is the standard port used
for IRC traffic. One could also look for non-human
behavioral characteristics in traffic, or even build IRC
server scanners to identify potential botnets.

We argue there is also a third approach that
detects botnets by identifying secondary features of a
bot infection such as propagation or attack behavior.
Rather than directly attempting to find command and
control traffic, the key to this approach is the correlation
of data from different sources to locate bots and
discover command and control connections.

In this paper we investigate the second
approach for stopping botnets. The problem with the
first approach is that preventing all systems on the
Internet from being infected is nearly an impossible
challenge. As a result, there will be large pools of
vulnerable systems connected to the Internet for many
years to come.

b) Detecting Command and Control
To combat the growing problem of bots, we

identified two approaches for detecting botnets: detect
the command and control communication, or detect the
secondary features of a bot infection. In this section we
study methods of detecting botnets by directly locating
command and control traffic.
i. IRC-based Botnet Detection

Today, most known bots use IRC as a
communication protocol, and there are several
characteristics of IRC that can be leveraged to detect
bots. One of the simplest methods of detecting IRC-
based botnets is to offramp traffic from a live network on
known IRC ports (e.g., TCP port 6667) and then
inspects the payloads for strings that match known
botnet commands. Unfortunately, botnets can run on
non-standard ports. Another method is to look for
behavioral characteristics of bots. One study found that
bots on IRC were idle most of the time and would
respond faster than a human upon receiving a
command. The system they designed looked for these
characteristics in Netflow traffic and attempted to tag
certain connections as potential bots [15].

The approach was successful in detecting idle
IRC activity but suffered from a high false positive rate.
Given problems such as false positives on live networks,
another approach is to use a non-productive resource or
honeypot.

One group set up a vulnerable system and
waited for it to be infected with a bot. They then located
outgoing connections to IRC networks and used their
own bot to connect back and profile the IRC server [16].
However, they did not take the next step and develop a
detection system based on the technique.

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

21

20
11

D
ec

em
be

r

Rather than connecting to the IRC server
directly, another approach is to use a honeypot to catch
the bot and then look for characteristics of command
and control traffic in the outgoing connections. We
located all successful outgoing TCP connections and
verified that they were all directly related to command
and control activity by inspecting the payloads. There
were a wide range of interesting behaviors, including
connections from the bot to search engines to locate
and use bandwidth testers, downloading posts from
popular message boards to get server addresses, and
the transmission of comprehensive host profiles to other
servers.

These profiles included detailed information on
the operating system, host bandwidth, users,
passwords, file shares, filenames and permissions for all
files, and a number of other minute details about the
infected host.

We then analyzed all successful outgoing
connections and looked for specific characteristics that
could be used to identify botnet command and control
traffic. The results suggested that there are no simple
characteristics of the communication channels
themselves that can be used for detection. For example,
the length of the outgoing connections varied widely,
with certain connections lasting more then 9 hours and
others less than a second.

The number of bytes transferred per connection
also varied widely even when we separated out IRC
communication from other command and control
activity. The results from our analysis nor the results
from previous bot detection efforts has revealed any
simple connection-based invariants useful for network
detection. One might inspect every payload of every
packet however this is currently very costly on high
throughput networks. More importantly, attackers can
make small modifications that make detection nearly
impossible.
ii.

Efficiency : The efficiency of the detection
system is depends on the number of honeypots placed
in the network. If one honeypot is used to perform the
detection in centralized approach, then more than one
ITM is attacked automatically the honeypot will be
overloaded and it takes more time to detect the
attackers. Otherwise if the detection system is
distributed, then the efficiency of the detection system is
improved, but it is very much cost effective, practically
not possible for the large networks.

In GT approach the detection process can be
carried out only at data center by collecting the traffic
logs from the attacked ITM through data center same
as the centralized detection of the honeypot approach.
Unlike honeypot detection, the efficiency of the
detection process does not depend on the traffic
because huge amount of traffic also processed in terms

of pools in the GT approach and handled successfully.
The pools or groups can be as inputs for multiple
rounds of different tests in GT approach to check for
different anomalies in the input malicious traffic.

Reliability : One honeypot for each ITM
approach is reliable but it is practically very difficult to
manage and maintained. If the centralized honeypot
compromises then total detection process will be
vanished.

The reliability of the GT approach depends on
the groups or pools of the malicious traffic considered
as the input for the GT approach. The number of tests
performed on the traffic improves the detection
efficiency and covers wide range of possible attacks of
DDoS attacks on ITM.

Scalability : If the detection approach is
centralized then no need to use additional honeypots to
the network except the honeypot placed at the data
center when ever new ITM entered into the private
region. In the distributed detection approach new
honeypot is attached whenever the new ITM entered
into the network.

When the network increases or new ITMs
entered into the private region of the network, it does not
create additional load on the existing data center. The
GT approach handles the input traffic without depends
on the number of ITMs or the data centers in the
network.

Load Sharing : Every honeypot has its own
capacity of handling the load or traffic in the network. In
the centralized detection approach if the traffic exceeds
its capacity, then the total detection system is vanished.
The same problem occurs in case of distributed
detection approach also.

If the load in the network increases then the GT
approach forms more number of input pools and the
tests are applied on the pools repeatedly to perform the
attack detection.

False positives and false negatives: In the
honeypot based flooding detection false positives and
false negatives are not explicitly considered. The
detection process finds the root of the attack, by
blocking the IRC server.

In GT approach the false positives and false
negatives calculated explicitly by conducting specific
tests on the input pools of the traffic. False positives and
false negatives improve the detection process in terms
of considering the attack traffic as genuine and vice-
versa.

c) Attack detection using Group testing approach
In the detection model[17], each testing pool is

mapped to a virtual server within a back-end server
machine. Although the maximum number of virtual
servers can be extremely huge, since each virtual server
requires enough service resources to manage client
requests, it is practical to have the virtual server quantity

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

22

20
11

D
ec

em
be

r

Limitations of Honeypot detection

(maximum number of servers) and capacity (maximum
number of clients that can be handled in parallel)
constrained by two input parameters K and w,
respectively.

The maximum number of attackers d is
assumed known beforehand. Scenarios with
nondeterministic d are out of the scope of this paper. In
fact, these scenarios can be readily handled by first
testing with an estimated d, then increasing d if exactly d
positive items are found.

Each back-end server works as an independent
testing domain, where all virtual servers within it serve as
testing pools. In the following sections, we only discuss
the operations within one backend server, and it is
similar in any other servers. The detection consists of
multiple testing rounds, and each round can be
sketched in four stages.

First, generate and update matrix M for testing.
Second, “assign” clients to virtual servers based

on M. The back-end server maps each client into one
distinct column in M and distributes an encrypted token
queue to it. Each token in the token queue corresponds
to a 1-entry in the mapped column, i.e., client j receives
a token with destination virtual server i iff M[i,j]= 1.
Being piggybacked with one token, each request is
forwarded to a virtual server by the virtual switch. In
addition, requests are validated on arriving at the
physical servers for faked tokens or identified malice ID.
This procedure ensures that all the client requests are
distributed exactly as how the matrix M regulates and
prevents any attackers from accessing the virtual
servers other than the ones assigned to them.

Third, all the servers are monitored for their
service resource usage periodically, specifically, the
arriving request aggregate (the total number of
incoming requests) and average response time of each
virtual server are recorded and compared with some
dynamic thresholds to be shown later. All virtual servers
are associated with positive or negative outcomes
accordingly.

Fourth, decode these outcomes and identify
legitimate or malicious IDs. By following the detection
algorithms all the attackers can be identified within
several testing rounds. To lower the overhead and delay
introduced by the mapping and piggybacking for each
request, the system is exempted from this procedure in
normal service state. As shown in Fig. 3, the back-end
server cycles between two states, which we refer as
NORMAL mode and DANGER mode. Once the
estimated response time (ERT) of any virtual server
exceeds some profile-based threshold, the whole
backend server will transfer to the DANGER mode and
execute the detection scheme. Whenever the average
response time (ART) of each virtual server falls below
the threshold, the physical server returns to NORMAL
mode.

 Fig.3 : Two state Diagram if the system.

Based on the system framework above, we
propose three detection algorithms SDP, SDoP, and
PND

in this section. Note that the length of each testing

round is a predefined constant P; hence, we analyze the
algorithm complexity in terms of the number of testing
rounds for simplicity.

i.

Sequential Detection with Packing
 This algorithm investigates the benefit of classic

sequential group testing, i.e., optimizing the grouping of
the subsequent tests by analyzing existing outcomes.
Similar to traditional sequential testing, each client
(column) only appears in one testing pool (server) at a
time. However, to make full use of the available K

 servers, we have all servers conduct test in parallel.

ii.

Sequential Detection without Packing
 Considering the potential overload problem

arises from the “packing” scheme adopted in SDP, we
 propose another ralgorithm where legitimate clients do

not shift to other servers after they are identified. This
emerges from the observation that legitimate clients
cannot affect the test outcomes since they are negative.

 The basic idea of the SDoP

algorithm can be

sketched below. Given a suspect IDs set S

with initial

size n, evenly assign them to the K

server machines,

similar to SDP

in the first round. For the following
rounds, assign suspect IDs

to the K

servers instead of

|A| available ones. For the identified legitimate IDs, never
move them until their servers are to be overloaded. In
this case, reassign all legitimate IDs

over the K

 machines to balance the load. For server with positive
outcome, the IDs

active on this server but not included

by the set of identified legitimate ones, i.e., suspect IDs,
will still be identified as suspect. However, if there is only
one suspect IDs

of this kind in a positive server, this ID

 is certainly an attacker.
 iii.

Partial Non adaptive Detection

 Considering the fact that in the two sequential
algorithms mentioned, we cannot identify any attackers
until we isolate each of them to a virtual server with
negative outcome, which may bring up the detection
latency. In this scenario, the requests from the same
client will be

received and responded by different

servers in a round-robin manner. Different from SDP

and

SDoP, a d-disjunct matrix is used as the testing matrix in
this scheme and attackers can be identified without the
need of isolating them into servers.

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

23

20
11

D
ec

em
be

r

 The attack traffic can be identified by using any
of the three methods defined and QoS of the system is

completely depends on the number of tests performed,
number of rounds conducted on the pools .Once the
attack traffic is identified ,then it is easy to find the attack
source using the traffic entities. In our paper we focused
on the flooding based attacks and these are generated
using the botnet. The attacker floods the target ITM

by
sending the commands through C & C server. Here the
attack traffic contains the C & C

server address, and
then it is very easy to block or point out that server to
avoid the flooding attacks on the system.

While identifying the attack traffic with GT

approach one can remember that the data should not
be lost; these can be effectively done with false
positives and negatives.

Despite the number of needed testing rounds

differs for these three algorithms above, the time
complexity of calculating each testing round

for these
algorithms is approximate in practice. It is trivial to see
that the costs for SDP

and SDoP

are negligible, but not
for PND

algorithm which involves polynomial
computation on Galois Field. However, considering that
the upper bound of both the number of clients n and
attackers d

is estimated, the detection system can pre
compute the d-disjunct matrices for all possible (n, d)

pairs offline, and fetch the results in real time. Therefore,
the overhead can be decreased to O(1)

and the client
requests

can be smoothly distributed at the turn of
testing rounds without suffering from long delays of
matrix update.

 VII. CONCLUSION AND FUTURE WORK

The frame work integrates active real time

flooding attack flow identification from botnet with GT

approach. The GT

approach has been used at Data
center to detect the attack traffic that interns helpful,
while identifying the C&C

server to block the flooding
attack against the ITM. The false positive and false
negatives can be effectively minimized to improve the
QoS

factors of the system.

Some of the avenues for further extensions are

with larger and heterogeneous networks. Back tracking
can be applied on attack flows to reach the attack
source. Both of them hold promise for evaluating and
improving our DDoS

detection and defense method and
data center information protection. The data center load
can be still minimized by used some distributed load
sharing algorithms.

REFERENCES

REFERENCES

REFERENCIAS

1.

wei yu, nan zhang, xinwen fu, Riccardo bettati, and
wei zhao, “localization attacks to internet threat
monitors:Modeling and countermeasures”on ieee
transactions on computers, vol. 59, no. 12,
december 2010.

2.

J. Mirkovic and P. Reiher, “A Taxonomy of DDOS
Attack and DDOS Defense Mechanisms,” ACM

SIGCOMM Computer Comm.Rev., vol. 34, no. 2,
pp. 39-53, Apr. 2004.

3.

SANS, Internet Storm Center, http://isc.sans.org/,
2010.

4.

D. Moore, G.M. Voelker, and S. Savage, “Inferring
Internet Deny-of-Service Activity,” Proc. 10th USNIX
Security Symp. (SEC), Aug. 2001.

5.

Yegneswaran, P. Barford, and S. Jha, “Global
Intrusion Detection in the Domino Overlay System,”
Proc. 11th IEEE Network and Distributed System
Security Symp. (NDSS), Feb. 2004.

6.

M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D.
Watson, “The Internet Motion Sensor: A Distributed
Blackhole Monitoring System,” Proc. 12th Ann.
Network and Distributed System Security Symp.
(NDSS), Feb. 2005.

7.

J. Bethencourt, J. Frankin, and M. Vernon,
“Mapping Internet Sensors with Probe Response
Attacks,” Proc. 14th USNIX Security Symp. (SEC),
July/Aug. 2005.

8.

Y. Shinoda, K. Ikai, and M. Itoh, “Vulnerabilities of
Passive Internet Threat Monitors,” Proc. 14th USNIX
Security Symp. (SEC), July/Aug. 2005.

9.

X. Wang, W. Yu, X. Fu, D. Xuan, and W. Zhao, “Iloc:
An Invisible Localization Attack to Internet Threat
Monitoring Systems,” Proc.IEEE INFOCOM (Mini-
Conf.), Apr. 2008.

10.

S. Cabuk, C. Brodley, and C. Shields, “Ip Covert
Timing Channels:Design and Detection,” Proc. 2004
ACM Conf. Computer and Comm.Security (CCS),
Oct. 2004.

11.

E. Cooke, F. Jahanian, and D. McPherson, “The
Zombie Roundup: Understanding, Detecting, and
Disrupting Botnets,” Proc. Steps to Reducing
Unwanted Traffic on the Internet Workshop (SRUTI),
July 2005.

12.

F.C. Freiling, T. Holz, and G. Wicherski, “Botnet
Tracking: Exploring a Root-Cause Methodology to
Prevent Distributed Denial-of-Service Attacks,” Proc.
10th European Symp. Research in Computer
Security (ESORICS), Sept. 2005.

13.

The mstream distributed denial of service attack
tool.http://staff.washington.edu/dittrich/misc/mstrea
m.analysis.txt.

14.

J. Oikarinen and D. Reed. RFC 1459: Internet Relay
Chat Protocol, 1993.

15.

St´ephane Racine. Analysis of Internet Relay Chat
Usage by DDoS Zombies. Master’s thesis, Swiss
Federal Institute of Technology

Zurich, April 2004.

16.

The Honeynet Project. Know your enemy:
rackingbotnets.http://www.honeynet.org/papers/bot
s/,March 2005.

17.

Ying Xuan, Incheol Shin, My T. Thai, Member, and
Taieb Znati, Member, Detecting Application Denial-
of-Service Attacks: A Group-Testing-Based

Modeling and Counter Measures of Flooding Attacks to Internet Threat Monitors (ITM): Using Botnet
and Group-Testing approach

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

24

20
11

D
ec

em
be

r

Approach IEEE transactions on parallel and
distributed systems, vol. 21, no. 8, august 2010.

	Modeling and Counter Measures of Flooding Attacks toInternet Threat Monitors (ITM): Using Botnet and Group-Testing approach
	Authors
	Keywords
	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED WORK
	a) Flooding
	b) Bots
	c) IRCbasedCommand and Control
	d) Group Testing
	i. Basic Idea
	ii.Detection of defective members
	iii.Apply to Attack Detection
	iv.False Positive and False Negative Probabilities

	IV. PROPOSED MODEL
	i.Generation of flooding attack with Botnet
	ii. Conformation of attack

	V. PREVENTION
	VI. DETECTION OF FLOODING ATTACKS
	a) BOTNET Detection
	b) Detecting Command and Control
	i. IRC-based Botnet Detection
	ii.Limitations of Honeypot detection

	VII. CON CLUSION AND FUTURE WORK
	REFERENCESREFERENCESREFERENCIAS

