
© 2011 . Nabil Mohammed Ali Munassar, Dr. A. Govardhan. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

 Global Journal of Computer Science and Technology
Volume 11 Issue 21 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Prototype centric (PC) software development process model: A
machine learning based Hybrid Software Development Model

By Nabil Mohammed Ali Munassar, Dr. A. Govardhan

Jawaharlal Nehru Technological University Hyderabad

Abstract

-

Here in this paper we propose a Machine learning technique based

Hybrid software

development process model called prototype centric, in short can refer as PC. The proposed
hybrid model works by considering any one or more traditional models as source models. We
also conduct empirical study to analyze the performance of

the PC over other traditional models

that are most frequently quoted in literature.

Keywords : Hybrid Software Development Method, Conventional Software Development
Methods, Agile Software Development Methods, Empirical Studies, Software Engineering.

Prototype centric PC software development process model A machine learning based Hybrid Software Development Model

Strictly as per the compliance

and regulations of:

GJCST Classification : D.2.9

Prototype centric (PC) software development
process model: A machine learning based

Hybrid Software Development Model
Nabil Mohammed Ali Munassar α, Dr. A. GovardhanΩ

Abstract - Here in this paper we propose a Machine learning
technique based Hybrid software development process model
called prototype centric, in short can refer as PC. The
proposed hybrid model works by considering any one or more
traditional models as source models. We also conduct
empirical study to analyze the performance of the PC over
other traditional models that are most frequently quoted in
literature.
Keywords : Hybrid Software Development Method,
Conventional Software Development Methods, Agile
Software Development Methods, Empirical Studies,
Software Engineering.

I. INTRODUCTION

phase to the other.

Author α

: PhD Scholar in Computer Science & Engineering

Jawaharlal
Nehru Technological University Hyderabad

Kuktapally, Hyderabad-

500085, Andhra Pradesh, India. E-mail

: Nabil_monaser@hotmail.com

Author Ω : Professor of CSE & School of Information Technology

Jawaharlal Nehru Technological University Hyderabad

Kuktapally,
Hyderabad-

500 085, Andhra Pradesh, India.

E-mail

: govardhan_cse@yahoo.co.in

With the modern approach, on the other hand, you’re
allowed to perform each phase more than once and in
any order. [1,10].

ii. RELATED WORK

Conventional heavyweight, document-driven
software development methods can be characterized as
extensive planning, codified process, rigorous reuse,
heavy documentation and big design up front [3]. The
conventional methods were predominant in the software
industry up until the mid 1990s. Since then, the
conventional methods have been replaced by
lightweight agile software development methods mostly
in small-scale and relatively simple projects. This
phenomenon is mainly due to the conventional
methods’ shortcomings, including a slow adaptation to
rapidly changing business requirements, and a
tendency to be over budget and behind schedule [3, 6,
9, 15]. The conventional methods also have failed to
provide dramatic improvements in productivity,
reliability, and simplicity [9].

Some researchers reported that during their
project development experience, requirements often
changed by 25% or more [5]. An interesting research
mentioned that the conventional methods were not
initially designed to respond to requirements change
occurring in the middle of the development process,
and the ability to take action appropriate to the change
often determines the success or failure of a software
product. According to the Standish Group report ,
numerous projects with the conventional methods in
various industry and government sectors were
completed with fewer features and functionalities than
specified in the user requirements. It is also a challenge
for the conventional methods to create a complete set of
requirements up front due to constant changes in the
technology and business environments.

Despite the existing shortcomings, the
conventional methods are still widely used in industry,
particularly, for large-scale projects. The driving force of
this broad utilization of the conventional methods comes
from their straightforward, methodical, and structured
nature [12], as well as their capability to provide
predictability, stability, and high assurance [6].

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

51

20
11

D
ec

em
be

r

ll software, especially large pieces of software
produced by many people, should be produced
using some kind of methodology. Even small

pieces of software developed by one person can be
improved by keeping a methodology in mind. A
methodology is a systematic way of doing things. It is a
repeatable process that we can follow from the earliest
stages of software development through to the
maintenance of an installed system. As well as the
process, a methodology should specify what we’re
expected to produce as we follow the process. A
methodology will also include recommendation or
techniques for resource management, planning,
scheduling and other management tasks. Good, widely
available methodologies are essential for a mature
software industry. A good methodology addresses the
following issues: Planning, Scheduling, Resourcing,
Workflows, Activities, Roles, Artifacts, Education. There
are a number of phases common to every development,
regardless of methodology, starting with requirements
capture and ending with maintenance. During the last
few decades a number of software development models
have been proposed and discussed within the Software
Engineering community. With the traditional approach,
you’re expected to move forward gracefully from one

A

Agile software development methods focus on
iterative and incremental development, customer

collaboration, and frequent delivery through a light and
fast development life cycle. There are many positive
benefits of the agile approaches. Shorter development
cycles, higher customer satisfaction, lower bug rates,
and quicker adaptation to rapidly changing business
requirements have been reported [6].

iii.

HYBRID

SOFTWARE

DEVELOPMENT

PROCESS

MODEL

The proposed hybrid software development
process model works as prototype centric with one or
more traditional models as source. In short we there
after refer as PC. The fig.

1 describes the proposed risk
analysis process that mingles with each stage of the

SDLC. Here in PC the risk analysis is strategic and
supports to predict the risk that influence the cost and
targeted outcomes. This prediction can help the experts
involved to change the current action to decrease the
severity of the risk predicted. Fig.

2

describe the risk
analysis strategy proposed as key aspect of the PC.
Here in risk analysis process we opt to machine learning
technique called support vector machines in short SVM.
The Risk analysis stage of the PC targets the SDLC logs
available as input to train the SVM for better predictions.
The feature extraction process that is part of SVM
training process can be done with support of
mathematical model called Quantum particle swarm
optimization. The usage of these technologies
described in fallowing section.

Fig.1

:

Hybrid Software development process
model

Fig.

2 :

Risk Analysis Process

iv.

RISK

ANALYSIS

USING

LS-SVM

AND

Q-QPSO

a)

LS-SVM

Support vector machine (SVM)

introduced by
Vapnik[5, 6] is a valuable tool for solving pattern

recognition and classification problem. SVMs

can be
applied to regression problems by the introduction of an
alternative loss function. Due to its advantages and
remarkable generalization performance

over other
methods, SVM

has attracted attention and gained
extensive application[5]. SVM

shows outstanding
performances because it can lead to global models that
are often unique by embodies the structural risk
minimization principle[7], which has been shown to be
superior to the traditional empirical risk minimization
principle. Furthermore, due to their specific formulation,
sparse solutions can be found, and both linear and
nonlinear regression can be performed. However,
finding the final SVM

model can be computationally very

difficult because it requires the solution of a set of
nonlinear equations (quadratic programming problem).
As a simplification, Suykens and Vandewalle[8]
proposed a modified version of SVM

called least-
squares SVM (LS-SVM), which resulted in a set of linear
equations instead of a quadratic programming problem,
which can extend the applications of the SVM. There
exist a number of excellent introductions of SVM

[8, 9]
and the theory of LS-SVM

has also been described
clearly by Suykens

et al[7, 8] and application of LS-SVM

in quantification and classification reported by some of
the works[10, 11].

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

52

20
11

D
ec

em
be

r
Prototype centric (PC) software development process model: A machine learning based Hybrid Software

Development Model

In principle, LS-SVM always fits a linear relation
(y = w x + b) between the regression (x) and the
dependent variable (y). The best relation is the one that
minimizes the cost function (Q) containing a penalized
regression error term:

2

1

1 1
2 2

N
T

i
i

Q w w eγ
=

= + ∑ (1)

()

 1,..., T
i ii w x b e

Subject to
y i N

φ= + +
=

The first part of this cost function is a weight
decay which is used to regularize weight sizes and
penalize large weights. Due to this regularization, the
weights converge to similar value. Large weights
deteriorate the generalization ability of the LS-SVM

because they can cause excessive variance. The
second part of cost function is the regression error for all
training data. The relative weight of the current part
compared to the first part can be indicated by the
parameter ‘g’, which has to be optimized by the user.

Similar to other multivariate statistical models,
the performances of LS-SVMs

depends on the
combination of several parameters. The attainment of
the kernel function is cumbersome and it will depend on
each case. However, the kernel function more used is
the radial basis function (RBF), a simple Gaussian
function, and polynomial functions where width of the
Gaussian function and the polynomial degree will be
used, which should be optimized by the user, to obtain
the support vector. For the RBF

kernel and the
polynomial kernel it should be stressed that it is very
important to do a careful model selection of the tuning
parameters, in combination with the regularization
constant g, in order to achieve a good generalization
model.

b)

Q-

QPSO

Millie Pant et al[12] attempt to optimize the
QPSO

by replacing least good swarm particle with new
swarm particle. An interpolate equation will be traced
out by applying a quadratic polynomial model on
existing best fit swarm particles. Based on emerged
interpellant, new particle will be identified. If the new
swarm particle emerged as better one when compared
with least good swarm particle then replace occurs.
This process iteratively invoked at end of each search
lap.

The computational steps of optimized QPSO

algorithm are given by

:

Step 1

:

Initialize the swarm.

Step 2

:

Calculate mbest

Step 3

:

Update particles position

Step 4

:

Evaluate the fitness value of each particle

Step 5

:

If the current fitness value is better than the best
fitness value (Pbest) in history Then Update
Pbest by the current fitness value.

Step 6

:

Update Pgbest (global best)

Step 7

:

Find a new particle

Step 8

:

If the new particle is better than the worst particle
in the swarm, then replace the worst particle by
the new particle.

Step 9

:

Go to step 2 until maximum iterations reached.

The swarm particle can be found using the
following.

3
2 2

1
)* ()

i i i
k

t p q f r
=

= −∑

, , 1;

, , 2;

, , 3

p a q b r c for k
p b q c r a for k
p c q a r b for k

= = = =
= = = =
= = = =

3

1
1)* ()

i i i
k

t p q f r
=

= −∑

, , 1;

, , 2;

, , 3

p a q b r c for k
p b q c r a for k
p c q a r b for k

= = = =
= = = =
= = = =

0.5*()
1
i

i
i

tx
t

=

In the above math notations ‘a’

is best fit swarm
particle, ‘b’

and ‘c’

are randomly selected swarm

particles

ix is new swarm particle.

c)

LS-SVM Regression and QPSO based hyper
parameter selection

Consider a given training set of N

data points

1{ , }N
t t tx y = with input data

d
tx R∈

and output ty R∈ .
In feature space LS-SVM

regression model take the
form

Ty (x) = w (x) + bϕ

(1)

Where the input data is mapped (.)ϕ .

The solution of LS-SVM for function
estimation is given by the following set of linear

equations:

1 1 1 1

0 1 1

1 (,) 1/ (,)
. . . .
.

K x x C K x x+ 1 1

1 1 1 1 1 1

0

. .

1 (,) (,) 1/

b
y

K x x K x x C y

α

α

 =

 +

(2)

iWhere K(xi ,xj) = () () for i, j =1...LT T
jx xφ φ

And the Mercer’s condition has been applied.

This finally results into the following LS-SVM
model for function estimation:

1
() (,)

L

i i
i

f x K x x bα
=

= +∑

(3)

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

53

20
11

D
ec

em
be

r

Prototype centric (PC) software development process model: A machine learning based Hybrid Software
Development Model

(2)

Whereα , b are the solution of the linear system,
K(.,.) represents the high dimensional feature spaces
that is nonlinearly mapped from the input space x. The
LS-SVM approximates the function using the Eq. (3).

In this work, the radial basis function (RBF) is
used as the kernel function:

2 2(,) exp(|| || /)i j tk x x x x σ= − −

In the training LS-SVM problem, there are
hyper-parameters, such as kernel width parameter σ
and regularization parameter C, which may affect LS-
SVM generalization performance. So these parameters

need to be properly tuned to minimize the generalization
error. We attempt to tune these parameters
automatically by using QPSO.

d)

Hyper-Parameters Selection Based on Q-QPSO

To surpass the usual L2

loss results in least-
square SVR, we attempt to optimize hype parameter
selection.

There are two key factors to determine the
optimized hyper-parameters using QPSO: one is how to
represent the hyper-parameters

as the particle's
position, namely how to encode [13,14]. Another is how
to define the fitness function, which evaluates the
goodness of a particle. The following will give the two
key factors.

i.

Encoding Hyper-parameters

The optimized hyper-parameters for

LS-SVM

include kernel parameter and regularization parameter.
To solve hyper-parameters selection by the proposed Q-
QPSO, each particle is requested to represent a
potential solution, namely hyper-parameters
combination. A hyper-parameters combination of
dimension m is represented in a vector of dimension m,

such

as (,)ix Cσ= .The resultant Hyper-parameter

optimization under Q-QPSO

can found in fallowing the
Eq. (4).

a.

Fitness function

The fitness function is the generalization
performance measure. For the generation performance
measure, there are some different descriptions. In this
paper, the fitness function is defined as:

1
(,)

fitness
RMSE σ γ

= (4)

Where RMSE (σ ,γ)

is the root-mean-square
error of predicted results, which varies with the LS-SVM

parameters

(σ ,γ)

. When the termination criterion is met,
the individual with the biggest fitness corresponds to the
optimal parameters of the LS-SVM.

There are two alternatives for stop criterion of
the algorithm. One method is that the algorithm stops
when the objective function value is less than a given
threshold ε; the other is that it is terminated after
executing a pre-specified number of iterations. The
following steps describe the Q-QPSO-Trained LS-SVM

algorithm:

1)

Initialize the population by randomly generating the

position vector

iX

of each particle and set

iP = iX;

2)

Structure LS-SVM

by treating the position vector of each
particle as a group of hyper-parameters;

3)

Train LS-SVM

on the training set;

4)

Evaluate the fitness value of each particle by Eq.(4),

update the personal best position

iP

and obtain the
global best position

gP

across the population;

5)

If the stop criterion is met, go to step (7); or else go
to step (6);

6)

Update the position vector of each particle
according to Eq.(7), Go to

step (3);

7)

Output the

gP

as a group of optimized parameters.

v.

RISK

ANALYSIS

METHOD

PROPOSED

This section explains the algorithm for proposed
risk analysis in various stages of SDLC, where the
feature extraction can be done under LS-SVM

regression and Q-QPSO.

•

The SDLC

log considered into multitude blocks of
SDLC stages.

•

Collect the resultant approximate and details
features of each block.

•

Apply LS-SVM

regression under Q-QPSO

on each
feature matrix that generalizes the training data by
producing minimum support vectors required.

•

Estimate the features determined levels.

•

Apply the risk analysis process by comparing the
features of the assigned action and subsequent
related actions of the current SDLC

stage.

•

Identify the risk status

vi.

EMPIRICAL

STUDY

AND

RESULTS

DISCUSSION

The performance analysis of the proposed
Software development process model is carried by
conducting empirical study on various projects

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

54

20
11

D
ec

em
be

r
Prototype centric (PC) software development process model: A machine learning based Hybrid Software

Development Model

Fig.3 : Hyper-Parameter optimization response
surface under Q-QPSO for LS-SVM

development process logs. We opted to different logs
that belong to applications of different sizes from low to
high and enterprise level.

a) Empirical analysis of the small size software
development process logs

We opted to a small size off the shelf
application development process log to analyze the
performance of the proposed hybrid software
development process model that can referred as
prototype centric in short PC. This selected off the shelf
product actually developed under waterfall model. We
conducted some empirical analysis for waterfall
prototyping.

Empirical analysis has been conducted by
considering the features of each individual action of
each SDLC

stage and applied risk analysis process as
discussed in section IV. And then we conducted a
comparative study between risk status identified and
actual impact available in the log. The results that we
observed are interesting and concluded that this model
is having much influence in SDLC

stages

1.

Development

2.

Testing

Table 1 represents the actual deviation ratio of
waterfall model and predicted possible deviation ratio
for PC

with waterfall model as source. The Fig.

4

indicate
the accuracy in risk analysis approach proposed in PC

with waterfall as source model. We can observe that the
proposed model is impressive at prediction particularly
in development testing stages. Therefore we can
conclude that PC

with Waterfall model as source can
minimize the cost and involvement of the high risk.

Table 1:

performance and deviation analysis of PC

with Waterfall as source

(a)

deviation analysis

Waterfall
vs PC
with

Waterfall
as source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Actual
deviation

3%

1%

0.30%

30%

14%

0%

0%

0%

Predicted
deviation

3%

0.20%

0.15%

27%

11%

0%

0%

0%

(b)

 Performance analysis

Waterfall vs PC with

Waterfall

as source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

waterfall performance

97%

98%

97.40%

70%

86%

0%

0%

0%

PC with waterfall
performance

97%

99.80%

99.85%

82%

92%

0%

0%

0%

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

55

20
11

D
ec

em
be

r

Prototype centric (PC) software development process model: A machine learning based Hybrid Software
Development Model

(a) Deviation Comparison chart (b) Performance Comparison chart

Fig. 4 : Deviation ratio and performance ratio of waterfall and PC with Waterfall as source

b) Empirical analysis of the mid size software
development process logs

We opted to a mid size work flow engine
application development process log to analyze the
performance of the PC. This selected product actually
developed under spiral model with less expertise
resources. We conducted some empirical analysis for
Spiral prototyping as described in Section IV. And then
we conducted a comparative study between risk status
identified and actual impact available in the log. The
results that we observed are interesting and concluded
that this model is having much influence in SDLC stages

1. Design
2. Development
3. Testing

Table 2 represents the actual deviation ratio of
spiral model and predicted possible deviation ratio for
PC with spiral model as source. The Fig. 5 indicate the
accuracy in risk analysis approach proposed in PC with
spiral as source model. We can observe that the
proposed model is impressive at prediction particularly
in design, development and testing stages. Therefore
we can conclude that PC with spiral model as source

can minimize the cost and involvement of the high

risk
even under less expertise resource availability. Where in

the case of spiral model high expert resources are must
to minimize the cost and risk involvement.

Table 2 :

Deviation ratio and performance ration of PC with spiral as source

(a)

Deviation ratio

Spiral Vs PC with
spiral as source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Actual deviation

9%

12%

21%

39%

23%

1%

2%

2%

Predicted
deviation

7.90%

7.60%

20.10%

36.78%

20.67%

0.90%

1%

0.90%

(b)

Performance ratio

Spiral Vs PC with
spiral as source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Spiral Performance

91%

88%

79%

61%

77%

96%

97%

97%

PC with Spiral
performance

94.30%

91.00%

84.00%

76.00%

87%

99.00%

99%

99.60%

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

56

20
11

D
ec

em
be

r
Prototype centric (PC) software development process model: A machine learning based Hybrid Software

Development Model

(a) Deviation ratio chart (b) Performance ratio chart

Fig. 5 : Deviation ratio and Performance ratio of Spiral and PC with spiral as source

c) Empirical analysis of the big size software
development process logs

We opted to a big size tailor made java bean
framework development process log to analyze the
performance of the PC. This selected product actually
developed under Incremental model. We conducted
some empirical analysis for incremental prototyping as
described in section IV. And then we conducted a
comparative study between risk status identified and
actual impact available in the log. The results that we
observed are interesting and concluded that this model
is having much influence in SDLC stages

1. Design
2. Development
3. Testing
4. Integration

Table 3 represents the actual deviation ratio of
incremental model and predicted possible deviation
ratio for PC with incremental model as source. The Fig. 6
indicate the accuracy in risk analysis approach
proposed in PC with incremental model as source. We
can observe that the proposed model is impressive at

prediction particularly in design, development, testing
and integration stages. Therefore we can conclude that
PC with incremental model as source can minimize the
cost and involvement of the high risk. This becomes
practical because the proposed model prediction ability
of deviations in requirement analysis. Where in the case
of incremental model, risk involvement is high since
requirement analysis not done in beginning that reflects
as high cost and risk involvement.

Table 3

:

Deviation Ratio and performance ratio of Incremental model and PC with incremental model as source

(a)

Deviation Ratio

Incremental Vs
PC with
incremental as
source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Actual
deviation

15%

35%

20%

21%

13%

18%

11%

3%

Predicted
deviation

11%

32.70%

19.40%

20.80%

12.70%

16.50%

10.60%

2.70%

Performance Ratio

Incremental Vs PC
with incremental as
source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Incremental 85%

65%

80%

79%

87%

88%

89%

97%

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

1

20
11

D
ec

em
be

r

Prototype centric (PC) software development process model: A machine learning based Hybrid Software
Development Model

Performance

PC with
Incremental
Performance

91% 73.00% 89.00% 85.00% 93% 96.50% 97.00% 99.50%

Deviation ratio chart Performance Ratio Chart

Fig. 6 : Deviation ratio and Performance Ratio of Incremental and PC with Incremental model as source

(b)

(a) (b)

d) Empirical analysis of the big enterprise software
development process logs

We opted to a big enterprise MVC based media
sharing web application development process log to
analyze the performance of the PC. This selected
product actually developed under Agile. We conducted
some empirical analysis for agile prototyping as
described in section IV. And then we conducted a
comparative study between risk status identified and
actual impact available in the log. The results that we
observed are interesting and concluded that this model
is having much influence in SDLC stages.
1. Design
2. Development
3. Testing
4. Integration
5. Maintenance

Table 4 represents the actual deviation ratio of
incremental model and predicted possible deviation
ratio for PC with incremental model as source. The Fig. 7
indicates the accuracy in risk analysis approach

proposed in PC with agile model as source. Since agile
is combination of iterative and incremental models, so
that he advantages of PC with incremental model as
source those we observed in earlier section are
applicable as it is. We can observe that the proposed
model is impressive at prediction particularly in design,
development, integration, testing and maintenance
stages. Therefore we can conclude that PC with
incremental model as source can minimize the cost and
involvement of the high risk. This becomes practical
because the proposed model prediction ability of
deviations in requirement analysis. Where in the case of
agile model, risk involvement is high since requirement
analysis not done in beginning and that reflects as high
cost and risk involvement. It is obvious in agile model
that expert resources are must to avoid the project to
deviate from the expected outcome. Because of risk
analysis and prediction strategy introduced in PC, an
interesting issue about PC with agile as source model is
that risk involvement can be minimized even under
resources with moderated expertise.

57

Table 4

:

Deviation and performance analysis of PC

with Agile model as source

(a)

Deviation Ratio

Agile vs

PC with Agile

as source

Planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenance

Actual
deviation

22%

32%

20%

21%

14%

20%

11%

16%

Predicted
deviation

19.40%

31.10%

19.40%

20.80%

12.70%

19.04%

10.60%

13.90%

(b)

Performance Ratio

Agile vs PC with
Agile as source

planning

Requirements
Analysis

Design

Implementation

Testing

Integration

Deployment

Maintenane

Agile
78%

68%

80%

79%

86%

80%

89%

86%

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

58

20
11

D
ec

em
be

r
Prototype centric (PC) software development process model: A machine learning based Hybrid Software

Development Model

Performance

PC with agile
performance

80.60% 69.90% 81.40% 80.80% 88.40% 19.04% 91.10% 88.00%

Risk prediction ratio between Agile and PC with
Agile as source

SDLC phases level Success ratio between Agile and
PC with Agile as source

Fig. 7 : Risk prediction ratio and SDLC phase level success ratio of PC with Agile model as source

(a) (b)

e) Feature wise performance analysis of existing and proposed software development process models

Table 5 : Comparison report of the existing and proposed Software development process Models

Feature Waterfall
Model

Prototype
Model Spiral Model Iterative

Model Agile Model Prototype
Centric(PC)

Requirement
Specifications

Beginning
Frequently
Changed

Beginning Beginning
Frequently
Changed

Dependent of Risk
Analysis report

Understanding
Requirements

Well
Understood

Not Well
understood

Well
Understood

Not Well
understood

Well
understood

Well understood

Cost Low High Intermediate Low Very high Moderate
Guarantee of
Success

Low Good High High Very high Very high

Resource Control Yes No Yes Yes No Yes
Cost Control Yes No Yes No Yes Sure
Simplicity Simple Simple Intermediate Intermediate Complex Moderate

Risk Involvement High High Low Intermediate Moderate
Dependent of
Source Model

Expertise Required High Medium High High Very high Dependant of
source model

Changes
Incorporated

Difficult Easy Easy Easy difficult Moderate

Risk Analysis
Only at
beginning

No Risk
Analysis

Yes No yes
On each Stage of
source model

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

59

20
11

D
ec

em
be

r

Prototype centric (PC) software development process model: A machine learning based Hybrid Software
Development Model

User Involvement
Only at
beginning

High High Intermediate high
Dependent of Risk
Analysis report

Overlapping
Phases

No Yes Yes No yes
Dependant of
source model

Flexibility Rigid Highly Flexible Flexible Less Flexible highly flexible Highly Flexible

i. Simplicity
Data was obtained for a cost driver value of

‘multi-skilled and experienced’. The data indicates that
the waterfall and prototype models are most suitable for
projects in which simplicity is the main factor. The spiral
and iterative models have limited impact because they
have intermediate with regard to simplicity factor and
agile is not feasible[15], while the Prototype Centric
model is most optimal because of its ability to minimize
the complex nature of the source model. But due to
modular evaluation, more time and money is required to
complete a software project.

ii. Risk Involved
The data indicates that the Spiral model is most

suitable for projects because software projects using
this model involve low risk, where as waterfall model is
unsuitable because high risk is involved in software
projects. But Prototype centric can be optimal
regardless of the source model to minimize the risk.

iii. Expertise Required
Data was obtained for a cost driver value of

‘range of development experience’ The Prototyping
models are most appropriate where only developers
with a range of experience are available. The waterfall,
spiral and iterative models are slightly less suitable
because they require personnel with high level of
expertise, whereas the agile process model is
inappropriate because it requires personnel with very
high expertise and experience. The strong positive value
for the Prototyping model may suggest the developers,
instead of managers, are performing objective setting
and evaluation. The proposed Prototype centric PC can
improvise the other models performance even under
resources with less expertise.
iv. Changes Incorporated

From the analysis of data, it is observed that the
prototype, spiral and iterative models are most suitable
of all as they requires less changes to be incorporated
after the project is complete. Because if model needs
more changes during usage, software projects takes
more cost and also time for its updating etc. While the
Waterfall model and agile models are totally
inappropriate because if it requires the changes to be
incorporated, then many difficulties do arise while
incorporating changes in the software project [16].

v. Risk Analysis
Data was obtained for a cost driver value of ‘risk

involvement (expressed as ‘complex, difficult or
challenging to implement’ or ‘very complex or novel
algorithm’). Data shows waterfall model have risk

involved only at beginning, while the prototype model
and iterative model don’t involves any risk analysis while
being used in any software projects. While on the
contrary the spiral model and agile process model have
risk analysis being used in any software project.

vi. User Involvement
Data was obtained and it is observed that

waterfall model has very less involvement of the users
because it requires user involvement only at the
beginning of project. Iterative model needs intermediate
user involvement, whereas spiral model and agile
process models require high user involvement as a
requirement of these models [17].

M. Overlapping Phases
From the research it was seen that Waterfall

model and iterative model have no overlapping phases
while the prototype model, spiral model process models
requires overlapping phases. In the point of prototype
centric it is obvious that the behavior of source model
need to be considered.

vii. Flexibility
Data was obtained for a cost driver value of

‘range of flexibility’. Data shows that PC process model
and prototype models are highly flexible and are most
appropriate, spiral and waterfall models also performs
much better when those considered as source process
models for PC. As an individual Waterfall model is rigid
but as a source model of PC performs better.

vii. CONCLUSION

Based on the results of the empirical analysis
conducted in section VI, we can conclude that
regardless of the source model the Prototype Centric is
modest in all desired features, particularly in terms of
cost, resource utilization and balanced SDLC. It helps to
work with any one or more traditional models as source
under any circumstances such as resource availability
with less expertise. As the methodology we allowed to
perform risk analysis, it is stable regardless of the
software application size.

1. Molokken-Ostvold et.al, “A comparison of software
project overruns - flexible versus sequential
development models”, Volume 31, Issue 9, Page(s):
754 – 766, IEEE CNF, Sept. 2005.

2. Boehm, B. W. “A spiral model of software
development and enhancement”, ISSN: 0018-9162,
Volume: 21, Issue: 5, on page(s): 61-72, May 1988.

REFERENCES REFERENCES REFERENCIAS

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
I
 V

er
si
on

 I

60

20
11

D
ec

em
be

r
Prototype centric (PC) software development process model: A machine learning based Hybrid Software

Development Model

4. Vapnik, V.; Statistical Learning Theory, John Wiley:
New York, 1998.

5. Cortes, C.; Vapnik, V.; Mach. Learn. 1995, 20, 273.
6. Sun J, Xu W, Feng B, A Global Search Strategy of

Quantum- Behaved Particle Swarm Optimization. In
Proc. of the 2004 IEEE Conf. on Cybernetics and
Intelligent Systems, Singapore: 291 – 294, 2004.

7. Suykens, J. A. K.; Vandewalle, J.; Neural Process.
Lett. 1999, 9, 293.

8. Suykens, J. A. K.; van Gestel, T.; de Brabanter, J.;
de Moor, B.; Vandewalle, J.; Least-Squares Support
Vector Machines, World Scientifics: Singapore,
2002.

9. Zou, T.; Dou, Y.; Mi, H.; Zou, J.; Ren, Y.; Anal.
Biochem. 2006, 355, 1.

10. Ke, Y.; Yiyu, C.; Chinese J. Anal. Chem. 2006, 34,
561.

11. Niazi, A.; Ghasemi, J.; Yazdanipour, A.;
Spectrochim. Acta Part A 2007, 68, 523.

13. Liu J, Sun J, Xu W, Quantum-Behaved Particle
Swarm Optimization with Adaptive Mutation
Operator. ICNC 2006, Part I, Springer-Verlag: 959 –
967, 2006.

14. M. Barni, F. Bartolini, and A. Piva, "Improved
Wavelet- Based Watermarking Through Pixel-Wise
Masking," IEEE Transactions on Image Processing,
Vol. 10, No. 5, IEEE, pp. 783-791, May 2001.

15. Dennis, A., Wixom, B. H. and Tegarden, D. (2002),
Systems Analysis and Design: An Object-Oriented
Approach, John Wiley & sons, New York.

16. Roger S. Pressman, “Software Engineering a
practitioner’s approach”, McGraw-Hill, 5th edition,
200.

17. M M Lehman,”Process Models, Process Programs,
Programming Support”, ACM, 1987.

3. Abrahamsson P. et.al, “Agile Software Development
Methods: Review and Analysis”, ESPOO, VTT
Publications 478, VTT Technical Research Centre
of Finland. http:/www.fi/pdf/publications/2002/ P478
.pdf, 2002.

12. Millie Pant, Radha Thangaraj, and Ajith Abraham.
2008. A new quantum behaved particle swarm
optimization. In Proceedings of the 10th
annual conference on Genetic and evolutionary
computation (GECCO '08), Maarten Keijzer
(Ed.). ACM, New York, NY, USA, 87-94.
DOI=10.1145/1389095.1389108 http://doi.acm .org/
10.1145/1389095.1389108.

	Prototype centric (PC) software development process model: Amachine learning based Hybrid Software Development Model
	Authors
	Keywords
	I. INTRODUCTION
	ii. RELATED WORK
	iii.HYBRIDSOFTWAREDEVELOPMENTPROCESSMODEL
	iv.RISKANALYSISUSINGLS-SVMANDQ-QPSO
	a) LS-SVM
	b) QQPSO
	c)LS-SVM Regression and QPSO based hyperparameter selection
	d)Hyper-Parameters Selection Based on Q-QPSO

	v.RISKANALYSISMETHODPROPOSED
	vi.EMPIRICALSTUDYANDRESULTSDISCUSSION
	a) Empirical analysis of the small size softwaredevelopment process logs
	b) Empirical analysis of the mid size softwaredevelopment process logs
	c) Empirical analysis of the big size softwaredevelopment process logs
	d) Empirical analysis of the big enterprise softwaredevelopment process logs
	e) Feature wise performance analysis of existing and proposed software development process models
	i. Simplicity
	ii. Risk Involved
	iii. Expertise Required
	iv. Changes Incorporated
	v. Risk Analysis
	vi. User Involvement

	vii. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

