

Global Journal of Computer Science and Technology
Volume 11 Issue 12 Version 1.0 July 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Identifying and Separating Interaction Concerns from
Distributed Feature Components

By

Vishal Verma,Ashok Kumar

Abstracts -

Implementation of distributed applications over the internet needs the interaction
among homogenous/ heterogeneous subcomponents to a great extent. This interaction among
heterogeneous components can be implemented by considering the semantic issues of its
related compositions. The coordination and cooperation between services at the two ends of
application make the problem of interaction more significant. The term interaction can formerly
be described in terms of features and services of the application or of the subcomponents & can
be called the problem of “feature interaction”. This paper proposes a less complex method that
uses

two concerns termed as signature and transformation. The signature describes the

specification aspect of a feature i.e name, arguments etc. On the other hand the transformation
describe the working aspect of the feature i.e the fundamental code which actually implements
interactions and finally make the two features to work together.

Keywords :

Aspect Oriented Programming, feature interaction (FI), FI resolution, feature based
development, signature, transformation.

Identifying and Separating Interaction Concerns from Distributed Feature Components

Strictly as per the compliance and regulations of:

GJCST Classification : D.1.5, I.4.7

© 2011 . Vishal Verma, Ashok Kumar.This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kurukshetra University P.G Regional Centre, Jind

Identifying and Separating Interaction Concerns
from Distributed Feature Components

Vishal Vermaα, Ashok KumarΩ

Abstract Implementation of distributed applications over the
internet needs the interaction among homogenous/
heterogeneous subcomponents to a great extent. This
interaction among heterogeneous components can be
implemented by considering the semantic issues of its related
compositions. The coordination and cooperation between
services at the two ends of application make the problem of
interaction more significant. The term interaction can formerly
be described in terms of features and services of the
application or of the subcomponents & can be called the
problem of “feature interaction”. This paper proposes a less
complex method that uses two concerns termed as signature
and transformation. The signature describes the specification
aspect of a feature i.e name, arguments etc. On the other
hand the transformation describe the working aspect of the
feature i.e the fundamental code which actually implements
interactions and finally make the two features to work together.
Keywords : Aspect Oriented Programming, feature
interaction (FI), FI resolution, feature based
development, signature, transformation.

I. Introduction

n the last few years the unavoidable interaction
among the homogenous and heterogeneous
applications has been increased to a great extent.

The interaction among heterogeneous applications
leads to the co-execution or co-operation of loosely
coupled modules/queries of the software. Here the
loosely coupled means the components of software
which are designed and implemented independently
from each other, have no or very less number of shared
elements among them. This type of software
components may be developed at same time but on
different domains or may be developed by different
providers/teams or may be developed by the same
provider/team but at different times. Sometimes during
the development of such components to maintain the
quality of service it become necessary to bypass the
semantic reliability among them. Adaptive capability
must be provided to facilitate the smooth resolution of
conflicts which ultimately leads to the co-ordination and
co-operation between different feature components.
Maintaining the co-operation and co-ordination in the
distributed system is very cumbersome task. The feature
interaction problems faced by the telecommunication

Author α

:

Department of Computer Sc. & Applications, Kurukshetra

University P.G Regional Centre, Jind

Author Ω

:

Department of Computer Sc. & Applications, Kurukshetra

University, Kurukshetra , vishal.verma@kuk.ac.in

industry are identified in [13]. The shifting of software

solutions from stand alone computers to
 distributedsystems and taking steps towards the cloud

computing makes this problem more significant and
ubiquitous.

 A desired capability or functionality of a
particular query of component may be termed as
feature. Within a telecommunication system a feature is
expressed as “unit of functionality existing in a system
and usually perceived as having a self contained
functional role” [3]. It is very common tradition in
telecommunication system to organize the development
of projects, peoples and even marketing by features
[14]. Same process is also followed apparently by the
Microsoft for developing their software products [10].
Feature interaction problem involves an undesired
interaction in which “the behavior of one feature is
affected by the behavior of another feature or another
instance of same feature” [7].

Though the FI problem is firstly identified in
telecommunication industry, yet it is not limited to the
domains of

telephony industry. Another means of

communication like e-mail, pager, messages etc also
face the same problem. Feature interaction related
aspects in traditional and telecommunication system are
well documented in [6] & [7]. Problems of similar type
are also identified in a number of miscellaneous
examples like multimedia, mobile and internet services
as discussed in [4] & [1]. Service composition problem
can also be considered as feature interaction problem
[5].

Small size features are used as building blocks
of distributed systems. Because of presence of a
number of features in the system, the interaction
problem becomes inevitably complex. The solution
suggested in this paper is based on separation of
interaction related issues of the features; this separation
is done in terms of signature and transformation. It
allows the easy plug and unplugs of interaction
resolution modules i.e. the feature interaction concern is
raised up to the meta-level. The basic terminology of
aspect oriented programming [8] is used to
implement/describe this concept of meta-level. The
method adds an enhancement to the previous work
discussed in [9]. The resolution strategies discussed
here are the step forward in the previous identification of
concern based requirement engineering [2]. This

I

© 2011 Global Journals Inc. (US)

-

approach can be best used by taking the concept
discussed in the [13] as its plate-form.

20

11

59

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

J
u
l
y

Importantly this paper takes the issues of
resolving interaction problem further by considering two
resolutions that themselves interact with each other.
Operation precedence is also considered as one of the
base to propose the solution of interaction problem. The
query based communication system is used as a case
study here. Any distributed relational data base system
is a typical application of an internet based system,
which has many interaction and communication related
problems. This system has client and server based
structure to store the data and support a number of
queries to fulfill the user requests. Important
consideration about this system is that it allows a relavar
(table) to be stored both at server location (updated
periodically) and at client location (updated frequently),
to make the easy access of data at client locations. Only
highly desired relavars are stored at two locations, to
reduce the response time of queries. The feature
components taken into consideration are FilterQuery,
ForwardQuery and ResendQuery. All of these features
are supposed to be implemented at client as well as
server location, both for single-copied as well as multi-
copied relavars and they help to illustrate interesting
interaction properties. Here the same basic approach is
used as used in distributed data base i.e. client raise a
request for data, which may reside on same machine or
on any other machine in distributed system. All the
queries raised by one location are supposed to be
passed through feature processing components unless
it gets executed and result is returned. For simplicity
routing issues are ignored.

Filterquery

: This feature is used to filter the query based
on the user’s name and its location from where he/she
raise it. To further check the query against the granted
permissions in the DBMS, the queries are filtered by
using the combination of relavar and user name. Rest all
queries are passed to proceed further for execution on
other parts of data base.

Forwardquery

: This feature component is provisioned to
forward a query to a new location based on address of
current location to reduce the response time. The
reason of forwarding of a query may be heavy load on
current location or long distance of server from the client
location.

Resendquery

: This feature component is used for the
timeout queries i.e. if the response of the query is not
received within specified time period then it may be
resend to the same or to any other target location to get
the reply from there.

Based on the above feature components, two
interactions among them can be identified as:

 Case 1: Considering two locations L1 & L2 of distributed
system, both of which keeps the copy of relavar R1.
Now suppose a query raised by user U1 from location
L1 is forwarded by ForwardQuery to location L2
because of heavy load or any other technical problem

but if location L2 has different set of constraints for
FilterQuery feature for user

U1, then he may not be able
to get the reply of his/her query. Here the FilterQuery
subverts the ForwardQuery.

Case 2: The ResendQuery feature component become
active, and resends the query if user U1 at location L1
does not receive the reply of his query. Here again
FilterQuery subverts ResendQuery.

In above two cases it is difficult to resolve the FI
conflicts which occur because of the following reasons:

1.

Feature under consideration belong to and reside at
two different locations. Both locations try to achieve
their own goals and follow their own interest.

2.

The conflict is acute, therefore difficult to reconcile.
In favor of any one side might acutely harm
another’s side interest.

In above discussed Case 1 location L1 is
forwarding the query to another location L2, so that
result can be achieved with less response time, but in
contrast to location L1, the administrator of location L2
may have different set of constraints applied on query
raised by the user U1, to keep the data base secure at
his location. This situation causes conflicts among the
features and is termed as problem of feature interaction.

In case 2 the user resends query because of time out
response from location L1, it causes the same problem
of feature interaction among the feature ResendQuery
and FilterQuery.

This interaction can also be mapped to many
other applications whose working depends upon the
execution of query by the user. The resolution of this
kind of conflicts is inevitably an important part of system
if we want to yield better

quality of services. However,
most of the existing programming paradigms force the
developers to program any query resolution code into
the core functionality of a feature (referred as feature
transformation). This type of entanglements of different
functional roles can quickly complicate a system,
making it harder to maintain and evolve. This type of
deep seeking into the implementation architecture has
led us to propose a two level architecture for complexity
control.

One thing that must be pointed out here is that
although the suggestion for resolution of each feature
interaction is discussed in this paper, we have no
intention to strictly validate them, because focus is on
the separation techniques, rather than the feature
interaction resolution issues themselves. As an aside, it
is also believed that there is no definition of resolution in
context of feature interaction, reason behind it is that the
resolution on the same feature interaction problem may
vary from developer to developer. The sentence like

Identifying and Separating Interaction Concerns from Distributed Feature Components

20

11

60

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

“resolution of an interaction” is very subjective and is
very hard to implement. Sometimes it just meets the
requirements of features of users other than a sound
rationalization. In this paper it is assumed that any

J
u
l
y

feature interactions constitute a resolution of that
interaction. Therefore the simplest resolution is to
disable one of the interacting features. However, real
world applications might need a more deliberate
resolution so as to improve the quality of service.

II.

Separation Of Interaction
Concerns

For the proposed framework, the work
proceeds with an assumption that every feature has a
clear specification of its functionality. It is confine that
implementation of specification varies, even though it is
generally easy to distinguish the pure feature code. This
part of the feature is considered as “transformation” i.e
the inevitable part for the implementation of specification
(feature).

However in feature driven development,
features must clearly

be able to work with other features.
Since transformation is acutely rigid business logic, it is
unable to adapt itself to different execution contexts
(different interactions among features). Hence the
corresponding signatures are required to make the
interaction easier and make it flexible enough to adopt
with other interacting features. Therefore a feature
signature is responsible for gluing features together and
taking actions to smooth among incompatibilities.

It is not possible for a developer/designer to
foresee the feature that will interact with his/her
developed feature, hence signature must be able to
adjust with transformation at any stage latter on i.e
complementing the situations which causes problem
with interaction resolution issues when transformation is
designed. To make this kind of implementation possible,
it is ideally raised up to the meta-level so as to provide a
separation among signature and transformation and
facilitate reuse and maintenance/ evolution.

Actually it is signature that is thought to be
ideally suited to aspect oriented software development
techniques. Fig 1 shows the FilterQuery’s transformation
part.

class filter implements Qrt

{

string qryid;

public filter()

{

 // set statements for filter box

}

public void receive(Query qry)

{

 filter_feature(qry);

}

private void filter_feature(Query qry)

{

 string sender=qry.location.user();

 if(! Isfilteredlist(sender))

 process(qry)

 else

 discard(qry);

}

public boolean isfilteredlist(string sender)

{

 string list=sender.substring(sender.indexof(“table
name”)+1);

return boolean(list);

}

public void process(Query qry)

{

 //execute the query;

}

public void discard(Query qry)

{

 //discard the query;

}

}

Fig 1. FilterQuery’s transformation, implements
only what specification specifies.

The transformation logic takes care of filtering
the incoming query against a filter check list. In order to
do this, for an incoming query, it will get the sender’s
address and check it against the filter list, then

decide to
either process it or discard it depending upon check
list’s entry. The Qrt interface, which contains two
methods, receive

and process

must be implemented for
the connection of feature boxes. It can be seen that
transformation of a feature is simple, cohesive and
highly consistent with its original specification. Typically
features have two basic parts:

1.

Some data (structure) such as list of filter
permissions, list of filter users etc.

2.

Some method to operate on data and provide
necessary feature logic to implement a service feature.

The signature of the feature is expressed by considering
the two features together.

a)

Filterquery Vs Forwardquery

The signature of the feature can help in an easy
way to come out of the problem faced during the
interaction among the FilterQuery and ForwardQuery.
One might use a form to ask a feature owner to specify
options/preferences/policies for dealing with interaction
so as to collect the basic data for negotiation, while
another way might just design a default resolution
policy. A simple resolution based on a default policy is
discussed here. As ForwardQuery behave passively for
this interaction, the policy requires a decision by the
FilterQuery. A reasonable default policy of FilterQuery
might be ”to apply a check on the received query from
user U1 whether this query has an entry in the filter list

© 2011 Global Journals Inc. (US)

Identifying and Separating Interaction Concerns from Distributed Feature Components

resolution step that is able to implement any acute

at location L1 if so then location L2 must follow the
same check list for processing of query at its location,
but if there is no entry in the filter list at location L1
against user U1 then location L2 is free to use its own

20

11

61

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

J
u
l
y

filter list for query raised by user U1.” Thus the users as
well as locations are free to process the query in their
own way, though both locations have their own list to
filter the queries. Formally

this resolution can be
described as:

Every time FilterQuery is about to process a
query, it should additionally check if the query is from
the ForwardQuery, if so, it must demand and follow the
same filter list as obtained from the ForwardQuery’s
location, otherwise, it is free to process the query as per
its own filter list. For this implementation ForwardQuery
must add a <forward> tag in the content with original
sender’s location that allows FilterQuery to check
against the filtering list.

Fig. 2 shows the implementation of above
resolution in aspect oriented language.

aspect ForwardQuery()

{

 flist=filterlist.currentloaction();

 void prc(Query qry, boolean fwd)

 {

 If(fwd)

 {

 flist=getfilterlist.prevlocation();

 process(qry,flist);

 }

 else

 process(qry,flist);

 }

}

Fig.2 Resolve FI between FilterQuery and ForwardQuery

b)

Filterquery Vs Resendquery

The goal of filtering must be clear at the time of
resolution among the features. The features FilterQuery
and ResendQuery interact in a number of ways to each
other. In some cases the FilterQuery is implemented in
context of ResendQuery only to avoid the re-execution
of already executed query. If this is the case then
problem of interaction can be resolved only by keeping
record of acknowledgments to the users/locations.
Based on this insight, a resolution can be suggested as
follows:

Every time FilterQuery is about to execute a
query it checks whether the query is received first time
or it is received from the ResendQuery, if it is first arrival
then execute it otherwise the FilterQuery will first check
the list of acknowledgements for already executed
queries, if it found an entry it simply discard the
execution. To let the FilterQuery know that the query is a
resend query, ResendQuery must add a <resend> tag
in the sent query.

Fig. 3 shows the resolution for FilterQuery and
ResendQuery

aspect stop ReExe()

{

 void filter(Query qry)

 {

 boolean resend;

 resend=qry.location.ack;

 if(resend)

 discard(qry);

 else

 process(qry);

 }

}

Fig. 3 Resolve FI between FilterQuery and ResendQuery

III.

Problem Faced During
Composition

Last section

clearly shows that by using the
basic terminology of aspect oriented programming for
representation of feature interaction resolution is an
effective way of feature composition. It is also flexible
with respect to further evolution of the system. However,

FI problems are complicated issues, and a resolution is
unlikely to be independent of other resolutions. This is
not unexpected, since resolution themselves can be
viewed as features, which, of course are prone to
interactions.

Both interactions resolutions discussed above
require new behavior of advice around FilterQuery.
Basically a FilterQuery feature is used or applying a
check on the permissions granted to various
users/locations. For every raised query, it either
processes the query or discard it. Interestingly, there is
an antithesis between two resolutions. The first, i.e the
case of FilterQuery and ForwardQuery, says that if the
query is a forwarded query then the FilterQuery makes a
check by using the filtered list against which it is to be
filtered. It always demands the filter list from concerned
locations which made an extra burdon on the system.
This problem can be rescued by keeping the filter list
unique or keeping the filtered list at all locations. While
second, i.e the FilterQuery and ResendQuery, says that
a query is discarded if their exist acknowledgement in
the acknowledgement list for the same query, the
situation may be that the acknowledgement and result is
sent from the server but is not received at the location
because of communication channel problem. The
resolution for this circumstance is that we must do
something to rescue it from being discarded.

When composing the two resolution features
together, the problem is: while one resolution require the
processing of query the other

resolution wants to

Identifying and Separating Interaction Concerns from Distributed Feature Components

 20
11

62

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

discard it. The problem can be reduced by considering
the comprehensive view in Fig.4 about the queries that
are to be processed after forward of resend query. This
typical configuration is shown as follows:

J
u
l
y

Fig. 4

: Comprehensive view of all features arrangements.

IV. Evolution Of our Approach

Our evolution can be classified into a number of
different properties including cleanness of separation,
faithfulness of implementation to specification, re use,
adaptability to requirement change etc. Name of all the
specified properties shows that they are qualitative than
quantitative.

a)

Cleanness Of Separation

1.

The approach discussed in this paper avoids the
tangling of core behavior with resolution code, it allow
a feature to work with other features.

2.

All the features illustrate an elegant separation when
implemented. Important to note is that not every
interaction require a separate resolution module thus
motivating our search for more general interaction
resolution patterns.

b)

Faithfulness Of Implementation To Specification:

1.

The design of two level architecture keeps the
feature’s implementation faithful to its specification.

2.

This design can be used as a base to generative
programming techniques to generate code
automatically from specification.

c)

Re Use

1.

Reuse for very specific interaction resolution modules
(Fig. 2 and Fig. 3) is limited. The best opportunity to re
use is at the base level (signature) rather than the
meta level.

2.

The re-factored GUI (if build) modules can be reused

in other implementations since all interactions
concerns are extracted thus leaving a generic feature
component

d)

Adaptability To Requirement Change:

1.

The separation proposed by our architecture allows
the developer to integrate new features into the
system, without needing to consider, or worse rewrite,
existing feature.

2.

The aspect oriented approach for the separate
resolution modules allow the developer to implement
a feature without considering the interaction with other
features, then focus on the interaction issues
separately.

3.

Removal of a feature from a system to avoid
redundant code being left embedded in feature
boxes, a situation that leads to unnecessary
complexity and low efficiency.

V.

Conclusion And Future Work

Heterogeneous service nature of distributed
features make the problem of FI in today’s applications
more sever. It is believed that the separation of
interaction concerns is the key to the success of
reusability and maintenance of an evolving system.
Signature and transformation separation are metaphors
for the relationship between a feature’s functional logic
and its adaption logic. The signature provide a way to
transformation so as to allow it to adapt to a feature
interaction. Lifting up the transformation code to a meta
level is the vital decision for the separation. The
emerging area of aspect oriented programming
provides a new dimension for the implementation of this
concept.

More investigations are required to be carried
out to abstract further interaction resolution patterns,
and further interaction resolution pattern libraries for
different domains. The focus of interaction resolution is
the composition problem, namely the semantic conflicts
occurring when two interactions resolutions composing
together.

1.

L.Blair, G.Blair., J.Pang. & Efstratiou C. Feature
interactions outside a telecom domain. Workshop
on Feature Interactions in Composed Systems,

held
at ECOOP2001, Budapest, Hungary, 18-22 June
2001.

2.

Kumar Ashok, Verma Vishal. A

model for concern
based requirement engineering. presented and
published in National Level Seminar, N C College of
Engineering, Panipat, 2008

3.

J.Pang, L.Blair. An adaptive run time manager for
the dynamic integration and interaction resolution of
feature. In proceedings 22nd International
Conference on Distributed Computing Systems
Workshops.

pp445-450 IEEE, Los Alamitos,
California, 2002.

4.

L.Blair. & J.Pang., Feature interactions -

life beyond
traditional telephony, In [6], pp 83-93, IEEE, Los
Alamitos, California 2000.

5.

M.Blay-Fornarino, A.Pinna-Dery and M.Riveill.
Towards dynamic configuration of distributed
applications, In Proceedings 22nd International
Conference on Distributed Computing Systems
Workshops,

pp487-492 IEEE, Los Alamitos,
California, 2002.

Forward

Filter

Forward

Resend

Filter

Resend

Filter

© 2011 Global Journals Inc. (US)

Identifying and Separating Interaction Concerns from Distributed Feature Components

6. M.Calder, E.Magill. editors, Feature interactions in
telecommunications and software systems vi.
Glasgow, Scotland, IOS Press(Amsterdam), 2000.

7. E.Jane Cameron, Nancy D.Griffeth, Y. Lin, M.Nilson,
W.Schnure, and H.Velthuijsen. A feature-interaction
benchmark for in and beyond. IEEE
Communications XXXI(3):64-69, March 1993.

References Références Referencias

20

11

63

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

J
u
l
y

8.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm and W. Griswold. Getting started with aspect.
Communication of the ACM, Vol. 44, Issue 10,

ACM
Press (New York),

pp59-65, October 2001.

9.

Kumar Ashok, Verma Vishal. Model for concern data
bases. presented and published in ICACCT

–

2008

10.

M.A.Cusumano and R.W.Selby. Microsoft secrets:
how the world’s most powerful software company
createstechnology, shapes markets, and manages
people. Simon & Schuster, 1998. ISBN:
0684855313.

11.

M Calder, E. Magill, M. Kolberg, and S. Reiff-
Marganiec. Feature interaction: a critical review and
considered forecast. Accepted for publication,
Computer Networks, North-Holland. 2002. Available
via http://www.dcs.gla.ac.uk/~muffy/papers.html

12.

P.Zave. FAQ Sheet on feature interactions , AT&T,
2001, Available via: http://www.research.att.com-

/~pamela/faq.html.

Identifying and Separating Interaction Concerns from Distributed Feature Components

 20
11

64

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
X
II
 V

er
si
on

 I

J
u
l
y

Manu-1
Cross-Out

	Identifying and Separating Interaction Concerns fromDistributed Feature Components
	Authors
	Keywords
	I. Introduction
	II.Separation Of InteractionConcerns
	a)Filterquery Vs Forwardquery
	b)Filterquery Vs Resendquery

	III.Problem Faced DuringComposition
	IV. Evolution Of our Approach
	a)Cleanness Of Separation
	b)Faithfulness Of Implementation To Specification:
	c)Re Use
	d)Adaptability To Requirement Change:

	V.Conclusion And Future Work
	References Références Referencias

