
© 2011 Ruchi Tuli, Parveen Kumar. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 9 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 & Print ISSN: 0975-4350

The Performance of Soft Chekpointing Approach in Mobile
Computing Systems

By Ruchi Tuli, Parveen Kumar

Singhania University

Abstract- Mobile computing raises many new issues such as lack of stable storage, low
bandwidth of wireless channel, high mobility, and limited battery life. These new issues make
traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an attractive
approach for transparently adding fault tolerance to distributed applications since it avoids
domino effects and minimizes the stable storage requirement. However, it suffers from high
overhead associated with the checkpointing process in mobile computing systems. In literature
mostly, two approaches have been used to reduce the overhead: First is to minimize the number
of synchronization messages and the number of checkpoints; the other is to make the
checkpointing process nonblocking. Since MHs are prone to failure, so they have to transfer a
large amount of checkpoint data and control information to its local MSS which increases
bandwidth overhead. In this paper, we introduce the concept of “Soft checkpoint” which is
neither a tentative checkpoint nor a permanent checkpoint, to design efficient checkpointing
algorithms for mobile computing systems. Soft checkpoints can be saved anywhere, e.g., the
main memory or local disk of MHs. Before disconnecting from the MSS, these soft checkpoints
are converted to hard checkpoints and are sent to MSSs stable storage. In this way, taking a soft
checkpoint avoids the overhead of transferring large amounts of data to the stable storage at
MSSs over the wireless network. We have also shown that our soft checkpointing scheme also
adapts its behaviour to the characteristics of network.

Keywords:

GJCST Classification: C.1.3, C.2.1

 Strictly as per the compliance and regulations of:

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

Mobile distributed system, coordinated checkpointing, fault tolerance, Mobile H ost.

The Performance of Soft Chekpointing
Approach in Mobile Computing Systems

Ruchi Tuliα, Parveen Kumar

Abstract- Mobile computing raises many new issues such as
lack of stable storage, low bandwidth of wireless channel, high
mobility, and limited battery life. These new issues make
traditional checkpointing algorithms unsuitable. Coordinated
checkpointing is an attractive approach for transparently
adding fault tolerance to distributed applications since it
avoids domino effects and minimizes the stable storage
requirement. However, it suffers from high overhead
associated with the checkpointing process in mobile
computing systems. In literature mostly, two approaches have
been used to reduce the overhead: First is to minimize the
number of synchronization messages and the number of
checkpoints; the other is to make the checkpointing process
nonblocking. Since MHs are prone to failure, so they have to
transfer a large amount of checkpoint data and control
information to its local MSS which increases bandwidth
overhead. In this paper, we introduce the concept of “Soft
checkpoint” which is neither a tentative checkpoint nor a
permanent checkpoint, to design efficient checkpointing
algorithms for mobile computing systems. Soft checkpoints
can be saved anywhere, e.g., the main memory or local disk
of MHs. Before disconnecting from the MSS, these soft
checkpoints are converted to hard checkpoints and are sent
to MSSs stable storage. In this way, taking a soft checkpoint
avoids the overhead of transferring large amounts of data to
the stable storage at MSSs over the wireless network. We
have also shown that our soft checkpointing scheme also
adapts its behaviour to the characteristics of network.
Keywords- Mobile distributed system, coordinated
checkpointing, fault tolerance, Mobile Host

I. Introduction
 mobile distributed system consists of both
Mobile Hosts (MH) and static Mobile Service
Stations (MSS). A set of dynamic and wireless

communication links can be established between an
MH and an MSS, and a set of high-speed
communication link is assumed between the MSSs. An
MSS may communicate with a number of MHs but an
MH at a time communicates with only one MSS. An MH
communicates with the rest of the system via the MSS it
is connected to. Message transmission through wireless
links takes an unpredictable but finite amount of time.
Reliable message delivery is assumed during normal
operation. The system does not have any shared
memory or global

About α- Research Scholar, Singhania University, Pacheri Bari
(Rajasthan) India
About β- Professor, Meerut Institute of Engineering & Technology,
Meerut (INDIA)

 clock [1].

Distributed

computation in such mobile
computing

environment is performed by a set of

processes executing

concurrently on MHs and MSSs in

the network. The processes communicate
asynchronously with each other.

A process experiences

a sequence of state transitions

during its execution and

the atomic action which causes

the state transition is

called an event. The event having no

interaction with

another process is called

an internal event; the
message sending and receipt are external events.
Computation

is a sequence of state transitions within a

process.
 The diversity and flexibility introduced by mobile

computing brings new challenges to the area of fault
tolerance. Types of failures that were rare in the fixed
environments are common with mobile hosts. Physical
damage becomes much more probable, because
mobile hosts are carried with the users while they move
between sites. Mobile hosts can also be lost or stolen.
Transient failures due to power or connectivity problems
can be frequent events.

 In this paper, we focus on checkpoint based
recovery technique for mobile computing systems. A
checkpoint protocol typically functions as follows : the
protocol periodically saves the state of the application
on stable storage. When a failure occurs, the application
rolls back to the last saved state and then restarts its
execution. Checkpoint protocols proposed in the
literature are not suitable for mobile environments
because of disconnections. Another problem is that
these previously proposed protocols do not adapt their
behaviour to the characteristics of the current network
connection. If the network has a poor Quality of Service
like small bandwidth and a high failure rate, the protocol
should be able to trade off recovery time with
operational costs.

II.

Related

work

and problem

formulation

a)

Related Work
 The most commonly used technique to prevent

complete loss of computation upon failure is
Coordinated checkpointing [2], [3], [4], [5], [13]. In this
approach, the state of each process in the system is
periodically saved on the stable storage, which is called
a checkpoint of the process. To recover from a failure,

A
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

1

M
a
y

©2011 Global Journals Inc. (US)

Ω

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

the system restarts its execution from a previous
consistent global checkpoint saved on the stable
storage. In order to record a consistent global
checkpoint, processes must synchronize their
checkpointing activities. In other words, when a process
takes a checkpoint, it asks to all relevant processes by
sending checkpoint requests to take checkpoints.
Therefore, coordinated checkpointing suffers from high
overhead. The protocol presented in this paper shows
performance improvement over the work reported in [3],
[4], [6], [7] & [8]. The protocol designed by Acharya
and Badrinath [6] requires to create a new checkpoint
whenever they receive a message after sending a
message. Processes also have to create a checkpoint
prior to disconnection. Pardhan et al. [7] proposed two
uncoordinated protocols. The first protocol creates a
checkpoint everytime when a process receives a
message. The second protocol creates checkpoints
periodically and logs all messages received. P. Kumar
and R. Garg [11] proposed a hybrid scheme, wherein
an all process checkpoint is enforced after executing
minimum-process algorithm for a fixed number of times.
In the first phase, the MHs in the minimum set are
required to take soft checkpoint only. Soft Checkpoint
proposed by them is stored on the disk of the MH and
is similar to mutable checkpoint [8]. In the minimum
process algorithm, a process takes its forced
checkpoint only if it is having a good probability of
getting the checkpoint request; otherwise, it buffers the
received messages.

S. Kumar, R.K. Chauhan and P.Kumar [12]
proposed a soft checkpoint approach in which a
process in minset [] takes a soft checkpoint first and
then soft checkpoint will be discarded, if it receives
aborted message from the initiator. These soft
checkpoints are saved on main memory of the mobile
hosts [MHs], and then the soft checkpoint will be saved
on the stable storage of MSS at a later time only if they
receive the hard checkpoint request from the initiator.
Their scheme requires low battery power of MHs, low
checkpoint latency, low transmission cost, and low
recovery time due to reduced disk accessed of MSS by
the MHs. As soft checkpoint approach is less reliable, to
make it reliable they transfer the soft checkpoint on
stable storage

The protocols proposed in [3], [4] & [8] follow
two-phase commit distributed structure. In the first
phase processes take temporary checkpoints when
they receive the checkpoint request. These tentative
checkpoints are stored in stable storage of MSS. In the
second phase, if an MSS learns that all the processes
have taken the temporary checkpoints successfully,
initiator MSS sends commit message to all the
participating nodes. In these checkpoints an MH has to
transfer a large amount of data to its local MSS over its
wireless network which results in higher checkpoint
latency and recovery time as transferring such

temporary checkpoints on stable storage may waste a
large amount of computation power, bandwidth, energy
and time.

The protocol proposed by us creates a
checkpoint whenever the local timer expires, and it only
logs the unacknowledged messages at checkpoint
time. Our protocol uses two types of checkpoints to
recover from failure. The two previous protocols
proposed in [6] and [7] always assume hard failures.

b) Problem formulation
In mobile distributed system multiple MHs are

connected with their local MSS through wireless links.
During checkpointing, an MH has to transfer a large of
amount of data like control variables, register values,
environment variable to its local MSS over the wireless
network. So, it consumes resources like bandwidth,
energy, time and computation power.

Mobile host failures can be separated into two
different categories. The first one includes all failures
that cannot be repaired; for example, the mobile host
falls and breaks, or is lost or stolen. The second
category contains the failures that do not permanently
damage the mobile host; for example, the battery is
discharged and the memory contents are lost, or the
operating system crashes. The first type of failure will be
referred to as hard failures, and the second type as soft
failures. The protocol should provide different
mechanisms to tolerate the two types of failures. The
objective of the present work is to design a
checkpointing approach which is suitable for mobile
computing environment.

c) Basic idea
The basic idea of the proposed protocol is to

use time to coordinate the creation of global states.
Whenever, the local timer expires, the processes save
their states periodically. Two distinct types of
checkpoints are created by processes. The first
checkpoint called the soft checkpoint saved locally in
the mobile hosts to tolerate soft failures. The second
type of checkpoints is hard checkpoints which is stored
on stable storage of MSS and is used to recover from
hard failures. Soft checkpoints are less reliable than
hard checkpoints as the same can be lost with hard
failures. But soft checkpoints cost much less than hard
checkpoints. For different network configurations, the
protocol saves distinct number of soft checkpoints per
hard checkpoint. For a slow network, many soft
checkpoints can be crated to avoid network
transmissions

For a given network configuration, the protocol
can exchange hard failure recovery time with
performance costs. Hard failures are recovered with
global states containing only hard checkpoints. The
amount of rollback due to hard failures is small on
average if the protocol creates hard checkpoints
frequently, which causes the protocol to perform poor.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

2

M
a
y

©2011 Global Journals Inc. (US)

However, Soft checkpoints keep the system in
running mode correctly while the mobile host is
disconnected. In other words, a disconnected mobile
host can be viewed as a host connected to a network
with no bandwidth. In this case, the number of soft
checkpoints per hard checkpoint is set to infinity, which
means that all processes’ states are stored locally. The
local checkpoints are used to recover the mobile host
from soft failures.

III. The proposed checkpointing
Algorithm

a) System Model
The mobile environment model used in this

protocol contains both fixed and mobile hosts
interconnected by a backbone network. The fixed hosts
are called MSS and mobile hosts are connected to MSS
by wireless links. A MSS is connected to another MSS
by wired network. The static network provides reliable
and sequenced delivery of messages between any two
MSSs. Similary wireless link between MSS and MH
ensures FIFO delivery of messages. An MH can directly
communicate with MSS only if the MH is physically
located in that MSS. A cell is a geographical area
around MSS which can have many MH. An MH can
freely move from one cell to another and change its
geographical position. At any instant of time, an MH can
belong to only one cell. If an MH does not leave its cell,
then every message sent to it from local MSS would be
received in sequence in which it is sent.

b) Algorithm Concept
We assume that the protocol maintains a

unique checkpoint number counter, CkpNum, at each
process to guarantee that the independently saved
checkpoints verify the consistency property. Whenever
the process creates a new checkpoint, the value of
CkpNum is incremented and is piggybacked with every
message. The consistency property is ensured if no
process receives a message with a CkpNumi larger than
the current local CkpNum. If CkpNumi is larger than the
local CkpNum, the process creates a new checkpoint
before delievering the message to the application. The
recoverability property is guaranteed by logging at the
sender all messages that might become in-transit.
These are the messages that have not been
acknowledged by the receivers at checkpoint time. The
sender process also logs the send and receive
sequence number counters. During normal operation,
these counters are used by the communication layer to
detect lost messages and duplicate messages due to
retransmissions. After a failure, each process resends
the logged messages. Duplicate messages are
detected as they are during the normal operation.

c) Creation of a global state
 Whenever a mobile host moves out of the

range of the cell or user turns off the network interface, it
becomes disconnected. In a disconnected mode, the
mobile host cannot access any information that is
stored on a stable storage. Due to this reason, the
protocol must be able to perform its duties correctly
using local information. The protocol continues to save
soft checkpoints to recover from soft failures. Two types
of disconnections are considered. A Temporary
disconnection allows the protocol to exchange few
messages with stable storage just before the mobile
host becomes isolated. Examples include the situations
where communication layer informs the protocol when
mobile host moves outside the range of cell or the
boundary areas where signal strength becomes weaker.
A permanent disconnection implies the case in which
protocol is not able to exchange any messages with
stable storage. Example includes when use unplugs the
cable without turning off the application.

The creation of a new global state before
disconnection is necessary for both the mobile host and
the other hosts. This new global state is important
because it prevents the rollback of work that was done
while the mobile host was disconnected. If the new
global state is not saved and another host fails after the
disconnection, the application rolls back to the last
global state that was stored (without warning the mobile
host). The mobile host cooperates with the stable
storage to create a new global state before
disconnection. Just before the mobile host becomes
isolated, the protocol sends to stable storage a request
for checkpoint, and saves a new checkpoint of the
process (hard or soft, depending on the network). Then
the stable storage broadcasts the request to the other
processes. Processes save their state as they receive
the request. New global states can only be created
before the mobile host detaches from the network if
disconnections are orderly.

When the mobile host reconnects, the protocol
sends a request to stable storage, asking for the current
checkpoint number and the CN of the last hard global
state. When the answer arrives, the protocol updates
the local CN using the current checkpoint number. The
protocol also creates a hard checkpoint if the mobile
host has been isolated for a long time.

d) Working of the Algorithm
We illustrate the execution of the protocol with

the help of following figure. This figure (Figure 1)
represents the execution of three processes. Processes
create their checkpoints at different instants, because
timers are not synchronized. After saving its CkpNum
checkpoint, process P1 sends message m1. When m1
arrives, process P3 is still in its CkpNum-1 checkpoint
interval. To avoid a consistency problem, P3 first creates
its CkpNum checkpoint, and then delivers m1. P3 also

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

3

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

©2011 Global Journals Inc. (US)

resets the timer for the next checkpoint. Message m2 is
an in-transit message that has not been acknowledged
when process P2 saves its CkpNum checkpoint. This
message is logged in the checkpoint of P2. Message

m3 is a normal message that indirectly resynchronizes
the timer of process P2. It is possible to observe in the
figure the effectiveness of the resynchronization
mechanism.

Figure 1:- Time-based soft checkpointing

e) The Algorithm
Following is the pseudocode of the algorithm.

The algorithm uses the following local variables –
// Si - Sender’s Identifier
// CkpNumi – Current checkpoint number of the
sender
// timeToCkpi – Time interval until next checkpoint
// msgi – Message contents

i. Message Receiving

receiveMsg (Si, CkpNumi, timeTockpi, msgi)
if ((CkpNum=CkpNumi) and getTimeToCkp() >
timeToCkpi))

resetTimer (timeToCkpi);
else if (CkpNum<CkpNumi) {

CreateCkp ();
resetTimer(timeToCkpi);

}
delieverMsgToApplication (msgi);

ii. Application Process (At MH)

createCkp () :
CkpNum : = CkpNum +1;
resetTimer (T);
if ((CkpNum mod maxsoft) = 0) sendCkpST

(getState ());
else saveState (getState (), CkpNum);

C. Stable Storage (At MSS)

// The function arguments are same as in message
receiving

receiveCkp (Si, CkpNumi, timeTockpi, statei)

saveState (statei, CkpNumi);
CkpNum : = max (CkpNum, CkpNumi);
setFlag (CkpNumi, Si);
if (row (CkpNumi) = 1) {

CkpHard : = CkpNumi;
garbageCollect (CkpHard);

}

The functions given above are used to create a

new checkpoint. Function createCkp is called to save a
new process state. It starts by incrementing the
CkpNum, and then it resets the timer with the
checkpoint period. Next, the function determines if the
checkpoint should be saved locally or sent to stable
storage. The function saveState stores the process state
locally, and the function sendCkp sends the process
state to stable storage. The function receiveCkp is
called by the stable storage to store newly arrived
checkpoints. It first writes the received state to the disk,
and then updates the local checkpoint counter. Then, it

P1
CkpNum TCkpNum+1

P2

m1(CkpNum,t1)

CkpNum

m2(CkpNum-1,t2)

TCkpNum+1

P3

CkpNum

m3(CkpNum,t3)

TCkpNum+1

Reset Timer

Reset Timer
Message-Induced

Checkpoint

P33

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

4

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

©2011 Global Journals Inc. (US)

determines if a new hard global state has been stored
using a checkpoint table. The checkpoint table contains
one row per CkpNum, and one column per process.
The table entries are initialized to zero. An entry is set to
one whenever the corresponding checkpoint is written
to disk. The table only needs to keep one bit per entry,
which means that it can be stored compactly. A new
hard global state has been saved when all entries of a
row are equal to one. The variable CkpHard keeps the
checkpoint number of the new hard global state. The
function garbageCollect removes all checkpoints with
checkpoint numbers smaller than CkpHard.

IV. Adaptivity to different network
types

The protocol adapts its behavior to the
characteristics of the network. If the network has a poor
quality of service, the protocol saves many soft
checkpoints before it sends a hard checkpoint to stable
storage. The number of soft checkpoints stored per
hard checkpoint is called maxVal, and it depends on the
quality of service of the current network. The assignment
of maxVal values to the different networks is made
statically, and saved in a table. Table 1 gives two
examples of possible assignments. The minimal quality
of service corresponds to a disconnected mobile host.
In this case, maxVal value is set to infinity, which means
that only soft checkpoints are created. The minima
maxVal column represents an assignment where hard
checkpoints are created frequently, which guarantees a
small re-execution time after a hard failure.

The maxima maxVal column corresponds to the
opposite case. Application processes run on hosts that
might be connected to different networks, each
corresponding to a distinct maxVal value. This means
that a global state can include both soft and hard
checkpoints. To ensure that recovery is always possible,
the protocol has to keep at each moment a global state
containing only hard checkpoints. This global state is
used to recover the application from hard failures.
Otherwise, the domino effect [9] can occur, and
recovery might not be possible. The protocol
guarantees that new hard global states are saved by
correctly initializing the maxVal table. The process that
creates hard checkpoints less frequently is the one
running in the host connected to the network with the
worst quality of service. The protocol guarantees that a
new hard global state is stored every time this process
creates a hard checkpoint, by initializing the table in
such a way that maxVal values are multiples of each
other.

For example, if we have two processes P1 and
P2 and the processes have maxVal value 2 and 4. This
means that a new hard global state is created after
every 2 and 4 soft checkpoints. Process P1 creates
hard checkpoints whenever CkpNum is equal to 2, 4, 6,

8…. and process P2 creates whenever CkpNum is
equal to 4, 8, 12, 16,….The protocol also keeps the last
global state that was stored (which can include soft
checkpoints) to recover from soft failures.

Table 1:- Creation of Hard Checkpoints

Quality Of Service MaxVal
Minima Maxima

Excellent 1 2
Good 2 8
Average 4 32
Poor 8 128
Disconnected ∞ ∞

V. Comparison with the related
work

In this section we compare our work with
Acharya and Badrinath [6] and Pardhan et al. [7] since
our work is very closely related to their work. The
protocol designed by Acharya and Badrinath [6]
requires to create a new checkpoint whenever they
receive a message after sending a message. Processes
also have to create a checkpoint prior to disconnection.
Pardhan et al. [7] proposed two uncoordinated
protocols. The first protocol creates a checkpoint every
time when a process receives a message. The second
protocol creates checkpoints periodically and logs all
messages received. Also, the two protocols proposed in
[6] and [7] always assume hard failures. These two
algorithms have the following good features:
1. Only those processes that have received some
message after sending a message, take checkpoints
during checkpointing [6] or when process receives a
message [7] thereby reducing the number of
checkpoints to be taken.
2. Reductions in the number of checkpoints help in the
efficient use of the limited resources of mobile
computing environment.
3. Uses minimum interaction (only once) between the
initiator process and the system of n processes and
there is no synchronization delay.

However, the algorithms have a limitation too.
Consider a system of n process distributed system. Let,
the cost of sending a checkpoint request message from
initiator to a single process be Ci. Hence, the
checkpoint request cost, incurred by a single execution
of the checkpointing algorithm, would be (n-1)Ci. Thus,
the checkpoint request cost, incurred by k executions of
the checkpointing algorithm, would amount to k(n-1)Ci.
Therefore, the checkpoint request overhead, for
applications involving large number of processes and
running for longer durations, increases exponentially.

In the present work, we have attempted to
eliminate above problem by using timer. It is a well-
known fact that the use of timer eliminates extra

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

5

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

©2011 Global Journals Inc. (US)

coordination messages [10]. A process takes
checkpoint whenever its local timer expires. Moreover,
only those processes take checkpoint, after expiry of
their local timer, who have sent at least one message in
the current checkpoint interval. Therefore, the number of
processes taking checkpoint and, subsequently, the
total number of checkpoints is significantly reduced. In
addition, the use of timer removes need of the initiator
process for sending the checkpointing request
messages.

Our protocol creates a checkpoint whenever
the local timer expires, and it only logs the
unacknowledged messages at checkpoint time. Our
protocol uses two types of checkpoints to recover from
failure - soft checkpoints created and stored in MH to
recover from soft failures and hard checkpoints created
and stored at MSS to recover from permanent failures.
Table 2 gives a comparison of our work on different
parameters with the protocols proposed in [6] and [7].

Table 2 : Comparison with the related work

Parameters Acharya
and
Badrinath
[6]

Pardhan et
al. [7]

Our
Protocol

Creation of
checkpoint

When a
new
message is
received
after
sending a
message

When
process
receives
message

When
local timer
expires

No. of
checkpoint
phases

1 1 2

Failure assumed Hard Hard Hard and
Soft

Adaptable No Depend on
wireless
bandwidth

Vary with
QoS of
network

Coordination
Method

Message
based

Message
based

Timer
Based

Checkpoint
Latency

High High Low

Transmission
Cost

High High Low

Recovery Time High High Less

CPU Overhead High High High

Additional
Hardware

Not
Required

Not
Required

Additional
processor
is required
on MH

Main Memory
requirement

Low Low High

Reliability Low Low High

Efficiency Low Low High

Suitability For Large
Systems

For Large
Systems

For Large
and small
systems

VI. Conclusion
In our proposed approach, a have described a

protocol that is able to save consistent recoverable
global states. The process creates a new checkpoint
whenever the local timer expires. The protocol stakes a
soft checkpoint and saves it on the mobile host and
later on before disconnection converts it to the hard
checkpoint that is stored on MSS as soft checkpoint is
less reliable. The protocol adapts its behavior to
different types of networks by changing the number of
soft checkpoints to be taken per hard checkpoint. When
the mobile host is disconnected, the protocol creates
soft checkpoints to recover from soft failures. The main
features of our algorithm are: (1) it is non-blocking; (2) it
is adaptive because it takes checkpointing decision on
the basis of checkpoint sequence number; (3) it doesn’t
require tracking and computation of dependency
information; (4) it doesn’t require any control message
because it uses timer to indirectly coordinate the
creation of consistent global checkpoints and the local
timers are not synchronized through control messages
but by piggybacking control information on application
messages.

References Références Referencias
1. C. Chowdhury, S. Neogy, “A Consistent

Checkpointing- Recovery Protocol for Minimal
number of Nodes in Mobile Computing
System”, in International Conference on High
Performance Computing, pp-599-611, 2007.

2. Koo, R. and Toueg, S. (1987) ‘Checkpointing
and roll-back recovery for distributed systems’,
IEEE Trans. on Software Engineering, Vol. 13,
No. I, January, pp.23–31.

3. G. Cao and M. Singhal, “On Coordinated
Checkpointing in Distributed Systems,” IEEE
Trans. Parallel and Distributed System pp.
1213-1225, Dec. 1998.

4. E.N. Elnozahy, D.B. Johnson, and W.
Zwaenepoel, ªThe Performance of Consistent
Checkpointing,º Proc. 11th Symp. Reliable
Distributed Systems, pp. 86-95, Oct. 1992.

5. R. Prakash and M. Singhal, “Low-Cost
Checkpointing and Failure Recovery in Mobile
Computing Systems,” IEEE Trans. Parallel and
Distributed Systems, pp. 1035-1048, Oct. 1996.

6. Acharya, A. and Badrinath, B.R. Checkpointing
distributed applications on mobile computers.
In Proceedings of the Third International
Conference on Parallel and Distributed
Information Systems (Austin, Texas, Sep, 1994),
pp 73-80.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

6

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

©2011 Global Journals Inc. (US)

7. Pradhan, D.K., Krishna, P., and Vaidya, N.H.
Recovery in mobile environments: Design and
trade-off analysis. In Proceedings of the 26th
International Symposium on Fault-Tolerant
Computing, (Sendai, Japan, June 1996), IEEE,
pp. 16–25.

8. G. Cao and M. Singhal., “Mutable Checkpoints
: A New checkpointing Approach for Mobile
Computing Systems”, In Proceedings of the
IEEE Trans. Vol. 12, No. 2, pp-157-172, Feb.
2001

9. Randell, B. System structure for software fault
tolerance. IEEE Trans. Softw. Eng. SE-1, 2
(June 1975), 220–232.

10. N. Neves, “Time-based coordinated
checkpointing,” Ph.D. dissertation, UIUCDCS-
R-98-2054, University of Illinois at Urbana-
Champaign, 1998.

11. P. Kumar and R. Garg, “Soft checkpointing
based coordinated checkpointing protocol for
Mobile Distributed Systems”, International
Journal of Computer Science Issues, Vol. 7,
Issue 3, No. 5, May, 2010

12. S. Kumar, R.K. Chauhan and P. Kumar,
“Reliable Soft-Checkpoint Based Fault
Tolerance Approach for Mobile Distributed
Systems”, International Journal of Computer
and Network Security”, Vol. 2, No., June, 2010

13. Parveen Kumar, R K Chauhan, “A Coordinated
Checkpointing Protocol for Mobile Computing
Systems”, International Journal of Information
and Computing Science, Vol. 9, No. 1, pp. 18-
27, 2006.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

7

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

©2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
IX

 V
er
si
on

 I

20

11

8

M
a
y

The Performance of Soft Chekpointing Approach in Mobile Computing Systems

This page is intentionally left blank

©2011 Global Journals Inc. (US)

	1. The Performance of Soft Chekpointing Approach in MobileComputing Systems
	Authors
	I. Introduction
	II.Relatedworkand problemformulation
	a)Related Work
	b) Problem formulation
	c) Basic idea

	III. The proposed checkpointingAlgorithm
	a) System Model
	b) Algorithm Concept
	c) Creation of a global state
	d) Working of the Algorithm
	e) The Algorithm

	IV. Adaptivity to different networktypes
	V. Comparison with the relatedwork
	VI. Conclusion
	References Références Referencias

