
© 2011 Dr Ashok Kumar, Anil Kumar . This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 8 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 & Print ISSN: 0975-4350

Design of Quality Model during Reengineering of Legacy
System

By Dr Ashok Kumar, Anil Kumar
Kurukshetra University

Abstract- The purpose of this paper is design such kind of model that will improve the quality of
system during reengineering[1] of legacy system that why this model is known as Quality Model.
During reengineering of object oriented system[2,3], the methodology is design in such a way
that will create a link/bridge between problem detection and problem correction in the legacy
system, as well as simultaneously improvement in object oriented design, that can be used
during later reengineering and also reduces the complexity as compared to object oriented
design[4,5,6].
The further design of legacy system in such a way to specifying, how branches can be selected,
how behavior is preserved and how code transformation applied. Quality of model, depends
upon two factor favor and disfavor, attach to each branches, software quality is directly
proportional to maintenance cost. Quality model is used for two purpose sketch and blueprint.
Sketch is used a thinking tool, which help developer communicates, some aspects of a system
and alternative about, what are about to be done. Blueprint intends to be comprehensive and
definitive. It is used for guiding the implementation.

Keywords:

GJCST Classification: D.2.2

Design of Quality Model during Reengineering of Legacy System

 Strictly as per the compliance and regulations of:

Reengineering, obj ect oriented design, Q uality model, Problem detection, Re-factoring.

Design of Quality Model during Reengineering
of Legacy System

Dr Ashok Kumarα, Anil KumarΩ

Abstract- The purpose of this paper is design such kind of
model that will improve the quality of system during
reengineering[1] of legacy system that why this model is
known as Quality Model.
During reengineering of object oriented system[2,3], the
methodology is design in such a way that will create a
link/bridge between problem detection and problem correction
in the legacy system, as well as simultaneously improvement
in object oriented design, that can be used during later
reengineering and also reduces the complexity as compared
to object oriented design[4,5,6].
The further design of legacy system in such a way to
specifying, how branches can be selected, how behavior is
preserved and how code transformation applied. Quality of
model, depends upon two factor favor and disfavor, attach to
each branches, software quality is directly proportional to
maintenance cost. Quality model is used for two purpose
sketch and blueprint. Sketch is used a thinking tool, which
help developer communicates, some aspects of a system and
alternative about, what are about to be done. Blueprint intends
to be comprehensive and definitive. It is used for guiding the
implementation.
Keywords: Reengineering, object oriented design,
quality model, Problem detection, Re-factoring.

I. Problem Statement
here is no doubt, that OO design [4,5,6] is one of
the best choice of designer, to design any
software modules, however, is universal truth, that

while we restructure[7] any system it is always
acceptable, it will improve its efficiency, productivity,
scalability and reduces the complexity as well as
reduces the resources that are required during
development of development of software modules.

Therefore, restructure is part of reengineering of
OO design, that help transformation of a software
system, without modifying its behavior that will improve
its structure of the system. A common path during
reengineering of OO design is to identify fragments in
the subject system’s design that violet principle of good
design and then try to restructure the system in such a
way, that minimizes these violations. Currently there is

About α - Professor, Department of Computer Science & Application
Kurukshetra University, Kurukshetra, India.
About Ω - Asst. Professor, Computer Science & Engg. Vaish College of
Engineering, Rohtak Rohtak, Haryana (124001), India.
E-mail- Bestanil2005@rediffmail.com

no. of approaches that can help developer and designer
to identify design flows on one side and that can
perform various code transformation safely on other
side. While reengineering takes place on legacy system,
where OO approaches are used to build a system,
developer obtain a list of design flows together with their
location in the system, but the necessary transformation
that remove them are left to their own judgment and
experience. The mapping between a specific design
flow and the code transformation to remove it, together
with the consequence of choosing one set of
transformation over the other, is missing. Still, there is
no satisfactory approach that links between the two,
guiding the developer from problem detection to code
transformation, that can remove the identified problem.
Therefore, improvement of OO design are required.

II. Introduction
The life of software products extends far

beyond the development of first release. After being
developed to the customer, a software product enter the
most extended stage of its life: evolution. Software
maintenance [8] is concerned with the changes, that
need to be made on an existing product: defect are
removed. As we know that, software evolution is a reality
with various reason and consequence. As software
system evolve, their structure degrades a phenomena
know as software decay.

Developer who makes the changes are not
same as the one who developed the initial system. For a
large system it is difficult to understand the concept of
initial designer had in mind, so changes are made that
changes the initial concept.

Future changes are need to take into account,
the new concept and execution introduced by previous
changes. This leads to system very difficult to update
and understand, the changes introduces more bugs
and documentation became increasingly inaccurate.
Maintaining these system become nightmare and the
maintenance cost increase very much. Therefore,
reengineering is the best choice for this purpose. During
reengineering process certain phases can be identified.
The one that bears restructure of OO system, where
subject system is modified in order to improve its
structure without affecting its functionality.

In other words, restructure process aims to
improve the quality of existing system, in order to

T

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

11

M
a
y

©2011 Global Journals Inc. (US)

Design of uality Model during Reengineering of Legacy System

facilitate the later reengineering task. Restructuring is
often used as a form of preventive maintenance to
improve the physical state of the subject system with
respect to certain standard.
The steps that will be followed by restructuring of OO
system are:

• Do a survey of existing work on
problem detection and re-factoring

and attempts to provide a link
between two.

• Select a no. of design flow that are
the subject of further investigation

• Describe the way to remove such
design flows from OO system

• Define methodologies for the
design improvement using
correction strategies

• Implement an infrastructure that
allows the easy implementation of
correction strategies.

The quality model is based on design pattern [9], that will
improve the legacy system, during design phase, rather
than code.
This model is help to determining:

• Language independence:
approach should operate at design
level, rather than programming
language level. This way, it should
be applicable to the system written
in any programming language, that
should support OO paradigm[10]

• Behavior preservation: any
approach should give a minimum
degree of confidence that the
modified system will behave the
same as before

• Automation: most legacy system
are very large as well as very
complex. Therefore, this approach
should allow for large degree of
automation and should minimizes
human intervention during the
process

• Quality estimation
• Extensibility easy to accommodate,

new knowledge

• Causality: this approach should
directly detect any risk at design
flows.

Reengineering life cycle [11,12,13] contain problem
detection phase, when design flows are modified.
Each pattern describe a problem, which occurs over
and over again in one environment and the describe the
core of the solution to that problem, in such a way that
you can use this solution a million of times over, without
ever doing it, the same way twice.

Design pattern, is the description of
communicating objects and classes, that are
customized to solve a general design problem in a
particular context. Here, we do not inspect all area of
reengineering, but focus on two phases that aim to link:
problem detection and re-factoring.

III. Problem Detection
Problem detection is a specific phase in the

reengineering lifecycle. Its process aims to identify
design flows in the analyzed system. It has a series of
steps – first formalization, which takes OO design
heuristics, rules, principle and turns them into precise
rules and that can be used to identify design flows. The
source code is parsed and a model of the system is
obtained.

Design Flow

Legacy system

(Existing System)

Correction Strategies

Re-factoring

Existing Design

q
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

12

M
a
y

©2011 Global Journals Inc. (US)

“Problem Detection Model During Reengineering of
OO System”

It will support the assessment and improvement of the
quality in OO system . the problem detection
strategies on the model’s entities that is packages,
classes, methods, attributes, local variables, global
variables and parameters.

Re-Factoring
 Re-factoring[14] is the process of changing a

software system, in such a way that it does not alter
its external behaviors, but still improves its internal
structure. The framework are reusable architecture ,
they are the result of many iterations and no. of way
limited to OO framework [15,16,17,18] and more recent
software development process, suggest, re-
factoring should be part of development cycle.

Re-factoring OO System [10]:
• Defining an abstract super class of one or

more existing classes
• Specializing a class by defining sub class

and using sub-classing to estimate
conditionals

• Changing how the whole/part relationship is
modeled (from inheritance to aggregation)

• Moving a class within or among inheritance
hierarchies

• Moving member variable and function
• Replacing a code segments with a function

call
• Changing name of classes, variables or

functions
• Replacing unrestricted access to member

variable with a more abstract interface

Re-Factoring are further classified as:

• Low level re-factoring, such as rename, move,
replace, a code segment with a function call

• High level re-factoring, such as defining as
abstract super class, replacing conditionals
with polymorphism and changing inheritance to
aggregation. These re-factoring make use of
other low-level re-factoring

Re-factoring have to guarantee, that they preserve the
behaviors of the system.

Rule

Detection

Mechanism

Detail Design Flow
And their Location

In Source Code

Quality
Model

Deign

Design, principle, Rule,
and Heuristic

Quality
Model

Design of uality Model during Reengineering of Legacy Systemq

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

13

M
a
y

©2011 Global Journals Inc. (US)

“Pattern Based Quality Model”
The further design of legacy system, in such a

way to specifying, how branches can be selected, how
behaviors is preserved and how code transformation
applied. Here, problem detection model, are used to
choose the appropriate branches in each decision node
and safely applying code transformation. By applying
this, finding a path through graph strategies. Depending
on the system and reengineering goals, different path
can be chosen for the same design flow.

Reengineering process, start with requirement
analysis, which establish the overall reengineering
goals. Reengineering goal provides the focus of all
activities carried out, during the process of
reengineering. These goal can be expressed in terms of
quality factors, that need improvement: flexibility,
portability, efficiency etc..

At each decision node, the available branches
can be selected according to their impact on each of
the considered quality factors.

System

Packages

Class

Methods

Attributes

Statements

Design of uality Model during Reengineering of Legacy Systemq

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

14

M
a
y

©2011 Global Journals Inc. (US)

 Conciseness

 Structured Ness

 Device Independence

 Legibility

 Self Description

 Completeness

References Références Referencias
1. Muthu, S., Whitman, L. and Cheraghi, H. S.,

1999. “Business process reengineering: a
consolidated methodology”, Proceedings of the
4th Annual International Conference on
Industrial Engineering Theory, Applications and
Practice. Retrieved October 19, 2007,

2. Grady Booch. "Object-oriented Analysis and
Design with Applications, 3rd
edition":http://www.informit.com/store/product.a
spx?isbn=020189551X Addison-Wesley 2007.

3. Rebecca Wirfs-Brock, Brian Wilkerson, Lauren
Wiener. Designing Object Oriented Software.
Prentice Hall, 1990

4. A Theory of Object-Oriented Design: The
building-blocks of OOD and notations for
representing them (with focus on design
patterns.)

5. Martin Fowler. Analysis Patterns: Reusable
Object Models. Addison-Wesley, 1997. [An
introduction to object-oriented analysis with
conceptual models]

6. Bertrand Meyer. Object-oriented software
construction. Prentice Hall, 1997.

7. Paolo Tonella. Concept Analysis for Module
Restructuring. IEEE Transactions on Software
Engineering, 27(4):351–363, April 2001.

8. Norman Wilde and Ross Huitt. Maintenance
Support for Object-Oriented Programs. IEEE
Transactions on Software Engineering, SE-
18(12):1038–1044, December 1992.

9. Paolo Tonella and Giuliano Antoniol. Object
Oriented Design Pattern Inference. In
Proceedings of ICSM ’99 (International
Conference on Software Maintenance), pages
230–238. IEEE Computer Society Press,
October 1999.

10. Object Modeling and Design Strategies by
Sanjiv Gossain, Ian S. Graham - SIGS Books &
Multimedia; ISBN: 052164822X

11. Davenport, Thomas & Short, J. (1990), The New
Industrial Engineering: Information Technology
and Business Process Redesign, in: Sloan
Management Review, Summer 1990, pp 11–27

12. Davenport, Thomas (1993), Process Innovation:
Reengineering work through information
technology, Harvard Business School Press,
Boston

 Accuracy

 Maintainability

 Portability

 Testability

 Re-Usability

 Traceability

Design of uality Model during Reengineering of Legacy Systemq

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

15

M
a
y

©2011 Global Journals Inc. (US)

13. Davenport, Thomas (1995), Reengineering -
The Fad That Forgot People, Fast Company,
November 1995.

14. Martin Fowler: Refactoring: Improving the
Design of Existing Code, Addison Wesley, 1999

15. Bosch J,Molin P,Mattson M, Bengtsson P.
Object oriented frameworks—problems and
experiences. Building Application Frameworks,
Fayad ME, Schmidt DC, Johnson RE (eds.).
Wiley & Sons, 1999.

16. Bosch J. Design of an object-oriented
framework for measurement systems. Object-
Oriented Application Frameworks, Fayad ME,
Schmidt DC, Johnson RE (eds.). Wiley & Sons,
1999.

17. Mattsson M, Bosch J. Framework composition
problems, causes and solutions. Proceedings
Technology of Object-Oriented Languages and
Systems, U.S.A., August 1997.

18. Mattsson M. Object-oriented frameworks survey
of methodological issues. Licentiate Thesis,
Department of Computer Science, Lund
University, 1996.

Design of uality Model during Reengineering of Legacy Systemq
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

16

M
a
y

©2011 Global Journals Inc. (US)

	2. Design of Quality Model during Reengineering of Legacy
System
	Authors
	I. Problem Statement
	II. Introduction
	III. Problem Detection
	References Références Referencias

