
© 2011 Ben Swarup Medikonda, P. Seetha Ramaiah, Anu A. Gokhale. This is a research/review paper, distributed under the
terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-
nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly
cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 8 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 & Print ISSN: 0975-4350

FMEA and Fault Tree based Software Safety

Analysis of a

Railroad Crossing Critical System

By Ben Swarup Medikonda, P. Seetha Ramaiah, Anu A. Gokhale

Andhra University

Abstract-

Software for safety-critical systems must deal with the hazards identified by safety

analysis in order to make the system safe, risk-free and fail-safe. Certain faults in critical systems
can result in catastrophic consequences such as death, injury or environmental harm. The focus
of this paper is an approach to software safety analysis based on a combination of two existing
fault removal techniques. A comprehensive software safety analysis involving a combination of
Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) is conducted on the
software functions of the critical system to identify potentially hazardous software faults. A
prototype safety-critical system - Railroad Crossing Control System (RCCS), incorporating a
microcontroller

and software to operate the train on a track circuit is described.

Keywords:

GJCST Classification: K.4.1, J.7

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

Strictly as per the compliance and regulations of:

Software safety, safety-critical systems, software faults, software safety analysis.

FMEA and Fault Tree based Software Safety
Analysis of a Railroad Crossing Critical System

Ben Swarup Medikondaα, P. Seetha Ramaiahα, Anu A. GokhaleΩ

Abstract- Software for safety-critical systems must deal with
the hazards identified by safety analysis in order to make the
system safe, risk-free and fail-safe. Certain faults in critical
systems can result in catastrophic consequences such as
death, injury or environmental harm. The focus of this paper is
an approach to software safety analysis based on a
combination of two existing fault removal techniques. A
comprehensive software safety analysis involving a
combination of Failure Modes and Effects Analysis (FMEA)
and Fault Tree Analysis (FTA) is conducted on the software
functions of the critical system to identify potentially hazardous
software faults. A prototype safety-critical system - Railroad
Crossing Control System (RCCS), incorporating a
microcontroller and software to operate the train on a track
circuit is described.
Keywords: software safety, safety-critical systems,
software faults, software safety analysis.

I. Introduction
 safety-critical system is one that has the potential
to cause accidents. Software is hazardous if it
can cause a hazard i.e. cause other components

to become hazardous or if it is used to control a hazard.
Software is deemed safe if it is impossible or at least
highly unlikely that the software could ever produce an
output that would cause a catastrophic event for the
system that the software controls. Examples of
catastrophic events include loss of physical property,
physical harm, and loss-of-life. Software engineering of
a safety-critical system requires a clear understanding
of the software’s role in, and interactions with, the
system [1,2].

a) Software-induced failures in real-life
 Computers are increasingly being introduced

into safety-critical systems and, as a consequence,
have been involved in accidents. Some well known
incidents are the massive overdoses given by the
computer-controlled radiation therapy machine Therac-
25 [3] with resultant death and serious injuries, during
the mid-eighties; European Space Agency’s Ariane 5
rocket explosion [4] during lift-off in June 1996, and
SeaLaunch rocket failure [5] during lift off in March
2000. Recent examples include the following: on 7

About α- Department of Computer Science and Systems Engineering
Andhra University , Visakhapatnam –530 003, India
E-mail- bforben@gmail.com, psrama@gmail.com
About Ω- Department of Technology, Illinois State University, Normal, IL,

E-mail- aagokha@ilstu.edu

October 2008, Qantas Flight 72 from Singapore to Perth
made an emergency landing following an inflight
accident featuring a pair of sudden uncommanded
pitch-down manoeuvres that resulted in serious injuries
to many of the occupants. The Australian Transport
Safety Bureau (ATSB) said that incorrect information
from the faulty computer triggered a series of alarms
and then prompted the Airbus A330's flight control
computers to put the jet into a 197-metre nosedive [6].

All these examples indicate that accidents still
take place despite all the measures taken to prevent
them. Since complete elimination of unforeseen hazards
is not always possible, what we need is a fail-safe
design which, in the event of a failure, allows the system
to fail in a safe way, causing no harm or at least the
minimum level of danger. To meet the fail-safe
requirements, rigorous safety analysis is required to
identify potential hazards and take corrective measures
during the entire system development life cycle.

There are many software fault removal
techniques in literature. The most frequent classification
is by differentiating between static and dynamic
techniques [8]. Different authors focus on probabilistic
based approaches (like the Markov modeling method),
or statistical, approaches like statistical testing, software
reliability models [9]. However most of the fault removal
techniques are non-probabilistic. In some standards,
static techniques require formal methods and proofs
based on mathematical demonstrations. Other
standards and literature classify these techniques in
functional and logical terms [10] or by just mentioning
functional testing like in [11] or structural testing, like in
[12].

None of the fault removal techniques like
algorithm analysis, control flow analysis, Petri-Net
analysis, reliability block diagrams, sneak circuit
analysis, event tree analysis, FMEA and FTA can be
considered apt and complete in all respects, when used
in isolation. A way out of this is to analyse how to
combine individual techniques so that the fault removal
process is significantly improved. One of the most
effective combinations is FMEA+FTA. The literature
[9,10] already mentions that FTA technique can be
associated effectively with other practices like FMEA.
Their greatest advantage is in combination with each
other. FMEA concentrates in identifying the severity and
criticality of failures and FTA in identifying the causes of
faults. FMEA technique is a fully bottom-up approach

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

57

M
a
y

©2011 Global Journals Inc. (US)

USA.

http://en.wikipedia.org/wiki/Singapore_Changi_Airport�
http://en.wikipedia.org/wiki/Perth_Airport�
http://en.wikipedia.org/wiki/Perth_Airport�
http://en.wikipedia.org/wiki/Aviation_accident�
http://en.wikipedia.org/wiki/Aviation_accident�
http://en.wikipedia.org/wiki/Aviation_accident�
http://en.wikipedia.org/wiki/Pitch_(aviation)�

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

and FTA has a fully complementary top-down approach.
Moreover, these two techniques are directly compatible
with system level techniques.

In this paper, we propose a system-level
approach to software safety analysis for critical systems
that combines two existing fault removal techniques –
FMEA and FTA to identify and eventually remove
software faults at successive software development
phases. We have applied our safety approach to a
model railroad crossing control system to validate its
effectiveness. We also compare how the safety-
specific software development of a critical system is
distinct from the traditional non-safety-specific software
development.

The rest of this paper is organized as follows:
section 2 describes the Railroad Crossing Control
System (RCCS). Section 3 applies the safety analysis
using SFMEA and SFTA techniques to RCCS. Section 4
addresses the hardware and software development
issues of RCCS. Section 5 presents an analysis of the
experimental results and section 6 concludes the
discussion.

II. Railroad Crossing Control
System (RCCS)

Crossing gates on a full-size railroad are
controlled by a complex control system that causes the
gates to be lowered to prevent access to the crossing
shortly before a train arrives and to be raised to allow
access to resume after the train has departed. RCCS is
a prototype, real-time, safety-critical railroad crossing
control system composed of several software-controlled
hardware components.

a) RCCS Interfaces
The main interfaces of the microcontroller,

which hosts and runs the embedded software, are
shown below in Figure 1. The main inputs to the
microcontroller are signals from the 7 sensors on the
track, the 2 gates at the railroad intersection, the track-
change lever, and the 3 signal lights. The main outputs
of the micro-controller are control signals for the train,
Gate1 Gate 2, track change lever, signal lights, LCD
display. The values of these output signals are
determined using different algorithms combining the
input signals that are constantly updated and read by
the software.

Figure 1. External interfaces of RCCS microcontroller

The main functionality of RCCS is listed in Table 1.

Table 1. RCCS System Functions – Key Areas

RCCS System Functions
• Control the overall operation of train on the track

circuit
• Control the opening and closing of Gate 1 and 2

at the railroad intersections
• Control the track lever to change the track route

from the outer to the inner loop
• Check the internal health of all the subsystems
• Control the train operation at the Signal Lights
• Monitor all the sensors on the track circuit

III. Safety Analysis of RCCS
The safety analysis of RCCS software functions takes
place in three sequential steps.

• Software Failure Mode and Effects Analysis
(SFMEA)

This analysis is performed in order to determine the top
events for lower level analysis. SFMEA analysis will be
performed following the list of failure types. SFMEA will
be used to identify critical functions based on the
applicable software specification. The severity
consequences of a failure , as well as the observability
requirements and the effects of the failure will be used
to define the criticality level of the function and thus
whether this function will be considered in further
deeper criticality analysis. The formulation of
recommendations of fault related techniques that may
help reduce failure criticality is included as part of this
analysis step.

 8051

Actuators
Interface

Sensors

Interface

LCD
Display
Panel

RCCS with Train Track, Gates, Sensors,
Lever, Signal Lights

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

58

M
a
y

©2011 Global Journals Inc. (US)

• Software Fault Tree Analysis (SFTA)
After determining the top-level failure events, a complete
Software Fault Tree Analysis shall be performed to
analyse the faults that can cause those failures. This is a
top down technique that determines the origin of the
critical failure. The top-down technique is applied
following the information provided at the design level,
descending to the code modules . SFTA will be used to
confirm the criticality of the functions (as output from
SFMEA) when analyzing the design and code (from the
software requirements phase, through the design and
implementation phases) and to help:

- Reduce the criticality level of the functions due
to software design and / or coding fault-related
techniques used (or recommended to be
used)

- Detail the test-case definition for the set of
validation test cases to be executed.

• Evaluation of Results
The evaluation of the results will be performed after the
above two steps in order to highlight the potential
discrepancies and prepare the recommended
corrective measures.

a) SFMEA Analysis of RCCS
The SFMEA, a sample of which is shown in the

Table 2 below presents some software failure modes
defined for RCCS. The origin and effects of each failure
mode are analyzed identifying the top level events for
further refinement, when the consequence of this failure
could be catastrophic for this system. Three top events
were singled out for further analysis of failure mode
Gate not closed as train is passing through railroad
intersection.

b) SFTA Analysis of RCCS
The fault tree is a graphical representation of

the conditions or other factors causing or contributing to
the occurrence of the so-called top event, which
normally is identified as an undesirable event. A
systematic construction of the fault tree consists in
defining the immediate cause of the top event. These

Table 2. Example of SFMEA table for RCCS

Failure
Mode

Possible
Causes

Effect

Sever-
ity of
risk

Prevention
And
Compensati
on

Gate not
closed
as train
is
passing
through

a) sensor not
detected by s/w
b) gate motor
mechanism is
defective
c) s/w gives
wrong
command
d) s/w gives
right command
at wrong time

Train
collision
with
passing
road
traffic
leading to
accidents

Critical

Software first
checks the
working
status of
gates each
time the train
is about to
cross the
gates

Track
change
lever is
not acti-
vated to
change
train
route

a) sensor is not
detected by s/w
b) track lever
motor
mechanism is
defective
c) s/w gives
wrong
command to
lever
d) s/w gives
right command
at wrong time
e) s/w fails to
give a
command to
activate lever

Train fails
to
change
its path
from the
outer
track
circuit to
the inner
track
circuit
leading to
accident

Critical

Software first
checks the
working
status of the
track lever
each time
the train is
about to
enter the
inner track
loop

Control
program
software
is corru-
pted

a) logic fault
b) interface fault
c) data fault
d)calculation
fault
e) memory fault

Unpredic
-table
sequence
of opera-
tions
leading to
accident

Critical

 or

Catast-
rophic

algorithm
logic is
verified for
accuracy.
Data
Structures
and Memory
overflow is
checked.

immediate cause events are the immediate cause or
immediate mechanism for the top event to occur. From
here, the immediate events should be considered as
sub-top events and the same process should be
applied to them. All applicable fault types should be
considered for applicability as the cause of a higher
level fault. This process proceeds down the tree until the
limit of resolution of tree is reached, thereby reaching
the basic events, which are the terminal nodes of the
tree. Figure 2 shows the sample fault tree for the top
event Gate Not Closed at the railroad intersection.

c) Recommendations to Design and Coding
From the safety analysis we have conducted,

the major critical events that might occur and the
corresponding safety properties the RCCS software has
to implement, and which are controlled by the
embedded software in the microcontroller are listed
below.

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

59

M
a
y

©2011 Global Journals Inc. (US)

Figure 2. Software Fault Tree sample for top event
Gate Not Closed at the railroad intersection

• The software shall make sure that the 2 gates
on either side of the railroad intersection
operate correctly – ie. opening and closing the
gates, at the proper time. The consequences of
failure to do so are very severe, since it can
result in the train and road traffic collision,
leading to death.

• The software shall make sure that the train
changes its path from the outer track circuit to
the inner track circuit by correctly operating the
track change lever at the right time. Failure to
do so can have severe consequences leading
to collision with another train that may be
stationary on the outer track.

• The software shall prevent the running
operation of the train if it detects that the gates
at the intersection have not been fully closed.

• The software shall prevent the running
operation of the train, if the train engine detects
any physical obstacle just ahead of it, either at
the mid-section of the railroad intersection or at
any point on the track path, just ahead of the
engine. Failure to do so can lead to collisions.

• The software shall prevent the running
operation of the train if a Red signal is
displayed in the Signal Light alongside the
track. Failure to do so can lead to accidents.

• The software shall prevent the running
operation of the train if the train engine is not
able to confirm that a green signal has been
given to it, to resume running after a previous
red signal to stop running.

• The software shall bring the running train to a
halt at the location designated as railway station
platform, on the track, after every cycle of
operation around the track. Failure to do so can
cause collision with another train that is passing
just ahead on the same track.

• The software shall receive accurate data input
values from the various sensors. If even slightly
inaccurate data values are provided, it may
have dire consequences

• The software shall monitor the internal health of
all the subsystems – gate operation motors,
track lever operation motor, signal lamps,
sensor connectivity etc. before the start of train
operation.

IV. RCCS Development

RCCS hardware and software development is
described in this section.

a) RCCS Hardware Components
RCCS model, shown in Figure 3, consists of the

following main components: train, railway track,
sensors, gates, microcontroller, signal lights, and a
track-change lever. A brief description of each
component is given below.
Train: The train is powered by a power supply relay.
When the power is initially switched on, the train begins
movement along the track when the metallic wheels of
the train receive power. The train comes to a halt at the
position where the power to the tracks is switched off.
Sensors: These are used to detect the location of the
train on the tracks. Altogether RCCS employs seven
sensors. Two pairs of sensors detect the train position
before and after the gates. A set of two sensors relate to
track change where the track splits into two directions.
One sensor gives the train position with reference to the
platform, which is the starting point of the train
movement. Information from each of the sensors is
passed to controller.

Gate NOT
CLOSED as

train is passing

Sensor
not

detected

Gate
Closing

mechanism

S/w
gives
wrong

Sensor
Broken

Train –
Sensor

Interface
Disconnect

Gate
Motor

defective

Memory /
Data Fault

Implementatio
n Error

Gate stuck
half-way
through

Logic Error

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

60

M
a
y

©2011 Global Journals Inc. (US)

Figure 3. RCCS Track Layout with sensors, gates,
track-change lever and signal lights

Controller: An 8051 is used as a controller for RCCS.
RCCS software that controls the overall operation of the
system is stored in the memory of the controller. The
controller continuously monitors the sensors and
controls the gate actuators, track change lever, and the
signal lights.
Gates: RCCS has two sets of gates on either side of the
track layout. The gate receives signals from the
controller. When it receives lower command, arms of the
gate moves down and close the gate, preventing the
road traffic at the intersection. When the gate receives
raise, it moves up allowing the traffic to pass through.
The gates are operated by means of a motor-based
mechanism.
Signal Lights: RCCS contains three train signals,
erected beside the track. One signal is at the platform to
signal a halt at the platform. The other two signals are
placed just before the point of convergence of the inner
track and outer track, which lead to the platform.

b) RCCS Software Development

The safety-specific version of RCCS controller
program used the same techniques as the non-safety
version with the addition of the following safety-specific
analysis: preliminary hazard analysis, and design-level
hazard analysis, FMEA and FTA analyses. These
techniques target the specification and designs. The
goal here is to determine if the inclusion of these
methods reduces the number of latent safety-critical
faults relative to non-safety specific methods.

The software safety-based development
involves preliminary software hazard analysis, which
among other things identifies software hazards, ie. the
states in the software that can lead to an accident.
Without identifying the hazards, we have little assurance
that the hazards will not occur. Therefore, preliminary
software hazard analysis is an important first step in

verifying safety-critical software systems. Once the
hazard list exists, the verification process can continue
by applying several static and dynamic verification
techniques. Static techniques include failure modes and
effects analysis (FMEA), and fault-tree analysis (FTA).

After static verification, software engineers must
dynamically verify the software’s safety (ie. safety
testing). Safety-critical testing of RCCS can be done by
separating the code into two risk groups. Group one
includes hazards that are catastrophic or critical. Group
two includes hazards that are marginal or negligible.
More testing effort should be spent on those code
sections dealing with hazards related to group one.

V. Experimental Results & Analysis
In view of the comprehensive safety analysis,

and specification and implementation the safety
properties during RCCS design and development, the
expected result was that safety-specific RCCS
development would produce a software system with
fewer latent safety-critical faults than traditional non-
safety specific techniques alone. This is due to the belief
that the safety-specific techniques will prevent safety-
critical faults in the specifications and designs that the
traditional techniques have a tendency to miss. Figure 4
shows the RCCS laboratory prototype developed in the
lab.

During the operation of RCCS, the safety-
specific development version of RCCS clearly
demonstrated the fulfillment of the safety properties. For
example, if the gate at the railroad intersection is not
closed at all, or partially closed, as the train is about to
pass through the intersection, the controller software
makes the train come to a halt. Only after confirming
that the gate is fully closed does the software allow the
train to pass through the railroad intersection. On the
other hand, in the non-safety version of RCCS, the
controller software allows the train to pass through the
intersection without confirming whether the gate is
actually closed or not, assuming that the gate function
will operate without failure, leading to a major accident.

Likewise, in the safety-version of RCCS, when
the train is changing its track route from the outer loop
to the inner loop, the software first confirms whether the
track change lever is fully activated and operational. If
the track lever is stuck halfway through and the rails
connection to the inner loop is incomplete, the software
makes the train come to a halt. In the case of the non-
safety version, the software allows the train to change
route without confirming the health status of the track
lever, leading to an accident. The safety version also
demonstrated a preliminary check of the internal health
of all the RCCS subsystems – the gates mechanism,
track lever operation, sensors, signal light LEDs,
displaying the health status on the LCD display panel.

S1-S7 – Sensors
G1, G2 –Gates
TL- Track-Change Lever
SL1-SL3- Signal Lights

S7

SL3

S2

S3 S4 S6

G2 G1

S5

TL

SL2 S1 SL1

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

61

M
a
y

©2011 Global Journals Inc. (US)

Figure 4. Laboratory prototype of RCCS

VI. Conclusion

This paper discussed a FMEA and Fault Tree
based approach to software safety analysis for critical
systems. A comprehensive software safety analysis
involving a combination of FMEA and FTA techniques
was conducted on the software functions of the critical
system to identify potentially hazardous software faults.
The safety properties of the prototype railroad crossing
control system were identified as part of the safety-
critical requirements. These safety requirements were
incorporated in the design and development of a
railroad crossing control system (RCCS). We also briefly
compared safety-specific and non-safety specific
techniques at developing RCCS. The non-safety version
of RCCS broadly focused on achieving the functional
behavior of the system. The safety-specific version
clearly demonstrated that the software safety properties
identified in RCCS specification were fully met in the
working system.

References Références Referencias
1. Robyn R. Lutz, “Software Engineering for

Safety: a Roadmap”, Proceedings of the
Conference on The Future of Software
Engineering, June 04-11, 2000, Limerick,
Ireland, pp. 213-226

2. John C. Knight. “Safety Critical Systems:
Challenges and Directions” Proceedings of
the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, 2002

3. N.G. Leveson and C. S. Turner. An investigation
of the Therac-25 accidents. IEEE Computer,
26(7): 18-41, March 1987

4. James Gleick. The New York Times Magazine
1st December 1996

5. Dale M. Gray. Frontier Status Report #203, 19
May 2000. www. asi.org

6. http://en.wikipedia.org/wiki/Qantas_Flight_72

7. http://news.bbc.co.uk/2/hi/science/nature/4381
840.stm

8. IEEE STD 1012, IEEE Standard for Software
Verification and Validation Plans, The Institute of
Electrical and Electronics Engineering, Inc.
USA,1986

9. N. G. Leveson Safeware: System Safety and
Computers. Addison-Wesley 1995

10. Debra S. Herman, “Software Safety and
Reliability Basics:”, (ch.2), Software Safety and
Reliability: Techniques, Approaches, and
Standards of Key Industrial Sectors Wiley-IEEE
Computer Society Press, 2000

11. EN50128 Railway Applications: Software for
Railway Protection and Control Systems.
CENELEC.

12. DO-178B/ED-12B Software Considerations in
Airborne Systems and Equipment Certification,
RTCA, EUROCAE, December 1992

13. IEEE Std. 610.12-1990, Standard Glossary of
Software Engineering Terminology.

14. Alan C. Tribble et al. “Software Safety Analysis
of a Flight Guidance System”, Proceedings of
the 21st Digital Avionics Systems Conference
(DASC'02), Irvine, California, Oct. 27-31, 2002

FMEA and Fault Tree based Software Safety Analysis of a Railroad Crossing Critical System

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
I
V
er
si
on

 I

20

11

62

M
a
y

©2011 Global Journals Inc. (US)

	8. FMEA and Fault Tree based Software Safety

Analysis of a

Railroad Crossing Critical System
	Authors
	I. Introduction
	a) Software-induced failures in real-life

	II. Railroad Crossing Control

System (RCCS)
	a) RCCS Interfaces

	III. Safety Analysis of RCCS
	a) SFMEA Analysis of RCCS
	b) SFTA Analysis of RCCS
	c) Recommendations to Design and Coding

	IV. RCCS Development
	a) RCCS Hardware Components
	b) RCCS Software Development

	V. Experimental Results & Analysis
	VI. Conclusion
	References Références Referencias

