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Abstract-
 
Software for safety-critical systems must deal with the hazards identified by safety 

analysis in order to make the system safe, risk-free and fail-safe. Certain faults in critical systems 
can result in catastrophic consequences such as death, injury or environmental harm. The focus 
of this paper is an approach to software safety analysis based on a combination of two existing 
fault removal techniques. A comprehensive software safety analysis involving a combination of  
Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) is conducted on the 
software functions of the critical system to identify potentially hazardous software faults. A 
prototype safety-critical system - Railroad Crossing Control System (RCCS), incorporating a 
microcontroller

 
and software to operate the train on a track circuit is described.  
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Abstract- Software for safety-critical systems must deal with 
the hazards identified by safety analysis in order to make the 
system safe, risk-free and fail-safe. Certain faults in critical 
systems can result in catastrophic consequences such as 
death, injury or environmental harm. The focus of this paper is 
an approach to software safety analysis based on a 
combination of two existing fault removal techniques. A 
comprehensive software safety analysis involving a 
combination of  Failure Modes and Effects Analysis (FMEA) 
and Fault Tree Analysis (FTA) is conducted on the software 
functions of the critical system to identify potentially hazardous 
software faults. A prototype safety-critical system - Railroad 
Crossing Control System (RCCS), incorporating a 
microcontroller and software to operate the train on a track 
circuit is described.   
Keywords: software safety, safety-critical systems, 
software faults, software safety analysis. 

I. Introduction 
 safety-critical system is one that has the potential 
to cause accidents. Software is hazardous if it 
can cause a hazard i.e. cause other components 

to become hazardous or if it is used to control a hazard. 
Software is deemed safe if it is impossible or at least 
highly unlikely that the software could ever produce an 
output that would cause a catastrophic event for the 
system that the software controls. Examples of 
catastrophic events include loss of physical property, 
physical harm, and loss-of-life. Software engineering of 
a safety-critical system requires a clear understanding 
of the software’s role in, and interactions with, the 
system [1,2].   

a) Software-induced failures in real-life 
    Computers are increasingly being introduced 

into safety-critical systems and, as a consequence, 
have been involved in accidents. Some well known 
incidents are the massive overdoses given by the 
computer-controlled radiation therapy machine Therac-
25 [3] with resultant death and serious injuries, during 
the mid-eighties;  European Space Agency’s Ariane 5 
rocket explosion [4] during lift-off in June 1996, and 
SeaLaunch rocket failure [5] during lift off in March 
2000. Recent examples include the following:  on 7  
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October 2008, Qantas Flight 72 from Singapore to Perth 
made an emergency landing following an inflight 
accident featuring a pair of sudden uncommanded 
pitch-down manoeuvres that resulted in serious injuries 
to many of the occupants. The Australian Transport 
Safety Bureau (ATSB) said that incorrect information 
from the faulty computer triggered a series of alarms 
and then prompted the Airbus A330's flight control 
computers to put the jet into a 197-metre nosedive [6].  

All these examples indicate that accidents still 
take place despite all the measures taken to prevent 
them. Since complete elimination of unforeseen hazards 
is not always possible, what we need is a fail-safe 
design which, in the event of a failure, allows the system 
to fail in a safe way, causing no harm or at least the 
minimum level of danger. To meet the fail-safe 
requirements, rigorous safety analysis is required to 
identify potential hazards and take corrective measures 
during the entire system development life cycle.  

There are many software fault removal 
techniques in literature. The most frequent classification 
is by differentiating between static and dynamic 
techniques [8]. Different authors focus on probabilistic 
based approaches (like the Markov modeling method), 
or statistical, approaches like statistical testing, software 
reliability models [9]. However most of the fault removal 
techniques are non-probabilistic.  In some standards, 
static techniques require formal methods and proofs 
based on mathematical demonstrations. Other 
standards and literature classify these techniques in 
functional and logical terms [10] or by just mentioning 
functional testing like in [11] or structural testing, like in 
[12]. 

None of the fault removal techniques like 
algorithm analysis, control flow analysis, Petri-Net 
analysis, reliability block diagrams, sneak circuit 
analysis, event tree analysis, FMEA and FTA can be 
considered apt and complete in all respects, when used 
in isolation. A way out of this is to analyse how to 
combine individual techniques so that the fault removal 
process is significantly improved. One of the most 
effective combinations is FMEA+FTA. The literature 
[9,10] already mentions that FTA technique can be 
associated effectively with other practices like FMEA. 
Their greatest advantage is in combination with each 
other. FMEA concentrates in identifying the severity and 
criticality of failures and FTA in identifying the causes of 
faults. FMEA technique is a fully bottom-up approach 
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and FTA has a fully complementary top-down approach.  
Moreover, these two techniques are directly compatible 
with system level techniques.  

In this paper, we propose a system-level 
approach to software safety analysis for critical systems 
that combines two existing fault removal techniques – 
FMEA and FTA to identify and eventually remove 
software faults at successive software development 
phases. We have applied our safety approach to a 
model railroad crossing control system to validate its 
effectiveness.  We also compare how the safety- 
specific software development of a critical system is 
distinct from the traditional non-safety-specific software 
development. 

The rest of this paper is organized as follows: 
section 2 describes the Railroad Crossing Control 
System (RCCS). Section 3 applies the safety analysis 
using SFMEA and SFTA techniques to RCCS.  Section 4 
addresses the hardware and software development 
issues of RCCS. Section 5 presents an analysis of the 
experimental results and section 6 concludes the 
discussion. 

II. Railroad Crossing Control 
System (RCCS) 

Crossing gates on a full-size railroad are 
controlled by a complex control system that causes the 
gates to be lowered to prevent access to the crossing 
shortly before a train arrives and to be raised to allow 
access to resume after the train has departed.  RCCS is 
a prototype, real-time, safety-critical railroad crossing 
control system composed of several software-controlled 
hardware components.  

a) RCCS Interfaces 
The main interfaces of the microcontroller, 

which hosts and runs the embedded software, are 
shown below in Figure 1. The main inputs to the 
microcontroller are signals from the 7 sensors on the 
track, the 2 gates at the railroad intersection, the track- 
change lever, and the 3 signal lights. The main outputs 
of the micro-controller are control signals for the train, 
Gate1 Gate 2, track change lever, signal lights, LCD 
display. The values of these output signals are 
determined using different algorithms combining the 
input signals that are constantly updated and read by 
the software. 

 
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  External  interfaces of RCCS microcontroller 

The main functionality of RCCS is listed in Table 1.  

Table  1.  RCCS System Functions – Key Areas 

RCCS System Functions 
• Control the overall operation of train on the track 

circuit 
• Control the opening and closing of Gate 1 and 2 

at the railroad intersections 
• Control the track lever to change the track route  

from the outer to the inner loop 
• Check the internal health of all the subsystems  
• Control the train operation at the Signal Lights 
• Monitor all the sensors on the track circuit 

III. Safety Analysis of RCCS 
The safety analysis of RCCS software functions takes 
place in three sequential steps. 

• Software Failure Mode and Effects Analysis 
(SFMEA) 

This analysis is performed in order to determine the top 
events for lower level analysis. SFMEA analysis will be 
performed following the list of failure types. SFMEA will 
be used to identify critical functions based on the 
applicable software specification. The severity 
consequences of a failure , as well as the observability 
requirements and the effects of the failure will be used 
to define the criticality level of the function and thus 
whether this function will be considered in further 
deeper criticality analysis. The formulation of 
recommendations of fault related techniques that may 
help reduce failure criticality is included as part of this 
analysis step. 
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• Software Fault Tree Analysis (SFTA) 
After determining the top-level failure events, a complete 
Software Fault Tree Analysis shall be performed to 
analyse the faults that can cause those failures. This is a 
top down technique that determines the origin of the 
critical failure. The top-down technique is applied 
following the information provided at the design level, 
descending to the code modules . SFTA will be used to 
confirm the criticality of the functions (as output from 
SFMEA) when analyzing the design and code (from the 
software requirements phase, through the design and 
implementation phases )  and to help: 

- Reduce the criticality level of the functions due 
to software design and / or coding fault-related 
techniques used ( or recommended to be 
used)  

- Detail the test-case definition for the set of 
validation test cases to be executed. 

• Evaluation of Results 
The evaluation of the results will be performed after the 
above two steps in order to highlight the potential 
discrepancies and prepare the recommended 
corrective measures.  

a) SFMEA Analysis of RCCS 
The SFMEA, a sample of which is shown in the 

Table 2 below presents some software failure modes 
defined for RCCS. The origin and effects of each failure 
mode are analyzed identifying the top level events for 
further refinement, when the consequence of this failure 
could be catastrophic for this system. Three top events 
were singled out for further analysis of failure mode 
Gate not closed as train is passing through railroad 
intersection. 

b) SFTA Analysis of RCCS 
The fault tree is a graphical representation of 

the conditions or other factors causing or contributing to 
the occurrence of the so-called top event, which 
normally is identified as an undesirable event. A 
systematic construction of the fault tree consists in 
defining the immediate cause of the top event.  These 

Table 2.  Example of SFMEA table for RCCS 

 
Failure 
Mode 

 
Possible 
Causes 

 
Effect 

Sever-
ity of 
risk 

Prevention 
And  
Compensati
on 

 
Gate not 
closed 
as train 
is 
passing 
through 
 

a) sensor not 
detected by s/w 
b) gate motor 
mechanism is 
defective 
c) s/w gives 
wrong 
command 
d) s/w gives 
right command 
at wrong time 

Train 
collision 
with 
passing 
road 
traffic 
leading to 
accidents 

 
 
 
 
Critical  
 
 

 
Software first 
checks the 
working 
status of 
gates each 
time the train 
is about to 
cross the 
gates 

 
Track 
change 
lever is 
not acti-
vated to 
change 
train 
route 
 

a) sensor is not 
detected by s/w 
b) track lever 
motor 
mechanism is 
defective 
c) s/w gives 
wrong 
command to 
lever 
d) s/w gives 
right command 
at wrong time 
e)  s/w fails to 
give a 
command to 
activate lever 

Train fails 
to 
change 
its path 
from the 
outer 
track 
circuit to 
the inner 
track 
circuit 
leading to 
accident 

 
 
 
 
 
Critical  
 
 

 
Software first 
checks the 
working 
status of the 
track lever 
each time 
the train is 
about to 
enter the 
inner track 
loop 

 
Control 
program 
software 
is corru- 
pted 
 

 
a) logic fault 
b) interface fault 
c) data fault 
d)calculation 
fault 
e) memory fault 
 

 
Unpredic
-table 
sequence 
of opera-
tions 
leading to 
accident 

 
 
Critical 
 
 or  
 
Catast-
rophic 

 
algorithm 
logic is 
verified for 
accuracy. 
Data 
Structures 
and Memory 
overflow is 
checked. 
 

 
immediate cause events are the immediate cause or 
immediate mechanism for the top event to occur. From 
here, the immediate events should be considered as 
sub-top events and the same process should be 
applied to them. All applicable fault types should be 
considered for applicability as the cause of a higher 
level fault. This process proceeds down the tree until the 
limit of resolution of tree is reached, thereby reaching 
the basic events, which are the terminal nodes of the 
tree. Figure 2  shows the sample fault tree for the top 
event Gate Not Closed at the railroad intersection. 

c) Recommendations to Design and Coding 
From the safety analysis we have conducted, 

the major critical events that might occur and the 
corresponding safety properties the RCCS software has 
to implement, and which are controlled by the 
embedded software in the microcontroller are listed 
below.  
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Figure  2.  Software Fault Tree sample for top event 
Gate Not Closed at the railroad intersection 

• The software shall make sure that the 2 gates 
on either side of  the railroad intersection 
operate correctly – ie. opening and closing the 
gates, at the proper time. The consequences of 
failure to do so are very severe, since it can 
result in the train and road traffic collision, 
leading to death. 

• The software shall make sure that the train 
changes its path from the outer track circuit to 
the inner track circuit by correctly operating the 
track change lever at the right time. Failure to 
do so can have severe consequences leading 
to collision with another train that may be 
stationary on the outer track. 

• The software shall prevent the running 
operation of the train if it detects that the gates 
at the intersection have not been fully closed. 

• The software shall prevent the running 
operation of the train, if the train engine detects 
any physical obstacle  just ahead of it, either at 
the mid-section of the railroad intersection  or at 
any point on the track path, just ahead of the 
engine. Failure to do so can lead to collisions. 

• The software shall prevent the running 
operation of the train if a Red signal is 
displayed in the Signal Light alongside the 
track. Failure to do so can lead to accidents. 

• The software shall prevent the running 
operation of the train if the train engine is not 
able to confirm that a green signal has been 
given to it, to resume running after a previous 
red signal to stop running.  

• The software shall bring the running train to a 
halt at the location designated as railway station 
platform, on the track, after every cycle of 
operation around the track. Failure to do so can 
cause collision with another train that is passing 
just ahead on the same track. 

• The software shall  receive  accurate data input 
values from the various sensors. If even slightly 
inaccurate data values are provided, it may 
have dire consequences 

• The software shall monitor the internal health of 
all the subsystems – gate operation motors, 
track lever operation motor, signal lamps, 
sensor connectivity etc. before the start of train 
operation. 

IV. RCCS  Development 

RCCS hardware and software development is 
described in this section. 

a)  RCCS Hardware Components 
RCCS model, shown in Figure 3, consists of the 

following  main components: train, railway track, 
sensors,  gates,  microcontroller, signal lights, and a 
track-change lever. A brief description of each 
component is given below. 
Train:  The train is powered by a power supply relay. 
When the power is initially switched on, the train begins 
movement along the track when the metallic wheels of 
the train receive power. The train comes to a halt at the 
position where the power  to the tracks is switched off.  
Sensors: These are used to detect the location of the 
train on the tracks. Altogether RCCS employs seven 
sensors. Two pairs of sensors detect the train position 
before and after the gates. A set of two sensors relate to 
track change where the track splits into two directions. 
One sensor gives the train position with reference to the 
platform, which is the starting point of the train 
movement.  Information from each of the sensors is 
passed to  controller. 
 
 
 
 
 
 
 
 

Gate  NOT 
CLOSED as  

train  is passing 

Sensor  
not 

detected 
  

Gate  
Closing 

mechanism 
 

S/w 
gives 
wrong 

  

Sensor  
Broken 

Train –
Sensor 

Interface 
Disconnect 

Gate 
Motor  

defective 

Memory / 
Data Fault 

Implementatio
n Error 

Gate stuck 
half-way 
through 

Logic Error 
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Figure  3.  RCCS Track Layout with sensors, gates, 
track-change lever and signal lights 

Controller:  An  8051 is used as a controller for RCCS. 
RCCS software that controls the overall operation of the 
system is stored in the memory of the controller.  The 
controller continuously monitors the sensors and 
controls the gate actuators, track change lever, and the 
signal lights.  
Gates: RCCS has two sets of gates on either side of the 
track layout. The gate receives signals from the 
controller. When it receives lower command, arms of the 
gate moves down and close the gate, preventing the 
road traffic at the intersection. When the gate receives 
raise, it moves up allowing the traffic to pass through. 
The gates are operated by means of a motor-based 
mechanism.  
Signal Lights: RCCS contains three train signals, 
erected beside the track. One signal is at the platform to 
signal a halt at the platform. The other two signals are 
placed just before the point of convergence of the inner 
track and outer track, which lead to the platform. 

b) RCCS Software Development 
 

The safety-specific version of RCCS controller 
program used the same techniques as the non-safety 
version with the addition of the following safety-specific 
analysis: preliminary hazard analysis, and design-level 
hazard analysis, FMEA and FTA analyses. These 
techniques target the specification and designs. The 
goal here is to determine if the inclusion of these 
methods reduces the number of latent safety-critical 
faults relative to non-safety specific methods.  

The software safety-based development 
involves preliminary software hazard analysis, which 
among other things identifies software hazards, ie. the 
states in the software that can lead to an accident. 
Without identifying the hazards, we have little assurance 
that the hazards will not occur. Therefore, preliminary 
software hazard analysis is an important first step in 

verifying safety-critical software systems. Once the 
hazard list exists, the verification process can continue 
by applying several static and dynamic verification 
techniques. Static techniques include failure modes and 
effects analysis (FMEA), and fault-tree analysis (FTA). 

After static verification, software engineers must 
dynamically verify the software’s safety (ie. safety 
testing). Safety-critical testing of RCCS can be done by 
separating the code into two risk groups. Group one 
includes hazards that are catastrophic or critical. Group 
two includes hazards that are marginal or negligible. 
More testing effort should be spent on those code 
sections dealing with hazards related to group one.  

V. Experimental Results & Analysis 
In view of the comprehensive safety analysis, 

and specification and implementation the safety 
properties during RCCS design and development, the 
expected result was that safety-specific RCCS 
development would produce a software system with 
fewer latent safety-critical faults than traditional non-
safety specific techniques alone. This is due to the belief 
that the safety-specific techniques will prevent safety-
critical faults in the specifications and designs that the 
traditional techniques have a tendency to miss. Figure 4 
shows the RCCS laboratory prototype developed in the 
lab. 

During the operation of RCCS, the safety-
specific development version of RCCS clearly 
demonstrated the fulfillment of the safety properties. For 
example, if the gate at the railroad intersection is not 
closed at all, or partially closed, as the train is about to 
pass through the intersection, the controller software 
makes the train come to a halt. Only after confirming 
that the gate is fully closed does the software allow the 
train to pass through the railroad intersection. On the 
other hand, in the non-safety version of RCCS, the 
controller software allows the train to pass through the 
intersection without confirming whether the gate is 
actually closed or not, assuming that the gate function 
will operate without failure, leading to a major accident. 

Likewise, in the safety-version of RCCS, when 
the train is changing its track route from the outer loop 
to the inner loop, the software first confirms whether the 
track change lever is fully activated and operational. If 
the track lever is stuck halfway through and the rails 
connection to the inner loop is incomplete, the software 
makes the train come to a halt. In the case of the non-
safety version, the software allows the train to change 
route without confirming the health status of the track 
lever, leading to an accident.  The safety version also 
demonstrated a preliminary check of the internal health 
of all the RCCS subsystems – the gates mechanism, 
track lever operation, sensors, signal light LEDs, 
displaying the health status on the LCD display panel.    

 

 
 
 

S1-S7 –  Sensors  
G1, G2 –Gates  
TL-  Track-Change Lever  
SL1-SL3-  Signal Lights  
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Figure  4.  Laboratory prototype of RCCS 

VI. Conclusion 

This paper discussed a FMEA and Fault Tree 
based approach to software safety analysis for critical 
systems. A comprehensive software safety analysis 
involving a combination of FMEA and FTA techniques 
was conducted on the software functions of the critical 
system to identify potentially hazardous software faults. 
The safety properties of the prototype railroad crossing 
control system were identified as part of the safety-
critical requirements. These safety requirements were 
incorporated in the design and development of a 
railroad crossing control system (RCCS). We also briefly 
compared safety-specific and non-safety specific 
techniques at developing RCCS. The non-safety version 
of RCCS broadly focused on achieving the functional 
behavior of the system. The safety-specific version 
clearly demonstrated that the software safety properties 
identified in RCCS specification were fully met in the 
working system.  
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