
© 2011 Amouda Nizam, Buvaneswari Shanmugham, Kuppuswami Subburaya. This is a research/review paper, distributed under
the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-
nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly
cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 7 Version 1.0 May 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN: 0975-4172 Print

ISSN: 0975-4350

Self-Organizing Genetic Algorithm for Multiple Sequence
Alignment

By Amouda Nizam, Buvaneswari Shanmugham, Kuppuswami Subburaya
Pondicherry University

Abstract- Genetic algorithm (GA) used to solve the optimization problem is self-organized and
applied to Multiple Sequence Alignment (MSA), an essential process in molecular sequence
analysis. This paper presents the first attempt in applying Self-Organizing Genetic Algorithm for
MSA. Self-organizing genetic algorithm (SOGA) can be developed with the complete knowledge
about the problem and its parameters. In SOGA, values of various parameters are decided
based on the problem and fitness value obtained in each generation. The proposed algorithm
undergoes a self-organizing crossover operation by selecting an appropriate rate or a point and
a self-organizing cyclic mutation for the required number of generations. The advantages of the
proposed algorithm are (i) reduce the time requirement for optimizing the parameter values (ii)
prevent execution with default values (iii) avoid premature convergence by the cyclic mutation
operation. To validate the efficiency, SOGA is applied to MSA, and the resulting alignment is
evaluated using the column score (CS). The comparison result shows that the alignment
produced by SOGA is better than the widely used tools like Dialign and Multalin. It is also evident
that the proposed algorithm can produce optimal or closer-to-optimal alignment compared to
tools like ClustalW, Mafft, Dialign and Multalin.

Keywords:

GJCST Classification: J.3

Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

 Strictly as per the compliance and regulations of:

&

Crossover, Genetic Algorithm, Multiple Seuence Alignment, Mutation, Selection, Self
organization

Self-Organizing Genetic Algorithm for Multiple
Sequence Alignment

Amouda Nizamα, Buvaneswari ShanmughamΩ, Kuppuswami Subburayaβ

Abstract- Genetic algorithm (GA) used to solve the
optimization problem is self-organized and applied to Multiple
Sequence Alignment (MSA), an essential process in molecular
sequence analysis. This paper presents the first attempt in
applying Self-Organizing Genetic Algorithm for MSA. Self-
organizing genetic algorithm (SOGA) can be developed with
the complete knowledge about the problem and its
parameters. In SOGA, values of various parameters are
decided based on the problem and fitness value obtained in
each generation. The proposed algorithm undergoes a self-
organizing crossover operation by selecting an appropriate
rate or a point and a self-organizing cyclic mutation for the
required number of generations. The advantages of the
proposed algorithm are (i) reduce the time requirement for
optimizing the parameter values (ii) prevent execution with
default values (iii) avoid premature convergence by the cyclic
mutation operation. To validate the efficiency, SOGA is
applied to MSA, and the resulting alignment is evaluated using
the column score (CS). The comparison result shows that the
alignment produced by SOGA is better than the widely used
tools like Dialign and Multalin. It is also evident that the
proposed algorithm can produce optimal or closer-to-optimal
alignment compared to tools like ClustalW, Mafft, Dialign and
Multalin.

Keywords- Crossover, Genetic Algorithm, Multiple
Sequence Alignment, Mutation, Selection, Self-
organization.

elf-organizing system functions without any
guidance from the external control (without a
central control). Self-organization is done based

on local information obtained from the interactions of
lower-level components [1]. It is evident from the
literature, several GA, a stochastic iterative method [2]
are proposed for MSA, to align set of sequences. Major
problem of GA, premature convergence can be avoided
by blending the concept of self organization and GA.
Using SOGA several other problems are solved but
applying for MSA with a new mechanism is first of its
kind.

About α-

Centre of Excellence in Bioinformatics, School of Life
Sciences, Pondicherry University, Puducherry –

605 014

(corresponding author phone: +91-413-2655212; fax: +91-413-
2655211;

E-mail: amouda@yahoo.com

About Ω-

Centre of Excellence in Bioinformatics, School of Life
Sciences, Pondicherry University, Puducherry

E-mail: buvanisuriya@bicpu.edu.in).

About β-

Department of Computer Science, School of Mathematics and

Computer Science, Pondicherry University, Puducherry

E-mail: skswami@yahoo.com

In this case, MSA is defined by the position and
gap size in the sequences. Two types of search
operators like recombination and gap mutation are
included in the algorithm to produce offspring
alignments [3]. Apart from these two basic operators,
several operators are also proposed in the literature to
improve the performance of GA [4-5]. In some case
existing GA operators are unsuitable as they are not
specific for the problem and the encoded chromosome.
This led us to develop new GA operators, specifically for
MSA.

The proposed algorithm is illustrated using DNA
sequences, but it can be extended to RNA and protein
sequences also. A set of n DNA sequences of varying
length are considered for the alignment process. The
nucleotide bases A, G, C, T corresponds to adenine,
guanine, cytosine and thymine and gaps are
represented by ‗-‘ (hyphen).

The remainder of the paper is organized as
follows. The next two section reviews multiple sequence
alignment and genetic algorithm. Section 3 explains
various methods of the self-organizing genetic algorithm
and its advantages over standard GA. Section 4 explain
the proposed SOGA with its pseudocode. Section 5
explains the working mechanism of SOGA-MSA with
newly developed operators. Section 6 shows the
comparison results and discussion. Section 7 is the
conclusion and future perspectives.

MSA, aligning three or more nucleotide or
amino acid sequences simultaneously is one of the
important tasks in bioinformatics. Important application
of MSAs is their incorporation in many structure and
function prediction methods from sequence. It can
reveal conserved residues that enable the identification
of possibly important sites. The construction of MSA is
closely related to phylogenetic analysis and a
phylogenetic tree can be inferred by MSA. The study of
molecular evolution is an area where MSA is extensively
used [6].

The computation of an optimal alignment
mathematically is too complex. Current implementation
methods are heuristics in which full optimization is not
guaranteed. Various algorithms available for MSA are
classified into three main categories: Exact, Progressive
and Iterative based on their properties.

S
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

7

M
a
y

©2011 Global Journals Inc. (US)

Exact algorithms are high quality heuristic in nature,
produce very close to optimal alignment. It can handle
the only restricted number of sequences and are limited
to sums-of-pairs as an objective function.
Progressive alignment using dynamic programming
depends on a progressive assembly of the multiple
alignments, heuristic in nature but does not guarantee
any level of optimization.
Iterative alignment methods produce alignment and
refine it through a series of cycles (iterations) until no
further improvements can be made. It is deterministic or
stochastic depending on the strategy used to improve
the alignment. It allows for a good conceptual
separation between optimization processes and
objective function as its main advantages[7].

The widely used MSA tools implementing
different algorithms are ClustalW[8], MultAlin[9],
DIALIGN[10], MUSCLE[11], T-Coffee[12], DCA[13]. In
addition GA based MSA software like SAGA[14], MSA-
GA[3] are available but not in an executable form.

(i) Its flexibility in assigning the fitness function,
mathematical function used to evaluate the
fitness of the chromosomes.

(ii) The complexity of the MSA process increase
exponentially, NP-hard (nondeterministic
polynomial) in nature[7] can be solved by GA.

(iii) It is not restricted to need of a particular
algorithm to solve the problems. Needs only
fitness function to evaluate the chromosomes

[15].

GA starts with the generation of population
consists of chromosomes, a fixed size encoded
solution. Each chromosome represents a possible
solution and the space of all feasible solutions is called
search space. The role of GA is to alter the generated
chromosomes using various operators to get the
optimal chromosome with best fitness value in the
search space. Iteration continues till the termination
condition is satisfied.
Outline of basic GA

1. [Start] Generate random population of n
chromosomes.

2. [Fitness] Evaluate fitness f(x) of each
chromosome x in the population.

3. [New Population] Create new population using
(i to iv) repeatedly until the process is complete
 i) Selection
 ii) Crossover
iii) Mutation
iv) [Accepting] Place new offspring in a new

population.
4. [Replace] Use newly generated population for

the next iteration.
5. [Test] Check the termination condition, if

satisfied, stop, and return the best solution.
6. [Loop] Go to step 2[16].

For a specific input, setting the GA parameters
is an important task. The concept of self-organizing GA
is to adapt values for parameters like population size,
number of generations, selection modes, rates of
selection crossover and mutation during execution.

In the blend of SO and GA, most of the
parameters change according to the fitness of the
chromosomes. An attempt towards SOGA requires a
complete understanding of the relationship among
various parameters and its impact in the performance.

The aim of SOGA is to create an automated
computer program that solves the problem with little or
no information from the user. The difficulty in choosing
the appropriate number of generations, chromosome
length, crossover and mutation rate is eliminated, thus
GA is made efficient and simple to use.

Using GA, solutions to a particular problem are
not algebraically calculated rather found by a population
of solution alternatives, which are altered (using
operators like crossover and mutation) in iterations of
the algorithm in order to increase the probability of
having better solutions. In optimization, better
chromosomes with higher fitness value will be selected.

SOGA over Standard Genetic Algorithm (SGA)
Encoding of chromosomes in SGA is usually fixed-
length strings. In SOGA, the length of the chromosome
can be made to change adaptively based on the
problem[17].

Population Size is fixed in SGA and the corresponding
number of chromosomes is generated. Population size
50-100 is reported as best[18]. Population size can be
made to change adaptively based on the problem.

 It can be self- organized by generating both
small and large populations and the fitness
value of each of the chromosomes is
calculated. If the average fitness of the larger
population is higher than the smaller population
then the program continues with the larger
population otherwise with the smaller
population.

 Each time at convergence, population size is
doubled till it reaches an upper limit[19].

Number of Generations is always fixed in SGA, and the
algorithm terminates on reaching specified number of
generations or fitness level or at convergence. An
optimal solution may not be reached if termination is
due to the maximum number of generations. Hence it

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

8

M
a
y

Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

is necessary to self-organize number of generations
based on the problem.

Selection Operator in SGA is usually one or combination
of operators. In SOGA, certain conditions are defined to
choose the appropriate operator for a particular
problem for e.g. based on the average fitness of the
generated chromosome.

Crossover/ Mutation Operator in SGA is usually one or
combination of operators, and it can be self-organized

 By defining conditions based on which the
appropriate operator or rate is chosen.

 Crossover/ Mutation operation is performed with
a specified number of methods and based on
the average fitness of the resulting
chromosome, an appropriate method is
chosen[20].

 The algorithm can be executed initially with a
minimum optimal crossover/ mutation rate. At
each point of convergence, instead of
termination the rate can be increased cyclically
till it reaches the optimal upper limit[21].

 The crossover/ mutation rates adapted from high
to minimum optimal rate [22].

 Along with the chromosome generated with the
current value obtained by increase or decrease
in the rate, chromosomes corresponding to
larger and smaller are also generated. The
chromosome with higher fitness is chosen[23]
as an elite.

It is reported in the literature that generally
crossover rates should be high (80%-90%) and
mutation rate should be very low (0.5%-
1%)[18].

Advantage of SOGA

 GA with self-organizing coding, operators and
parameter values is efficient and simple to use.

 Time required for optimizing parameter values
is eliminated by using SOGA. In SGA, optimal
parameter value can be found by executing with
all possible values and combinations with other
parameters.

 The default parameter values assumed to be
optimal is considered when the user fails to
select appropriate values. Even this value may

appropriate crossover point and the corresponding rate
from the initial crossover point. The proposed mutation
operator (Self-Organizing Binary Shuffler) converts

the
chromosome representation into a binary form and
performs mutation for a range of rates till the termination
condition is satisfied. The number of generations is also
self-organized, which varies depending on the problem.

Pseudo code of the SOGA
1. [Start] Generate the random population of n

chromosomes.
2. [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population.
3. [Selection] Select and save the elite

(chromosome with highest fitness value) in the
current population.

4. [New Population] Create a new population using
(i to iv) repeatedly until the process is complete

i) [SOCO] Self-organizing the selection of crossover
point based on the specified optimal rate and
perform crossover using SOCO operator.

ii) [Selection] Select and save the elite in the current
population.

iii) [SOBS] Convert the chromosome representation
to a binary form and perform mutation for a
range of rates cyclically using SO Binary
Shuffler.

iv) [Selection] Select and save the elite in the
current population.

5. [Test] Check the termination condition. If
satisfied, stop, and return the best solution.

 [Loop] Go to step 4.
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

9

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

lead to bad results for some problems. Instead
of getting parameter values from user SOGA
self-organizes all or most of the parameters to
assign values based on the problem.

SOGA proposes two new operators to perform
crossover and mutation. The proposed Self-Organizing
Crossover Operator (SOCO Operator) selects an

6.

Fig.1. Flow chart of SOGA.

a) Chromosome Representation
In general, chromosome is a matrix with fixed

lengths and represented as sequences with
spaces[25,26]. For the problem of MSA, the gap
positions are used to encode the chromosome. The
number of gaps to be inserted in each sequence is
calculated in such a way that the length of all
sequences in the alignment (global) is same. A single
chromosome consists of gap positions of all the
sequences in order. In the mutation process, the
chromosomes are encoded as binary digits (1, 0)

representing presence and absence of the gap in
sequence. In SOGA, the length of the chromosome is
adaptively changed based on the number of sequences
and its length[17].

b) Number of Generations
In each generation, the algorithm generates

chromosomes of required population, and its fitness
score is evaluated. Chromosomes from the current
population are stochastically selected and modified by
crossover and mutation, which undergo next
generation. As the rate of mutation is made to increase
cyclically based on the fitness value, iteration completes
only when the optimal upper limit is reached. The
number of generations depends on the betterment of
the fitness value obtained in each generation.

For e.g., consider the dataset 469 with three
sequences as input. The generation starts with Rm=1%
produces an alignment with CS = 36. Next generation
continues with Rm 1% resulting further no increase in
CS. Hence by the concept of self-organization Rm
increased to 3% resulting CS = 37. Self-organizing
process continues till the upper limit of Rm (80%) is
reached. In 43 generations the CS of the output
alignment is 45 as shown in the table I.

Table 1: Example For Self-Organizing Number Of

Generations
Iterative
Generation (Ig)

Mutation
rate (Rm)

Column
Score (CS)

1 1% 36

3 3% 37

21 37% 40

25 43% 44

41 79% 45

43 81% 45

c) Population Initialization
Population size indicates the number of

chromosomes in a generation, and it must be optimal
for a particular problem.

Table 2: Example For Population Initialization

Best population size also depends on encoding
method and size of the encoded string. According to
research, it is proven that increase in population size

after a limit does not improve the performance of
GA[18].

Sequence
Sequence

Length
No. of
Gaps

Gap positions
Sorted gap
positions

Alignment

TCTAGATG 8 6 5|0|11|3|6|9| 0|3|5|6|9|11| -TC-T--AG-A-TG

CTATGATGTA 10 4 12|10|0|7| 0|7|10|12| -CTATGA-TG-T-A

ACGATGTA 8 6 7|4|11|5|8|13| 4|5|7|8|11|13| ACGA--T--GT-A-

GTTCTAT 7 7 8|4|6|1|13|3|0| 0|1|3|4|6|8|12| --G--T-T-CTA-T

ACGTATAGCAAT 12 2 9|4| 4|9|
ACGT-ATAG-

CAAT

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

10

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

Considering m sequences to be aligned with
the length (m1,…mi) and the space ratio rsp =0.2. If the

longest length of sequences to be aligned is mmax,

then N = m max * (1+ rsp). The value of N is the size of

search space of alignments. It limits the longest length
of alignments that chromosomes can represent.

Chromosomes can be transformed to actual
alignments by inserting gaps in the appropriate
positions. For e.g., mmax = 12, rsp = 0.2, then N = 14.

d) Fitness Evaluation
The fitness function returns a numerical score

indicating fitness of the candidate alignment. It is an
important parameter to determine which alignment will
survive in the next generation. The fitness is evaluated
by calculating the (CS) column score. CS = EM/ AL,
where AL is the alignment length, EM (Exact match) =1,
when all the base pair in the entire column is aligned
with the same base pair.

e) Selection
SOGA implements an elitism operator, where

an elite is the chromosome with best fitness value. The
process comprises the following processes

(i) Evaluate the column score.
(ii) Sort the chromosomes.
(iii) Select and save the elite.
With the current population, SOGA undergoes a

crossover. New chromosomes are generated and the
elite is selected. If the fitness value of new one is
greater, elite is replaced else the process continues with
the same. In the same way for mutation elite selection
and comparison process is repeated. This process
continues for every generation to ensure that the elite saved
at the end is best.

A new mechanism is followed for crossover and
mutation operation in self organizing GA.

f) Self-Organizing Crossover Operator (SOCO)
In single point crossover operation [22], the

crossover point is selected initially for a particular rate.
Then the genes from starting point to the crossover
point are copied from one chromosome and the rest
from the second chromosome.

In SGA, crossover for a particular rate may lead
to the occurrence of crossover point within a sequence
itself. It may create problems like
(i) Increase in the number of gaps for a particular
sequence.
(ii) Occurrence of repeated gap positions in a
sequence.

To overcome this major disadvantage,
proposed operator SOCO defines a new point called
complete point. Each complete point refers to the end
position of each sequence in a chromosome. The
number of complete point in a chromosome is based on

the number of input sequences. For e.g. if input
sequences are five, then the chromosome contains four
complete points as shown in Fig.2.

The new working principle followed by SOCO
operator is as follows:

(i) Initialize the crossover rate (Rc) and select
the corresponding crossover point.

(ii) Selects the complete point near the default
crossover point.

(iii) Performs single point crossover operation.
(iv) Generates MSA corresponding to the

chromosome.
(v) Calculates fitness score.
(vi) Selects elite.

Fig.2. Example for Self-Organizing Crossover.

g) Self-Organizing Binary Shuffler (SOBS)
In SGA, either an optimal mutation rate which is

unsuitable for all inputs is fixed or selected from a
range of rates given as optional. It is hard for the user to
select appropriate rate without the knowledge of the
problem. To eliminate these problems, a new mutation
operator with a different approach is proposed. Instead
of a fixed rate, the operator performs mutation for a
range of rates cyclically [21, 24] till the termination
condition are satisfied.

In default shuffling process for mutation leads
to the problem like
 (i) Increase in the number of gaps for a particular
sequence.
(ii) Occurrence of repeated gap positions in a
sequence.

To avoid this, proposed mutation operator
involves conversion of chromosome representation to
binary digits (1,0) represents the presence and absence
of gaps. The new working principle followed by SOBS
operator is as follows:

i) Converts the chromosome representation
to a binary form.

ii) Initialize minimum optimal mutation rate

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

11

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

and the corresponding mutation point is
selected.

iii) Genes before mutation point are
considered for mutation.

iv) The genes within each complete point and
if any gene occurs between the last
complete point and mutation point are
shuffled separately as shown in Fig. 3.

v) Change chromosome representation to
gap positions.

vi) Generates MSA corresponding to the
chromosome.

vii) Calculates fitness score.
viii) Selects elite.

If the elite is replaced by the selection
condition, the generation continues with the same rate
else increases cyclically until an optimal upper limit is
reached. The algorithm terminates on reaching the
optimal upper limit when no further increase in the
column scores.

Fig.3. Example for Self-Organizing Mutation

To validate the proposed algorithm, various
parameters and results of SOGA is compared with SGA.
The dataset 469 from oxbench_mdsa_all with three
sequences is used as input. The comparative results
show that on average, SOGA-MSA produces better
results than the SGA-MSA. As an advantage, in fewer
numbers of generations and time SOGA-MSA produces
the better alignments as tabulated below.

Table 3: Comparison of Sga and Soga on Msa

GA
Population

size
Crossover rate

(Rc)
Mutation rate

(Rm)
No. of

Generations
Exact match

(EM)
Alignment

Length (AL)
Column Score

(CS)

SGA-MSA 100 80 60 50 44 406 0.10

SOGA-MSA 100 70 1-80 43 45 406 0.11

The alignments produced by the widely used

MSA tools with default parameter settings are compared
with the developed SOGA-MSA, and the results are
tabulated. The standard reference datasets of DNA
sequence alignments from BAliBASE[27] are used as
input.

The results of two dataset given below are tabulated.

 Dataset RV11_BBS11022 from the mdsa_all
version with four sequences.

 Dataset RV11_BBS11002 from the mdsa_100
version with eight sequences

Table 4: Comparison of Performance of Soga-Msa and Other Msa Tools

DATASET RV11_BBS11022 DATASET RV11_BBS11002

MSA Tool Exact Match Alignment Length Column Score (CS) MSA Tool Exact Match Alignment Length Column Score (CS)

Dialign 6 274 0.021 ClustalW 1 232 0.004

Mafft 11 208 0.052 Multalin 0 220 0

SOGA-MSA 9 248 0.036 SOGA-MSA 1 259 0.003

The results produced by SOGA-MSA and other
tools like Dialign, Mafft, ClustalW and Multalin are
tabulated above. It is observed that the CS of the
alignment produced by SOGA-MSA is better than most
commonly used tools like Dialign, Multalin and equal to
ClustalW. The betterment of the multiple sequence

alignment compliments the efficiency of the proposed
algorithm.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

12

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

In SOGA-MSA parameters like number of
generations, chromosome length, crossover and
mutation rate are made to adapt the values during
execution, whereas in standard GA these values are
determined before execution. In general, the values of
various parameters of GA based algorithm are either
default or selected from options. It is hard for a non-
specialist to assign the values of various parameters
without complete knowledge of the problem. Even
default values may lead to bad results for some input.
This is completely facilitated and proven by the
proposed self-organizing approach of GA for MSA,
where the parameter values are chosen by itself. The
main advantage of SOGA-MSA is getting sequences
alone as input from the user. Premature convergence
considered as one of the major fitness range problems
of standard GA is completely avoided by the execution
for a range of rates.

The self-organizing crossover and mutation
operator developed for MSA prevents the problem of
repetition and increase of gaps in chromosomes. In
addition, elitism selection avoids disruption of the best
chromosome. The proposed SOBS self-organize the
increase in mutation rate, which explores all rates within
the range. As an advantage, this mechanism ensures
that the best alignments produce for varying rates within
the range are also included in the process of alignment.

Several widely used MSA tools like DCA[13] has
a strong limitation in the number of sequences it can
handle. In SOGA-MSA, there is no limitation in the
number of input sequence and its length.

The algorithms used in other tools will produce
the alignment with the same column score for every
execution. However, in SOGA-MSA implementing the
stochastic iterative algorithm, there is a chance of
generating better alignments than the previous
alignment in each execution. Further, it may generate
better alignments with an increase in the number of
generations also.

The future objectives are to self-organize other
parameters like population size, crossover rate, etc., to
minimize the execution time and to improve the quality
of the alignment further.

1. T. D. Seeley, ―When Is Self-Organization Used
in Biological Systems?,‖ Biol. Bull., 2002,
202(3): 314–318.

2. J. H. Holland, ―Adaptation in natural and
artificial systems‖, University of Michigan Press,
Ann Arbour, MI, 1975.

3. C. Gondro, B. P. Kinghorn, ―A simple Genetic
Algorithm for multiple sequence alignment‖,
Genet. Mol. Res., 2007, 6 (4): 964-982.

4. N. Kubota, T. Fukuda, K. Shimojima, ―Virus-
evolutionary genetic algorithm for a self-
organizing manufacturing system‖, Computers
and Industrial Engineering, 1996, 30(4): 1015-
1026.

5. S. S. Ray, S. Bandyopadhyay, S. K. Pal, ―New
Genetic Operators for Solving TSP: Application
to Microarray Gene Ordering‖, Springer-Verlag
Berlin Heidelberg, 2005, pp. 605–610.

6. S. Diamantis,C. Anna, ―Comparison of Multiple
Sequence Alignment programs‖, M.Sc.
Bioinformatics, National and Kapodistrian
University of Athens.

7. C. Notredame, ―Recent progresses in multiple
sequence alignment: a survey‖,
Pharmacogenomics, 2002, 3(1): 131-144.

8. J. D. Thompson, D. G. Higgins, T. J. Gibson,
―CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment
through sequence weighting position specific
gap penalties and weight matrix choice‖,
Nucleic Acids Res., 1994, 22: 4673-4680.
http://www.ebi.ac.uk/Tools/clustalw/

9. F. Corpet, ―Multiple sequence alignment with
hierarchical clustering‖, Nucleic Acids Res.,
1988, 16: 10881-10890.
http://bioinfo.genotoul.fr/multalin/multalin.html

10. B. Morgenstern, A. Dress, T. Wener, ―Multiple
DNA and protein sequence based on segment-
to-segment comparison‖, Proc. Natl. Acad. Sci.,
1996, 93: 12098-12103.
http://bibiserv.techfak.uni-bielefeld.de/dialign/

11. R. C. Edgar, ―MUSCLE: multiple sequence
alignment with high accuracy and high
throughput‖, Nucleic Acids Res., 2004, 32:
1792-1797.
http://www.ebi.ac.uk/Tools/muscle/

12. C. Notredame, D. G. Higgins, J. Heringa, ―T-
Coffee: A novel method for fast and accurate
multiple sequence alignment‖, J Mol Biol.,
2000, 302: 205-217.
http://www.ebi.ac.uk/Tools/t-coffee/

13. J. Stoye, V. Moulton,A. W. Dress, ―DCA: an
efficient implementation of the divide-and
conquer approach to simultaneous multiple
sequence alignment‖, Comput. Appl. Biosci.,
1997, 13(6): 625-626.
http://bibiserv.techfak.uni-bielefeld.de/dca/

14. C. Notredame, D. G. Higgins, ―SAGA:
sequence alignment by Genetic algorithm‖,
Nucleic Acids Res., 1996, 24(8):1515-1524.

15. K. Karadimitriou, D. H. Kraft, ―Genetic
Algorithms and the Multiple Sequence

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

13

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

References Références Referencias

Alignment Problem in Biology‖, In Proc. 2nd
Annual Molecular Biology and Biotechnology
Conference, Baton Rouge, LA, 1996.

16. S. A. Fatumo, I. O. Akinyemi, E. F. Adebiyi,
―Aligning Multiple Sequence with Genetic
algorithm‖, International Journal of Computer
Theory and Engineering, 2009, 1(2): 179-182.

17. S. Wu, M. Lee, T. M. Gatton, ―Multiple
Sequence Alignment using GA and NN‖,
International Journal of Signal Processing,
Image Processing and Pattern Recognition, 21-
30.

18. Introduction to genetic algorithm tutorial in
www.obitko.com/tutorials/genetic-algorithms
(Last accessed: 7.12.2010).

19. G. R. Harik, F. G. Lobo, ―A Parameter-Less
Genetic Algorithm‖, IEEE Transactions on
Evolutionary Computation, 1999: 523-528.

20. T. Hong,H. Wang, W. Lin, W. Lee, ―Evolution of
Appropriate Crossover and Mutation Operators
in a Genetic Process‖, Applied Intelligence,
2002, 16: 7–17.

21. H. Bao-Juan, Z. Jian, Y. De-Hong, ― A Novel
and Accelerated Genetic algorithm‖, WSEAS
Transactions on Systems and Control, 2008,
3(4): 269-278.

22. R. Breukelaar, T. Bäck, ―Self-Adaptive Mutation
Rates in Genetic Algorithm for Inverse Design of
Cellular Automata‖, July 2008: 12–16.

23. D. Thierens, ―Adaptive mutation rate control
schemes in genetic algorithms‖, Institute of
Information and Computing Sciences, Utrecht
Univerisity, The Netherlands, 2002.

24. J. Zhang, J. Zhuang, H. Du, S. Wang, ―Self-
organizing genetic algorithm based tuning of
PID controllers‖, Information Sciences, 2009,
179 (7): 1007-1018.

25. J. T. Horng, E. M. Lin, B. H. Yang, E. Y. Kao, ―A
Genetic Algorithm for multiple sequence
alignment‖, In Proc. of the GCB, 2001.

26. D. Liu, X. Xiong, Z. Hou, B. D. Gupta,
―Identification of motifs with insertions and
deletions in protein sequences using self-
organizing neural networks‖, Neural Networks,
2005, 18 (5-6): 835-842.

27. H. Carroll, W. Beckstead, T. O‘Connor, M.
Ebbert, M. Clement, Q. Snell, D. McClellan,
―DNA reference alignment benchmarks based
on tertiary structure of encoded proteins‖,
Bioinformatics, 2007, 23(19): 2648– 2649.
http://dna.cs.byu.edu/mdsas/download.shtml

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
II
 V

er
si
on

 I

20

11

14

M
a
y

 Self-Organizing Genetic Algorithm for Multiple Sequence Alignment

©2011 Global Journals Inc. (US)

	2. Self-Organizing Genetic Algorithm for Multiple Sequence
Alignment
	Authors
	I. Introduction
	II. Multiple Sequence Alignment
	III. Genetic Algorithm
	IV. Self-Organizing Genetic Algorithm (SOGA)
	V. Proposed SOGA
	VI. SOGA-MSA
	a) Chromosome Representation
	b) Number of Generations
	c) Population Initialization
	d) Fitness Evaluation
	e) Selection
	f) Self-Organizing Crossover Operator (SOCO)
	g) Self-Organizing Binary Shuffler (SOBS)

	VII. Results and Discussion
	VIII. Conclusion and Future Perspectives
	References Références Referencias

