
© 2011 Wasim Ahmad Bhat , S. M. K. Quadri. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science & Technology
Volume 11 Issue Version 1.0 April 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)

A Quick Review of On-Disk Layout of Some Popular Disk File
Systems

By Wasim Ahmad Bhat , S. M. K. Quadri
Kashmir University

Abstract- : Disk file systems are being researched since the inception of first magnetic disk in
1956 by IBM. As such, many good disk file system designs have been drafted and implemented.
Every file system design addressed a problem at the time of its development and efficiently
mitigated it. The augmented or new designs rectified the flaws in previous designs or provided a
new concept in file system design. As such, there are many file systems that have been
successfully d in operating systems. Among these designs, some file systems have made an
influential impact on the file system design because of their capability to cope up with change in
hardware technology and/or user requirements or because of their innovation in file system ign or
because time favored them which allowed them to find space in popular operating systems. In
this paper, we vide a quick review of on-disk layout of some popular disk file systems across
many popular platforms like Windows, Linux & Macintosh. The goal of this paper is to explore
the on-disk layout of these file systems to identify the various layout policies and data structures
they exploit which made them to be adapted by their native and other operating systems.

Keywords: File System, On-Disk, Design, Popular, Review.

Classification: GJCST Classification: FOR Code: 100699,100604

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

Strictly as per the compliance and regulations of:

6

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

©2011 Global Journals Inc. (US)

A Quick Review of On-Disk Layout of Some
Popular Disk File Systems

Wasim Ahmad Bhatα, S. M. K. Quadri

Abstract- Disk file systems are being researched since the
inception of first magnetic disk in 1956 by IBM. As such, many
good disk file system designs have been drafted and
implemented. Every file system design addressed a problem
at the time of its development and efficiently mitigated it. The
augmented or new designs rectified the flaws in previous
designs or provided a new concept in file system design. As
such, there are many file systems that have been successfully
implemented and incorporated in operating systems. Among
these designs, some file systems have made an influential
impact on the file system design because of their capability to
cope up with change in hardware technology and/or user
requirements or because of their innovation in file system
design or because time favored them which allowed them to
find space in popular operating systems. In this paper, we
provide a quick review of on-disk layout of some popular disk
file systems across many popular platforms like Windows,
Linux & Macintosh. The goal of this paper is to explore the on-
disk layout of these file systems to identify the various layout
policies and data structures they exploit which made them to
be adapted by their native and other operating systems.
Keywords- File System, On-Disk, Design, Popular,
Review.

I. INTRODUCTION
ince the advent of computers a mechanism for
persistent storage of data and/or programs was
needed. On the time line, magnetic disks are the

primitive [1] (introduced in 1956 as data storage for an
IBM accounting computer) and still widely used
secondary storage device. Magnetic disk drive is the
most primitive and cost effective storage device. There
has been continuous improvement in its hardware
technology to increase its performance and capacity
[2]. Although performance has seen less improvement
with respect to capacity, but the tremendous drop in
cost per unit byte, reliability over solid state storage and
increase in capacity have made disk drives every
body’s choice [3]. And hence, disk file systems have
attracted researchers over the globe to exploit its pros
and minimize its cons.

About α- Research scholar in P. G. Department of Computer Sciences,
Kashmir University, India. He did his Bachelor’s degree in Computer
Applications from Islamia College of Science & Commerce, India and
Master’s degree in Computer Applications from Kashmir University,
India.
E-mail- wasim.ahmed.bhat@gmail.com
About - Head, P. G. Department of Computer Sciences, Kashmir
University, India. He did his M. Tech. in Computer Applications from
Indian School of Mines, India and Ph. D. in Computer Sciences from
Kashmir University.
E-mail-quadrismk@hotmail.com

A File System is a way to organize, store,
retrieve, and manage information on a permanent
storage medium such as a disk [4]. File system is an
important part of an operating system as it provides a
way by which data can be stored, organized, navigated,
accessed and retrieved in form of files and directories
from storage sub system. It is generally a kernel module
which consists of algorithms to maintain the logical data
structures residing on the storage subsystems. The
basic key functions that every file system incorporates
are basic file operations like copy, move, create, delete
and rename, efficient organization of data for quick
storage and retrieval and efficient use of disk space.
Apart from these basic functions some file systems also
provide additional functions such as compression,
encryption, file streams and others. Keeping all the
hardware parameters and workload constant, the
performance of a hard disk will all depend upon the
type of file system used. In general file systems were
developed in an incremental fashion by individual
efforts of researchers and software industry with high
cohesion with the hardware limitation and requirements
at that time. Later, refinement of existing file systems [5]
and new file systems were developed to keep pace with
hardware enhancement and off course need.

To understand the file system design in general
and on-disk layout specifically, we need to review the
history of its invention a bit so that we can get some
overview of the environment and situations in which the
first file systems were drafted and implemented.
Further, this history will give us some idea about the
incremental file system design that has been followed
since the inception of first file system. In the early days
of computers, file systems were simply considered part
of the operating system that ran the computer, and in
those days operating systems themselves were rather
new and fancy. One of the first file systems to have a
name was DEC Tape [6], named after the company that
made it (Digital Equipment Corporation) and the
physical system the files were stored on (reel-to-reel
tape recorders). The tapes acted like very slow disk
drives. DEC Tape stored an astoundingly small 184
kilobytes of data per tape on the PDP-8 [7], DEC’s
popular early minicomputer. It was called a
minicomputer only because, while the size of a
refrigerator, it was still smaller than IBM’s mainframes
that took up entire rooms. Of course, the invention of
the transistor and integrated circuit allowed another

S

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

1

Ω

Ω

©2011 Global Journals Inc. (US)

whole round of miniaturization. DEC slowly became
extinct while the rest of the world moved to
microcomputers.

In 1972, Gary Kildall [8] got interested in
working with Microprocessors and got involved with
Intel. His research was related to compilers and code
optimization. While working as a consultant in Intel,
Kildall developed the Programming
Language/Microprocessor (PL/M) [9] and the Control
Language/Microprocessor (CP/M) [10]. He wrote CP/M
to test out PL/M compiler. CP/M allowed him to store
files and retrieve them from 8-inch floppy. He was able
to run and test programs from it, modify them and
check their portability by putting floppy in other
machine’s drive. CP/M got very popular because it used
small amount of memory required to run it,
approximately 3 ½ K and had a file system, but it does
not have a name. It was very simple, as it stored files in
a completely flat hierarchy with no directories. File
names were limited to eight characters plus a three-
character “extension” that determined the file’s type.
This was perfectly sensible because it was exactly the
same limitation as the computer Kildall was working
with. Gary Kildall and the company he founded to sell
CP/M, Digital Research, soon became very wealthy and
the usage of CP/M was tripling every year. It turned out
that a lot of microcomputer companies needed an
operating system, and Gary had designed it in a way
that separated all the BIOS from the rest of the OS.
Unfortunately for Kildall, other people soon got the
same idea he had.

A programmer named Tim Patterson [11] wrote
his own OS called “QDOS” (Quick and Dirty Operating
System) [12] that was a quick and dirty clone of
everything CP/M did, because he needed to run an OS
on a new 16-bit computer, and Gary hadn’t bothered to
write a 16-bit version of CP/M yet. QDOS had a slightly
different file system than CP/M, although it did basically
the same thing and didn’t have directories either.
Patterson’s file system was based on a 1977 Microsoft
program called Microsoft Disk Basic, which was
basically a version of Basic that could write its files to
floppy disks. It used an organization method called the
File Allocation Table.

Bill Gates bought Tim Patterson’s QDOS for
$50,000, and renamed it MS-DOS [13]. He now was
able to sell it to IBM and every company making an IBM
clone, and Gary found himself quickly escorted from the
personal computing stage. As it was originally a quick
and dirty clone of a file system designed for 8-bit
microcomputers in the 1970s that was itself a quick-
and-dirty hack that mimicked the minicomputers of a
decade earlier, FAT was not really up for very much. It
retained CP/M's “8 and 3” file name limit, and the way it
stored files was designed around the physical structure
of the floppy disk drive, the primary storage device of

the day. The introduction of hard disks soon made FAT-
12 obsolete but file systems got attention and every
individual researcher and software industry professional
recognized its importance and started either enhancing
and augmenting the older designs or re-designing
some new file systems from scratch.

In this paper, we will look at some most popular
file systems’ on-disk layout. The popularity of the file
systems selected is solely based on the popularity of
the operating systems that support them natively. The
goal of this paper is to look at the layout policies they
exploit and data structures they use to mitigate the
challenges for which they were designed. In this paper,
we will review the native file systems of Windows, Linux
and Macintosh operating systems.

II. FAT File Systems
The design of FAT [14] file system is very

simple as it uses simple data structures. This simplicity
in design has made FAT file system popular and
supported by almost every operating system. In today’s
world, several digital devices, such as mini mp3
players, smart phones, digital cameras, etc. are
becoming part of our life. These devices exchange data
frequently with desktop computers. The PC discovers
these devices as standard USB mass storage devices
and automatically mounts the file system inside them.
This is possible only if the file system used in device is
supported by the PC’s operating system. That is why;
conventional FAT file system is a useful format for solid
state memory cards as it provides a convenient way to
share data by being supported by almost all operating
systems [15]. As mentioned before, FAT12 was the first
FAT file system but was able to address only limited
number of sectors as it was developed for floppy disks.
Later, with the introduction of hard disk drive, FAT16
was introduced and with higher capacity drives, FAT32
and now exFAT [16] (unofficially called FAT64). Almost
all the flavors of FAT file system follow same design with
the exception of pointer width in bits that is used to
access the sectors (or Clusters) and which gives the
FAT suffix 12, 16, 32 and 64. FAT12 and FAT16 are
obsolete now whereas exFAT is not widely used yet, in
contrast to FAT32 which is supported by almost every
operating system.

The FAT32 file system consists of 4 different
data structures to allow semantics of hierarchical file
systems to be implemented on volume.

a) BOOT Sector
Boot Sector is located at the beginning of the

volume. It includes an area called BPB (Bios Parameter
Block) at offset 11 of length 49 bytes and contains
some basic file system information. The rest of the
sector usually contains boot code with boot signature
word (0x55AA) at offset 509.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

2

©2011 Global Journals Inc. (US)

BPB is a one dimensional table that contains
variable length entries. Each entry in BPB stores file
system layout information except one (BPB_Reserved)
which is kept reserved for future extension. Different
versions of FAT file systems have size difference in BPB
and contain different entries. Table 1 shows the BPB for
FAT32 file system. Each entry has been given a name to
identify its role along with entry offset and size.

Name Offset (byte) Size (bytes)

BS_jmpBoot 0 3

BS_OEMName 3 8

BPB_BytsPerSec 11 2

BPB_SecPerClus 13 1

BPB_RsvdSecCnt 14 2

BPB_NumFATs 16 1

BPB_RootEntCnt 17 2

BPB_TotSec16 19 2

BPB_Media 21 1

BPB_FATSz16 22 2

BPB_SecPerTrk 24 2

BPB_NumHeads 26 2

BPB_HiddSec 28 4

BPB_TotSec32 32 4

BPB_FATSz32 36 4

BPB_ExtFlags 40 2

BPB_FSVer 42 2

BPB_RootClus 44 4

BPB_FSInfo 48 2

BPB_BkBootSec 50 2

BPB_Reserved 52 12

BS_DrvNum 64 1

BS_Reserved1 65 1

BS_BootSig 66 1

BS_VolID 67 4

BS_VolLab 71 11

BS_FilSysType 82 8

Table 1. Description of FAT32 BPB

Reserved Sectors immediately follow Boot
Sector. The number of reserved for volume includes
Boot Sector and is indicated by BPB at offset 14 of Boot
Sector. Typically, reserved sectors include FSInfo sector
at sector 1 and BkBoot sector at sector 6 of the volume.
FSinfo sector further qualifies the FAT32 volume, while
BkBoot is replica of boot sector and is used for recovery
purposes.

b) File Allocation Table (FAT)
The File Allocation Table (FAT) is an array of n-

bit wide entries and spans over a number of sectors
indicated by BPB at offset 36 of Boot Sector. FAT32
volume has generally 2 consecutive copies of FAT data
structure and is called FAT Mirroring. Mirroring is done
for recovering from FAT corruption in case one copy of
FAT gets corrupt. In case of solid state storage devices,
FAT is not mirrored to prolong the life of solid state
device by reducing the write cycles. Bit 7 of BPB offset
40 of boot sector indicates whether FAT is mirrored or

not. This data structure of FAT file system gives it the
name and is the heart of the file system. The suffixes
used by various FAT file systems indicate the bit width
of entries in FAT data structure. Thus, in FAT32, the FAT
entries are 32-bit wide.

FAT data structure is a table that stores the
information about which clusters are free, used or
possibly unusable. A cluster is a fixed length group of
consecutive data sectors which are located immediately
after FAT data structure and occupy rest of the volume.
The number of sectors per cluster is indicated by BPB
at offset 13 of boot sector. FAT file system always
allocates space on storage device in terms of clusters.
This is done to increase the performance of the file
system by avoiding individual multiple accesses to disk.
Thus, the file system may suffer from high internal
fragmentation if cluster is too large and there are many
small sized files; and may degrade the performance if it
is small and the volume has large sized files.
Depending upon the type of file system and size of the
volume, the cluster size varies but the number of
sectors per cluster is restricted to a value that is power
of 2 i.e. 1,2,4,8,16,32,64, etc. In addition to keep track
of used and unused clusters, FAT data structure also
keeps track of chain of clusters allocated to a file. The
technique used by FAT32 file system is simple. Every
file and directory except the root directory of volume has
an entry in its parent directory that contains its name,
attributes & 32 bit wide entry that indicates the first
cluster number allocated to it. The FAT data structure
entries are 32 bit wide and each entry uniquely
corresponds to the cluster on the volume sequentially
i.e. the first entry corresponds to cluster 0, second entry
corresponds to the cluster 1, etc. The formula used to
locate the cluster entry in FAT data structure for any
valid cluster number N is

*4FATOffset N=

_ Re
_

FATOffsetThisFATSecNum BPB svdSecCnt
BPB BytsPerSec

= +

% _ThisFATEntOffset FATOffset BPB BytsPerSec=
where ThisFATSecNum is the logical sector number of
the volume and ThisFATEntOffset is the offset in the
sector where 32-bit FAT entry corresponding to cluster
number N exists. The contents of any valid cluster entry
in FAT can have values as shown in Table 2.

FAT32 Cluster Entry
Values

Description

0x00000000 Is Free Cluster
0x00000001 Reserved value
0x00000002 –
0x0FFFFFEF

Is Used Cluster and value points to
next cluster in the chain allocated
to file/directory

0x0FFFFFF0 –
0x0FFFFFF6

Reserved values

0x0FFFFFF7 Some Bad sector in Cluster,

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

3

©2011 Global Journals Inc. (US)

Unusable
0x0FFFFFF8 –
0x0FFFFFFF

Is Last Cluster in file/directory or
EOC (End Of Cluster chain)
marker

Table 2. Description of Valid FAT Entries

Let’s suppose two files, say MYFILE1.TXT and
MYFILE2.TXT are currently residing on a FAT32 volume
such that the former is fragmented and is 3 clusters
long while the latter is not fragmented and is 2 clusters
long as shown in figure 1. MYFILE1.TXT has first cluster
allocated 0x00000029, FAT contents against that cluster
shows another cluster 0x0000002A, then 0x0000002D
whose FAT contents show that this cluster is the last
cluster in chain. Similarly, for MYFILE2.TXT the first
cluster allocated is 0x0000002B whose FAT contents
point to next cluster in chain, 0x00000002C, which is the
last cluster in chain as pointed by its FAT content.

Each file/directory may occupy one or more
clusters depending upon its size. Thus, a file/directory is
represented by a chain of these clusters. However,
these clusters are not necessarily to be stored adjacent
to one another on the disk’s surface but are often
fragmented throughout the volume as shown in figure 1
where MYFILE1.TXT is fragmented while MYFILE2.TXT
is not.

Figure 1. A Snapshot of FAT Data Structure.

As memory cost per unit capacity is
dramatically decreasing every year and storage size is
increasing, the maximum number of clusters have
increased dramatically and also the cluster

size. In

FAT32, the FAT entry is 32 bit wide which points to next
cluster in chain but it only uses lower 28 bits to address
clusters. Thus, FAT entry values say 0xA0000000 and
0xB0000000 point to same cluster on volume. As such,
228

clusters can exist on

FAT32 volume. As mentioned

before, the successive major versions of FAT file
systems are named after the number of table entry bits;
FAT12, FAT16, FAT32 & FAT64, the goal of every new
version is to address large volume and large file size.
Although, KFAT [17], TFAT [18] and FATTY [19]
versions of FAT file system have also been designed
but the goal was reliability. Because the number of
bytes per sector as indicated by BPB at offset 11 of
Boot sector is always divisible by 4, a FAT32 FAT entry
never spans over a sector boundary.

The first two entries in FAT store special values:

 •

The first entry contains a copy of BPB at offset
21 of Boot Sector which is 8 bit long which
indicates the type of storage media. The
remaining 20 bits between high 4 and low 8 of
this entry are set to 1.

 •

The second entry stores the EOC marker. The
high order two bits of this entry are sometimes,
used for dirty volume management: high order
bit if set to 1 indicates that last shutdown was
clean otherwise abnormal. The next highest bit,
if set to 1 indicates that during the previous
mount no disk I/O errors were detected else
there were.

 Because the first two FAT entries store special
values, there is no cluster 0 or 1. The first addressable
cluster in FAT32 FAT data structure is cluster 2, which is
the reason why BPB value at offset 44 of Boot Sector
which indicates the Root Directory cluster number
cannot be less than 2 and is usually 2, i.e., the Root
Directory is at the start of file/directory region.

 c)

Directory Structure
 The semantics of hierarchical file system lives

on the notion of files and directories. The hierarchical
file system is like a tree where every non-leaf node is a
subdirectory containing any number of non-leaf nodes
(sub-directories) or leaf nodes (files) or both. The tree
begins at a root node called root directory. In FAT32,
the root directory is of variable size and is assigned the
first cluster, whose address is indicated in BPB at offset
44. Among all the files and directories that may reside
on FAT32 volume, root directory is the only directory
that does not have filename and attributes; more
precisely does not have any entry like other files and
directories have. In case of FAT12 and FAT16, root
directory is located at fixed location after FAT copy and
is

of fixed size indicated in BPB.

 A directory is an array of 32 byte wide
structures where each structure represents a file or
directory either existing or deleted and in case of long
name support, the remaining the parts of long name.
The structure of 32 byte wide entry of directory is shown
in Table 3.

Name

Offset (byte)

Size (bytes)

DIR_Name

0

11

DIR_Attr

11

1

DIR_NTRes

12

1

DIR_CrtTimeTenth

13

1

DIR_CrtTime

14

2

DIR_CrtDate

16

2

DIR_LstAccDate

18

2

DIR_FstClusHI

20

2

DIR_WrtTime

22

2

DIR_WrtDate

24

2

DIR_FstClusLO

26

2

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

4

DIR_FileSize 28 4

Table 3. Description of FAT32 Directory Entry Structure

©2011 Global Journals Inc. (US)

The name and other metadata about a file are

all stored in the 32-byte directory entry for file.

The list of
characters that cannot be used in a file name, “. “ / \

[] ;
: | = or 0x20 is really an operating system

issue, not a

file system issue. Linux, via its FAT support, can create
files with some of these characters in their names.

This
may cause problems with portability if that disk is later
read in a Windows environment. Dating back to the
creation of the first FAT12 volumes in the 70’s, all files
were given a name in the 8.3 naming convention. That
is,

eight characters for the name

and three characters
for an extension that identified the type of file; ‘dot’ is
never saved.

Long file name support was later
introduced but not in any semblance of an elegant way.

Usually,

FAT32 places

the root directory in the
first available cluster, which places it right behind the
FAT area. All other directories in all the FAT file systems
will be allocated clusters as they need them and can
reside anywhere on the disk.

III.

NT

File

System

NTFS was designed to quickly perform

standard file operations such as read, write & search. It
was developed from scratch although some concepts
were borrowed from OS/2’s HPFS [20]. The design of
NTFS file system is bit complex but very nicely drafted
and crafted. It includes many new features of modern
file system like transparent compression and
encryption, sparse files, multiple data streams,
reliability, fast recovery, security features, privileges and
permissions, and representation of everything as file
and everything belonging to a file as collection of
attribute/value pairs from filename attribute to data
attribute [21]. The design of NTFS file system is such
that every sector of volume belongs to some file unlike
FAT. Even the file system metadata that describes the
file system is part of some file.

When a volume is formatted with NTFS file
system, it leads to the creation of several system files
used by file system to store volume metadata and
implement the file system. These files are not
accessible to user directly. These system files have
entry just like other regular volume files and directories
have, and have been

given some reserved names
prefixed by $ sign. The standard configuration of NTFS
file system has 16 system files out of which last 4
entries are reserved [22]. Table 4 lists these system files
along with their $MFT name, $MFT entry offset
(explained later) and purpose of the file.

System File File

Name
MFT
Record

Purpose of the File

Master file
table

$Mft 0 Contains one base
file record for each
file and folder on an
NTFS volume.

Master file
table 2

$MftMirr 1 A duplicate image of
the first four records
of the $MFT.

Log file $LogFile 2 Contains a list of
transaction steps
used by NTFS for
recoverability.

Volume $Volume 3 Contains information
about the volume.

Attribute
definitions

$AttrDef 4 A table of attribute
names, numbers,
and descriptions.

Root file
name index

$ 5 The root folder.

Cluster
bitmap

$Bitmap 6 A representation of
the volume showing
which clusters are in
use.

Boot sector $Boot 7 Includes the BPB
used to mount the
volume and
additional bootstrap
loader code used if
the volume is
bootable.

Bad cluster
file

$BadClus 8 Contains bad
clusters for the
volume.

Security file $Secure 9 Contains unique
security descriptors
for all files within a
volume.

Upcase
table

$Upcase 10 Converts lowercase
characters to
matching Unicode
uppercase
characters.

NTFS
extension
file

$Extend 11 Used for various
optional extensions
such as quotas,
reparse point data,
and object
identifiers.

 12-15 Reserved for future
use.

Table 4. $MFT Entry name, & Offset & Purpose of NTFS
System Files

a) $BOOT
The location of $BOOT file is fixed and resides

on first 16 sectors of NTFS volume. The first sector is
called Boot Sector as it contains the boot strap code
and following 15 sectors are boot sector’s IPL (Initial

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

5

©2011 Global Journals Inc. (US)

Program Loader). The boot sector is duplicated at last
sector of the volume. The boot sector of $BOOT file
contains two data structures; BPB followed by Extended
BPB. Table 5 describes the BPB and Extended BPB of
NTFS boot sector (Offset, Length & Field Name).

Byte Offset Field Length Field Name
0x0B WORD Bytes Per Sector
0x0D BYTE Sectors Per Cluster
0x0E WORD Reserved Sectors
0x10 3 BYTES always 0
0x13 WORD not used by NTFS
0x15 BYTE Media Descriptor
0x16 WORD always 0
0x18 WORD Sectors Per Track
0x1A WORD Number Of Heads
0x1C DWORD Hidden Sectors
0x20 DWORD not used by NTFS
0x24 DWORD not used by NTFS
0x28 LONGLONG Total Sectors
0x30 LONGLONG Logical Cluster Number

for the file $MFT
0x38 LONGLONG Logical Cluster Number

for the file $MFTMirr
0x40 DWORD Clusters Per File Record

Segment
0x44 DWORD Clusters Per Index Block
0x48 LONGLONG Volume Serial Number
0x50 DWORD Checksum

Table 5. BPB & Extended BPB of NTFS file system

Among other things, the two data structures
contain sectors per cluster, bytes per sector, total
sectors, logical cluster number of $MFT file, logical
cluster number of $MFTMirr file, clusters per file record
segment and clusters per index block.

b) $MFT
$MFT file or Master File Table file is an array of

fixed records where each record represents uniquely
every file or directory of the volume even the system
files including the $MFT file. The first 16 records are
reserved for system files. Table 4 shows the list of first
16 records ordered as per their position and
corresponding system files they represent along with
short description. The first entry represents the $MFT file
itself while second entry represents the mirrored copy of
$MFT file named $MFTMirr whose first record is
identical to first record of $MFT. Actually, $MFTMirr
duplicates first 4 records of $MFT for recovery purpose.
In case the first record of $MFT that defines $MFT, is
corrupted the file system code should read the second
record of $MFT to locate $MFTMirr and read its first
record to build $MFT or should directly read the
$MFTMirr file’s first record by locating its position from
logical cluster number in BPB to build $MFT. As $MFT
actually defines the NTFS layout, logical cluster number
of $MFT is kept in BPB so that file system driver can

locate $MFT at boot time. $MFT is not fixed like FAT
and hence can be relocated in case it is damaged;
same is true for other system files.

 A record in $MFT is a 1 KB structure
that stores attributes of file/directory to which it
corresponds. NTFS stores everything belonging to file
or directory as a collection of attribute/value pairs
including filename, security information, time stamps,
data, etc [23]. Each $MFT record corresponds to a
unique file. If a file has large number of attributes, more
than one record is allocated to a file. In this case, the
first record that stores the location of others in Attribute
List attribute is called Base File Record. Whether a file
consumes one or more $MFT records, if the value for
any particular attribute is completely stored in record,
such an attribute is called Resident Attribute. Several
attributes are defined as always being resident so that
NTFS can locate non-resident attributes for e.g.
$STANDARD_INFORMATION, $INDEX_ROOT,
$ATTRIBUTE_LIST, etc. A non-resident attribute is one
whose value cannot be completely stored in an $MFT
record. In such case, NTFS allocates clusters for the
attribute’s data separate from $MFT. This area is called
a run or technically an extent. If resident attribute’s value
grows, it is converted to non-resident attribute and
allocated a run. $DATA attribute for files greater than 1
KB, $BOOT, $MFTMirr and $LogFile is always non-
resident. Table 6 shows the standard attribute names
and their description [24]. Actually attributes
correspond to numeric codes which NTFS uses to order
(in ascending order) the attributes within an $MFT
record with same attribute types appearing more than
once in case a file has multiple values for that attribute.
Most attributes never have names, though Index related
attributes and $DATA attribute often does. Names
distinguish among multiple attributes of same type that
a file can include. The value of an attribute is a byte
stream and is stored as a separate stream in a file.
NTFS does not read and write files instead attribute
streams. The read and write APIs exported by file
system driver normally operate on file’s unnamed
$DATA attribute.

Attribute Type Description
Standard
Information

Includes information such as timestamp
and link count.

Attribute List Lists the location of all attribute records
that do not fit in the base MFT record.

File Name A repeatable attribute for both long and
short file names. The long name of the file
can be up to 255 Unicode characters.
The short name is the 8.3, case-
insensitive name for the file. Additional
names, or hard links, required by POSIX
can be included as additional file name
attributes.

Security
Descriptor

Describes who owns the file and who can
access it.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

6

©2011 Global Journals Inc. (US)

Data Contains file data. NTFS allows multiple
data attributes per file. Each file typically
has one unnamed data attribute. A file
can also have one or more named data
attributes, each using a particular syntax.

Object ID A volume-unique file identifier. Used by
the distributed link tracking service. Not
all files have object identifiers.

Logged Utility
Stream

Similar to a data stream, but operations
are logged to the NTFS log file just like
NTFS metadata changes. This is used by
EFS.

Reparse Point Used for volume mount points. They are
also used by Installable File System (IFS)
filter drivers to mark certain files as
special to that driver.

Index Root Used to implement folders and other
indexes.

Index
Allocation

Used to implement folders and other
indexes.

Bitmap Used to implement folders and other
indexes.

Volume
Information

Used only in the $Volume system file.
Contains the volume version.

Volume Name Used only in the $Volume system file.
Contains the volume label.

Table 6. Standard Attribute Types & their Description

Each $MFT record begins with an entry header
which is 42 bytes long. This standard header contains a
magic number “FILE”, number of entries in fix up array,
$Log File sequence number, Sequence number, Hard
Link count, offset to first attribute, flags that indicate
whether record is in use or not, used and allocated size
of MFT entry, file reference to base file record in case it
is not base record, attributes and fix up values. Each
attribute begins with a standard header containing
information about the attribute like type and length of
attribute, length of name and offset to name, non-
resident flag, etc. The header of every attribute is always
resident and records whether the value is resident or
non-resident.

 For resident attributes, the header also
contains the offset from the header to attribute’s value
and length of attribute’s value. Figure 2 shows the
typical structure of a $MFT entry record [25].

Figure 2. Typical MFT Entry Record

NTFS refers to physical locations on a disk by
means of logical cluster numbers (LCNs). LCNs are
simply the numbering of all clusters from the beginning
of the volume to the end. To convert an LCN to a
physical disk address, NTFS multiplies the LCN by the
cluster factor (i.e. number of sectors per cluster) to get
the physical byte offset on the volume. NTFS refers to
the data within a file by means of virtual cluster numbers
(VCNs). VCNs number the clusters belonging to a
particular file from 0 through m. VCNs aren't necessarily
physically contiguous, however; they can be mapped to
any number of LCNs on the volume. When an attribute
is nonresident, as the data attribute for a large file might
be, its header contains the information NTFS needs to
locate the attribute’s value on the disk. This information
is typically the VCN-to-LCN mapping pairs. Figure 3
shows the data attribute header containing VCN-to-LCN
mappings for the two runs, which allows NTFS to easily
find the allocations on the disk. Other attributes can be
stored in runs if there isn't enough room in the $MFT file
record to contain them.

Figure 3. Non-Resident $DATA attribute of File.

A file on an NTFS volume is identified by a 64-
bit value called a File Reference. The file reference
consists of a file number and a sequence number. The
file number corresponds to the file’s $MFT record entry
offset (or to that of base file record if the file has more
than one file record entries). The file reference
sequence number, which is incremented each time an
$MFT file record position is reused, enables NTFS to
perform internal consistency checks. If a particular file
has too many attributes to fit in the $MFT record, a
second $MFT record is used to contain the additional
attributes (or attribute headers for nonresident
attributes). In this case, an attribute called the Attribute
List is added to file in base record. The attribute list
attribute contains the name and type code of each of
the file’s attributes and the file reference of the $MFT
record where the attribute is located. The attribute list
attribute is also provided for those cases in which a file
grows so large or so fragmented that a single $MFT
record can’t contain the multitude of VCN-to-LCN

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

7

©2011 Global Journals Inc. (US)

mappings needed to find all its runs. Files with more
than 200 runs typically require an attribute list.

In NTFS, a file directory is simply an index of
filenames, i.e., a collection of filenames along with their
file references organized in a particular way (B-tree) for
quick access [26]. To create a directory, NTFS indexes
the filename attributes of the files in the directory.
Conceptually, an $MFT entry for a directory contains in
its Index Root attribute a sorted list of the files and/or
directories in the directory. It also contains the file
reference in the MFT where the file/directory is
described and time stamp and size information for the
file/directory. A large directory can also have
nonresident attributes (or parts of attributes), as Figure
4 shows.

Figure 4. Root Directory [21]

In this example, the $MFT file record doesn’t
have enough room to store the index of files that make
up this large directory. A part of the index is stored in
the Index Root attribute, and the rest of the index is
stored in non-resident runs called Index Buffers. For
large directories, however, the filenames are actually
stored in 4-KB fixed-size index buffers that contain and
organize the filenames. Index Buffers implement a B+
tree data structure, which minimizes the number of disk
accesses needed to find a particular file, especially for
large directories. The index root attribute contains the
first level of the B+ tree (root subdirectories) and points
to index buffers containing the next level (more
subdirectories, perhaps, or files). Figure 4 shows only
filenames in the index root attribute and the index
buffers (file6, for example), but each entry in an index
also contains the file reference in the $MFT where the
file is described and time stamp and file size
information for the file. NTFS duplicates the time stamp
and file size information from the file’s $MFT record.
This technique, which is used by FAT and NTFS,
requires updated information to be written in two
places. Even so, it’s a significant speed optimization for
directory browsing because it enables the file system to
display each file’s time stamps and size without
opening every file in the directory.

The index allocation attribute maps the VCNs of
the index buffer runs to the LCNs that indicate where
the index buffers reside on the disk, and the bitmap
attribute keeps track of which VCNs in the index buffers
are in use and which are free. Figure 4 shows one file
entry per VCN (that is, per cluster), but filename entries
are actually packed into each cluster. Each 4-KB index
buffer can contain about 20 to 30 filename entries. The
B+ tree data structure is a type of balanced tree that is
ideal for organizing sorted data stored on a disk
because it minimizes the number of disk accesses
needed to find an entry. In the $MFT, a directory’s index
root attribute contains several filenames that act as
indexes into the second level of the B+ tree. Each
filename in the index root attribute has an optional
pointer associated with it that points to an index buffer.
The index buffer contains filenames with lexicographic
values less than its own. In Figure 4, for example, file4 is
a first-level entry in the B+ tree. It points to an index
buffer containing filenames that are (lexicographically)
less than itself—the filenames file0, file1, and file3. Note
that the names file1, file2, and so on that are used in
this example are not literal filenames but names
intended to show the relative placement of files that are
lexicographically ordered according to the displayed
sequence.

c) $LogFile
The internal structure of the $LogFile is not well

understood. Once the log is full, the first entry is
overwritten with the next new entry. What get logged are
the individual transactions that make up each file
access or file write or whatever. For instance, when
modifying a file the following steps might occur:

• read $MFT entry for directory entry file is in
• read directory entry file is in
• read $MFT record for file
• write file
• update Atime in file’s MFT record
• update Mtime in file’s MFT record
• update Atime in directory entry for that file
• update Mtime in directory entry for that file

This list gets considerably longer if the file is
encrypted or compressed. If the command fails before
the entire string of transactions are completed, due to
system crash or whatever other reason, the file system
has to have a way to change each of the transactions
involved back to their previous values in order to
maintain consistency of the file system. The file system
provides a reliable, crash-resilient environment.

d) $Volume
The file $Volume contains the name of the

volume. That is its most important function. There is
also volume information data in this file that contains a
version number and a set of flags. The version number

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

8

©2011 Global Journals Inc. (US)

will be broken into two pieces, a major and a minor
version number.

e) $AttrDef
This file contains the list of attributes available

to the file system in this version of NTFS. It is because
of this file that we know the catchy names for the
attributes that we are using. The entry for the attribute
also contains some information about the allowable
sizes and location (resident or not) of the attribute can
be.

f) $Bitmap
The $BitMap is a special file within the NTFS file

system. This file keeps track of all of the used and
unused clusters on an NTFS volume. When a file takes
up space on the NTFS volume the location is uses is
marked out in the $BitMap. The method of keeping
track of cluster allocation is relatively simple. Each bit in
the Bitmap represents 1 cluster; if that bit is “1” then the
cluster is in use.

g) $BadClus
This file is the size of the NTFS volume, but is a

sparse file of all zeros. Since zeros in sparse files are
counted instead of saved, this file takes up no space on
the disk. If a cluster is ever deemed ‘bad’, data will be
written to this file at the same offset into this file as the
offset the bad cluster is into the volume. This will causes
this file to allocate clusters in the $bitmap file, which in
turn prevents other files from trying to use the bad
cluster in the future.

h) $Secure
In Windows NT, every file had a

$Security_Descriptor attribute that did this job. Since
many files had the same values in that attribute it was
moved to this file so that data wasn’t repeated.

i) $UpCase
Case in the file name is preserved, but is

converted to all uppercase for sorting as the directory
entry is created. This file contains the uppercase
characters of ‘every’ UNICODE alphabet so that NTFS
knows the proper alphabetical order of each code page
of UNICODE without having to inherently knows every
code page of UNICODE.

j) $Extend
$Extend is a directory that contains other

system files. This allows for more system files to be
added but without pushing the limit of the 16 I-nodes
reserved for system files.

IV. Extended File Systems

In response to these problems, two new file

systems were developed “Xia” and “Second Extended
File System” [31]. Xia file system was based on Minix

file system and provided long filenames, support for
large volume size and 3 timestamps; while Ext2 file
system was based on Ext file system with many
reorganizations and improvements. It was designed
with evolution in mind and contained space for future
extension. Due to minimal design, Xia was more stable
than Ext2 file system. Later, bugs were fixed in Ext2 file
system and lots of improvements and new features
were integrated. Ext2 file system became stable and de
facto standard Linux file system. Ext2 uses VFS to
extend the maximum volume from 2 GB to 4 TB. It
allows root user to recover from incidents where other
users overfill the file system. It uses variable length
directory entries while filename length could be
extended to 1012. Ext2 file system may use
synchronous updates like BSD FFS [32]. This is the
maximum reliability support provided by Ext2 file
system. In synchronous updates, any modification to file
system metadata like I-node, bitmap blocks, indirect
blocks and directory blocks are synchronously written to
the disk. Although this mechanism provides bit
reliability, it leads to poor performance. Ext2 file system
allows administrator to choose logical block size when
creating file system. Block sizes can typically be 1024,
2048 and 4096 bytes. Ext2 implements fast symbolic
links which does not use any data block on file system
by not storing the target name in a data block but in I-
node itself.

Andrew S. Tanenbaum wrote the Minix
operating system in 1987 [27]. Tanenbaum created it
for teaching purpose. Later, he published a textbook
that included source code of Minix. This code was taken
and published on Usenet where thousands of readers
were able to examine and further develop Minix. As
Minix was simple and bug free, Torvalds decided to
incorporate its architecture into the operating system he
was developing. Torvalds named his operating system
Linux. One shortcoming of Torvalds first Linux kernel
was that it only supported Minix file system. Minix file
system was an efficient and relatively bug free piece of
software. However, the restrictions in design of Minix file
system were too limiting, so people started thinking and
working on the implementation of new file system in
Linux [28]. In order to add more file systems to Linux
operating system, Torvalds modified a VFS written by
Chris Provenzano and integrated it into the kernel [29].
After integration, a new file system called “Extended File
System” was implemented which removed two big
Minix limitations; maximum volume size and maximum
filename length, but still there were some problems; no
support for separate access, I-node and data
modification timestamps. This file system used linked
lists to keep track of free blocks and I-nodes and thus

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

9

©2011 Global Journals Inc. (US)

file system differs from a traditional file system in that it
keeps transient data in new location, independent of the
permanent data and metadata on disk. Because of this,
such a file system does not dictate that the permanent
data has to be stored in any particular way. As such, it
is quite possible for Ext2 file system on disk structure
influenced by the layout of the BSD file system to be
used in this file system. The layout of journaled Ext2 (or
Ext3) file system on disk is entirely compatible with
existing Ext2 file system. Ext2 file system design already
includes a number of reserved I-node numbers; one
among them is used for the file system journal. The
features that separate Ext3 from being a valid ext2
system are journaling, h-tree indexing, and file system
growth while the system is online.

Ext4 [34] is the most
recent version of the extended file system. This latest
release hosts many new features such as a maximum
volume size of one Exabyte, backwards compatibility
with ext2 and ext3, online defragmentation, and
nanosecond timestamps. The nanosecond timestamp
is unique to Ext4 and allows applications that utilize file
creation and modification times to track their timing in
nanoseconds rather than seconds.

As there has been a large drift in the on-disk
layout of Linux file systems from Extended file system to
Extended 2 file system while later versions have support
Ext2 on-disk layout, we will review only Ext and Ext2 on
disk layout in detail.

Extended File System is based on the concepts
derived from UNIX operating system. In Extended File
Systems, every file is represented by an I-node (Index
Node), everything is a file, directory which is a special
file contains list of entries pertaining to files it contains
along with corresponding I-node. When a volume is
formatted with Extended File System, 4 data structures
are created as shown in figure 5.

Figure 5.

Data Structures of Extended File System

a)

Data Blocks

Data Blocks immediately follow the I-node list
and occupy rest of the volume. A data

block is a set of
consecutive sectors which is allocated to a file in its
entirety. They are internally represented by numbers
corresponding to their position in the volume. A file may
be allocated one or more data blocks, consecutive or
fragmented

over the volume.

b)

I-node List

I-node list structure immediately follows the
Super block. The size of I-node list depends upon the
volume size and is calculated at initial format and
punched in Super block. I-node is the basic building
block; every file and directory in the file system is
described by one and only one I-node. Each I-node
contains the description of the file it represents; file
type, access permissions, owner, access times, link
count, file size and table of pointers to data blocks. I-
nodes are internally represented by I-node number
enumerated by their position in the I-node list. The
numbering begins from 1, I-node 0 does not exist on
newly formatted volume. An I-node of Type=0 and
number of links=0, is free otherwise represents a file.

The table of pointers to data blocks is an array
of entries where first 9 direct entries contain the address
(index number) of data blocks containing data of the file
while the next single indirect entry contains the address
of data block that contains the direct entries for data
blocks containing the data of the file. The next entry in
table is a double indirect entry that points to a data
block which contains single indirect entries. Similarly, a
triple indirect entry in table points to a data block that
contains double indirect entries. This level of indirection
is used to allow the structure of I-node to be small but at
the same time allows large file size to be addressed.
This scheme is shown in figure 6.

Figure 6.

Levels of indirection to address data blocks.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

10

resulted in bad performance with aging [30].
Ext3 file system was designed to eliminate

enormously long file system recovery times after the
crash. Ext3 is a journaling file system [33]. A journaling

©2011 Global Journals Inc. (US)

happens if no process ever wrote data into the file
offsets corresponding to those blocks and hence block
numbers remain at their initial value 0. This way
Extended File System supports Sparse files.

Figure 7. A typical directory file content.

Directories are implemented as special files
containing a list of fixed sized entries. Each entry
contains I-node number and fixed length filename it
represents. Any entry that contains 0 in I-node but has
some valid filename represents a deleted file that
existed previously on the volume. Every directory file
has first 2 entries containing ‘.’ and ‘..’ entry
representing its I-node number and parent directory’s I-
node number respectively. For root ‘/’ directory both
entries have same value. A typical directory file content
is shown in figure 7.

c)

Boot Block & Super Block

The Boot block is located at first sector of
volume and contains the boot strap code. The Super
block immediately follows the Boot block and contains
the information that describes the state of a file system.
The information contained in Super block includes:

•

Size of the file system,

•

Number of free blocks in the file system,

•

A list of free blocks in the file system,

•

Index of next free block in the free block list,

•

Size of I-node list,

•

Number of free I-nodes in file system,

•

List of free I-nodes in file system,

•

Index of next free I-node in free I-node list,

•

Lock fields for free block and free I-node list,
and

•

Flag indicating that Super block has been
modified.

Extended file system stores in Super block
information that is needed to maintain I-nodes and data
blocks. When the volume is created Super block list of
free I-nodes is empty and kernel searches the I-node list
structure for those I-nodes where the Type=0 and
populates the list to its full capacity remembering the
highest numbered I-node it finds. The next time the
kernel searches the disk for free I-nodes, it uses this
remembered I-node as its starting I-node. Keeping track
of I-nodes is easy but the list is used to avoid the I-node
list search every time an I-node is needed as free I-
nodes can be located in I-node list any time by
searching for type field. The data blocks are necessarily
to be maintained

in their entirety because there is no
way for kernel to know on the basis of the content they
contain that whether the data block is free or allocated.

The Super block contains the list of free blocks
populated at the time of volume creation. The data
blocks are organized in a linked list fashion. The Super
block list contains the list of free blocks to its capacity.
One entry in the list points to a block that contains such
kind of a list to its capacity. During volume creation, the
kernel tries to organize the list in such a manner such
that block numbers allocated to a file are nearby but
later on no such effort is made. The structure of
metadata about the free data blocks is shown in figure
8.

Figure 8. Free data block management.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

11

Several block entries in I-node can be 0
meaning that logical block entries contain no data. This

©2011 Global Journals Inc. (US)

Figure 9. Ext2 data structures.

Using block

groups has 3 advantages:

•

Each block group contains a redundant copy of
Super block and block group descriptors that
actually define the file system. As such, it is
easy to recover if any Super block gets
corrupted.

•

This arrangement gives good performance by
reducing the distance between the I-node table
and the data blocks which reduces the head
seeks during file I/O.

•

It reduces fragmentation by keeping the data
blocks belonging to a file in same block group.

d)

Super Block

The Super block of Ext2 contains following information:

•

Magic number which validates whether the
block is Super block or not.

•

Revision level which indicates features it
supports.

•

Mount count and maximum mount count.

•

Block group number that holds this copy of
Super block.

•

Block size fixed at volume creation.

•

Blocks per group fixed at volume creation.

•

Free blocks which indicates number of free
blocks.

•

Free I-nodes which indicates number of free I-
nodes.

•

First I-node which indicates the root ‘/’ I-node.

Ext2 Super block does not contain information
regarding the list of free data blocks and I-nodes. This
information is individually maintained

by Block bitmap
and I-node bitmap of block group.

e)

Block Group Descriptor

Block group descriptor consumes one block
and contains following information:

•

The block number of block allocation bitmap for
this block group used during block allocation
and de allocation.

•

The block number of I-node allocation bitmap
for this block group used during I-node
allocation and de allocation.

•

I-node table which contains the starting block
number of I-node table for this block group.

•

Number of free blocks in group.

•

Number

of free I-nodes in group.

•

Number of directories in group.

Only the first copy of Super block and group
descriptors is updated by Ext2 file system while for
other block groups it is left untouched. When a
consistency check is executed, the information is
copied on other block groups.

f)

Block & I-node Bitmaps

Both of these bitmaps occupy one block each
and number of blocks they address depends upon fixed
number of blocks per group. In these bitmaps, each bit
corresponds to a block (or I-node) of group and its

state indicates whether it is allocated or not.

g)

I-node Table

I-node table is an array of fixed sized I-nodes
and occupy many blocks depending upon the size of I-
node, total number of I-nodes in a group and block
size all indicated by Super block.

Ext2 I-node is almost same as that of Extended
I-node in that it uses multiple levels of indirection but
Ext2 directories contain variable length entries unlike Ext
file system directory. Each directory entry contains I-
node number, name length and name of file.

Ext3 on-disk data structures are identical to
those of an Ext2 file system. As a matter of fact, if an
Ext3 file system has been cleanly un-mounted, it can be
remounted as an Ext2 file system, conversely, creating
a journal of Ext2 file system and remounting it as Ext3 is
simple and fast operation.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

12

Extended 2 file system on-disk layout is
strongly influenced by BSD file system and is almost
similar to Extended file system. Ext2 file system is
divided into block groups, which contain a fixed number
of blocks where blocks are fixed sized number of
sectors. Block groups immediately follow the boot
sector and are numbered from 0 onwards. Every block
group contains a Super block (1 block in size), Group
descriptors (n blocks in size), Data block bitmap (1
block in size), I-node bitmap (1 block in size), I-node
table (n blocks in size) and data blocks (n blocks in
size). The typical structure of Ext2 file system is shown
in figure 9.

©2011 Global Journals Inc. (US)

problem. HFS replaced the flat file of MFS with Catalog
File which uses B-tree structure that could be searched
very quickly regardless of size. HFS was introduced with
20 MB hard disk drive and was hard coded into 128 KB
ROM. HFS file system divides the volume in 512 bytes
long sectors and allocates to files allocation blocks
which contain one or more consecutive sectors. HFS
contains

5 data structures that make up the volume:

•

Boot blocks occupy sector 0 and 1 of system
and contain system startup information.

•

Master Directory Block (MDB) occupies sector
2 and defines the volume layout and other
information like location and size of other
structures. MDB is duplicated at opposite end
of the volume in second to last sector. This is
used to recover the volume in case of
corruption and is only updated only when either
Catalog file or Extent Overflow file size
increases.

•

Volume Bitmap starts

at sector 3 and keeps
track of which allocation blocks are free. The
size of Volume bitmap depends upon the size
of the volume.

•

Catalog file is a B-tree that contains records for
all files and folders which exist on the volume.
Files and folders are uniquely identified in
Catalog file by Catalog Node ID (CNID). Each
node represents a file or folder and may
contain any 2 types of records among the 4
possible types. For a file node, a File Thread
Record stores filename and CNID of its parent
directory and a File Record stores 16 byte
attributes used by Finder, timestamps, its
CNID, first 3 extents of file for both data and
resource fork, and pointer to first data and
resource fork extent records in Extent Overflow
file (in case it has any). For a directory node, a
Directory Thread Record stores name of
directory and CNID of parent directory and a
Directory Record stores 16 byte attributes used
by Finder, timestamps, its CNID and number of
files stored in it.

•

Extent Overflow file is a B-tree structure file that

contains extra extents pertaining to any file if
the initial 3 extents of that file record in Catalog
file are used up. Later versions allowed bad
blocks to be recorded as extents.

An extent is a contiguous range of allocation
blocks allocated to some fork, represented by a pair of
numbers; the first allocation block number and number
of allocation blocks.

The general on disk layout of HFS file system is
shown in figure 10.

Figure 10. HFS On-Disk Layout.

Under HFS (also in HFS+) files are not
monolithic and do not consist of one single element
[36]. They may be composed of two or more pieces,
called Forks. NTFS also supports this concept by
supporting multiple data streams in general and
multiple values for same attribute types identified by
names. HFS files have 2 named forks (Data &
Resource) and can have logically any number of un-
named forks. A Data fork contains the actual data
pertaining to the file like text for word processor, etc. A
Resource fork contains metadata pertaining to the file
like icon, preview picture, etc. In other words, Data fork
is used to store the unstructured data while Resource
fork is used to store the structured data. The Resource
fork was designed to store metadata that would be
used by GUI. HFS+ supports any arbitrary number of
custom named forks in addition to data & resource
forks.

As the Catalog file stores all the file and
directory records in single data structure, only one
program can write to this structure at a time, forcing
other programs to wait in a queue to get

their turn. This
raises both a performance and reliability issue. Also,
due to 16 bit pointers used to address allocation

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

13

directory listing information. As such, the system had to
do a complete search of this file in order to build a list of
files stored in a particular folder.

Hierarchical File System (HFS), also called Mac
OS Standard, was introduced in 1985 to mitigate this

[35]. With the introduction of larger media, the time
taken to display the contents of a folder was a concern
as MFS used a single flat file to store all of the file and

optimized to be used on very small and slow media

V. Hierarchical File Systems

Macintosh File System (MFS) was introduced
around 1983 with first Mac computer. MFS was

blocks, HFS is able to address only 65535 allocation

©2011 Global Journals Inc. (US)

is an improved version of HFS supporting larger files
and volumes by using 32-bit allocation block addresses
and Unicode for filenames. It also supports multiple
named forks for files, Journaling, inline attribute data
records, access control list based file security and
compatibility with file permission models on other
platforms such as Windows.

Like HFS, HFS+ divides volume into 512 byte
sectors and groups them into allocation blocks (usually
8) to be allocated to a file. Allocation blocks are
addressed by 32-bit pointers [38]. In HFS+ volume
everything is a part of one or more allocation blocks
with possible exception Alternate Volume Header, unlike
HFS were Boot blocks, Master Directory Block and
Volume Bitmap are not part of any allocation block. To
reduce file fragmentation, contiguous allocation blocks
called Clumps are allocated to files. The number of
allocation blocks per Clump is fixed and is specified

in
Volume Header. The first 1024 bytes and last 512 bytes
of volume are reserved. The Volume Header is located
immediately after first 1024 bytes and is fixed. The
Alternate Volume Header which is replica of Volume
Header is located at 1024 bytes before the end of
volume and is also fixed. The on-disk layout of HFS+
volume is shown in figure 11.

Volume Header is equivalent of Master
Directory Block of HFS. It stores timestamps, number of
files on volume, location of other structures on volume,
size of allocation blocks, size of clumps, etc. When a
volume is formatted with HFS+ file system, it leads to
the creation of 5 special files in addition to reserved
allocation blocks, Volume Header and Alternate Volume
Header.

a)

Allocation File

Allocation file keeps track of which allocation
locks are free and which are in use by representing
every block by bit. It is equivalent to Volume Bitmap of
HFS. The main difference between Volume Bitmap and
Allocation File is that Allocation file is a regular file which
can exist anywhere on volume, shrink or grow in size
and need not to be contiguous while Volume Bitmap
always resides in reserved area and its size is fixed. The
location of first extent of Allocation file is stored in
Volume Header. This architecture of Allocation file
induces flexibility in HFS+ file system not found in HFS.

b)

Catalog File

Catalog file describes every file and folder of

the volume including the special files and the hierarchy
in the volume. It is similar to Catalog file of HFS. The
Catalog file is organized as a B-tree to allow quick and
efficient searches through a large hierarchy. This file
contains vital information about every file and folder
along with the catalog information. The main difference
between the records in HFS and HFS+ Catalog file

is
that in HFS+ the nodes of B-tree pertaining to files and
folders contain more information and can have varying
size unlike HFS. The location of first extent of Catalog
file is stored in Volume Header. Catalog file contains
Header node, Index nodes, Leaf nodes and if necessary
Map nodes. Each file or folder in Catalog file is given a
unique Catalog Node ID (CNID). For folder, CNID is
called FolderID and for files FileID. Like HFS Catalog
nodes, HFS+ Catalog nodes also store File Record and
File Thread Record for files and Folder Record and
Folder Thread Record for folders in addition to some
more additional information. The main difference
between HFS File Record and Directory Record and
HFS+ File Record and Folder Record is that in HFS the
records contain information about first 3 extents
belonging to the file or folder while in HFS+ it is 8.

c)

Extent Overflow File

Special files only have one fork i.e.
Data fork. The Catalog file does not store any extent for
special files rather first 8 extents of special

files are
stored in Volume Header. User files can have both data
and resource fork and if necessary other named forks.
The first 8 extents of both data and resource forks for
user files are stored in Catalog file. In both types of files,
if there is need for additional extents for data and
resource fork and/or for named forks, the extents are
recorded in Extent Overflow file. It is a B-tree structured
file that stores standard additional forks’ extents and
named forks’ extents for user files. It does not store for
itself any additional data fork extent.

d)

Bad Block File

Bad Block file is used to mark and record the
areas of the volume that contain bad blocks. The
Extent Overflow file is used to hold information about
the Bad Block file extents.

e)

Attributes File

An Attributes file is a special file which does not
have an entry in Catalog file. An Attributes file is a
complex file. A volume can have no Attributes file in
which case its description in Volume Header for
allocation blocks is 0. Attributes file is a

B-tree
structured file where nodes can contain records known
as Attributes. An Attributes file can have 3 types of
attributes:

•

Inline Data Attributes which contain small
attributes.

•

Fork Data Attributes which contain references
to a maximum of 8 extents.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

14

Hierarchical File System Plus (HFS+), also
called Mac OS Extended, was introduced in 1998 to
overcome problems of HFS and has become the
primary file system used in Mac computers [37]. HFS+

files are possible and high internal fragmentation on
large volumes.

blocks. This means, a minimum size of allocation block
can be 1/65535th of volume size. This means only 65535

©2011 Global Journals Inc. (US)

Header which contains the first 8 extents of Startup file.
Startup file should not have any additional extents for
data fork as it will complicate things for boot loader.

Figure 11. HFS+ On-Disk Layout.

VI.

Discussion And

Conclusion

We observed that the on-disk layout of file
systems reviewed in this paper were objective specific.
In case of FAT file systems, the new versions were
developed to address the issue of large file size and
large volume size support.

Similarly in case of
Hierarchical file systems; the augmented versions
addressed Unicode support in filenames, relocatable
system metadata structures and large file and volume

size. In both cases, the actual design remained the
same. We also observed, in case of NTFS that the
design was drafted from scratch which yielded into an
elegant file system having almost all features which a
modern file system should have. Further, in case of
Extended file systems, we observed large drift in on-
disk layout from Extended file system to Extended 2 file
system to increase performance and reliability. Again,
the design of Extended 3 file system which is mount
compatible with Extended 2 file system is an excellent
example of flexibility in design of Extended 2 file system.
We also observed some similarity in heterogeneous file
systems. The concept of treating everything residing on
the volume as a file is the basic building block of both
NTFS and Hierarchical file systems.

References Références

Referencias

1.

Grochowski, E.

(1998), “Emerging trends in
data storage on magnetic hard disk drives”,
Datatech, pages 11–16, Sep 1998.

2.

Dahlin, M.D. (1996), “The Impact of Trends in
Technology on File System Design”, University
of California, Berkeley.

3.

Gibson, G.A. (1992), “Redundant Disk Arrays:
Reliable, Parallel Secondary Storage”, ACM
Distinguished Dissertations. MIT Press,
Cambridge, Massachusetts.

4.

Giampaolo, D., “Practical File System Design
with the Be File System”, Be, Inc.

5.

Zadok, E., Iyer, R., Joukov, N., Sivathanu, G.
and Wright, C.P. (2006), "On Incremental
FileSystem Development", ACM Transactions
onStorage (TOS),2(2):161–196, May 2006

6.

DEC Tape,
http://en.wikipedia.org/wiki/DECtape, Accessed
on November 2010.

7.

http://www.pdp8.net, Accessed on November
2010

8.

http://en.wikipedia.org/wiki/Gary_Kildall,
Accessed on November 2010.

9.

http://en.wikipedia.org/wiki/PL/M, Accessed on
November 2010.

10.

http://www.digitalresearch.biz/cpm.htm,
Accessed on November 2010.

11.

http://en.wikipedia.org/wiki/Tim_Paterson,
Accessed on November 2010.

12.

http://en.wikipedia.org/wiki/86-DOS, Accessed
on November 2010.

13.

“The Man Who Could Have Been Bill Gates”,
http://www.businessweek.com/magazine/conte
nt/04_43/b3905109_mz063.htm, Accessed on
November 2010.

14.

FAT32 File System Specification,
http://microsoft.com/whdc/system/platform/firm
ware/fatgen.mspx, Accessed in 2009.

15.

Bhat, W.A., Quadri, S.M.K., (2010), “Review of
FAT Data Structure of FAT32 file system”,

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

15

f) Startup File
Startup file is a special file used to hold

information needed when booting a system that does
not have built-in ROM support for HFS plus. The boot
loader can find the location of Startup file from Volume

• Extended Attributes which contain references to
8 more extents for data attributes.

©2011 Global Journals Inc. (US)

16.

Extended FAT File System,
http://msdn.microsoft.com/enus/library/aa9143
53.aspx, Accessed on November 2010.

17.

Kwon, M.S., Bae, S.H., Jung, S.S., Seo, D.Y.
and Kim, C.K., (2005), “KFAT: Log-based
Transactional FAT File system for Embedded
Mobile Systems”, In Proceedings of 2005 US-
Korea Conference, ZCTS-142, 2005.

18.

Alei, L., Kejia, L., Xiaoyong, L., (2007), “FATTY :
A reliable FAT File System”, In Proceedings of
the 10th Euromicro Conference on Digital
System Design Architectures, Methods and
Tools, Pages: 390-395, 2007.

19.

Microsoft Corporation, “Transaction-Safe FAT
File System”,http://msdn2.microsoft.c0m/en-us
/library/aa911939.aspx, Accessed in 2010.

20.

Duncan, R., (1989), “Design goals and
implementation of the new High Performance
File System”, Microsoft Systems Journal,
September 1989 v4 n5 p1 (13).

21.

Russinovich, M., Solomon, D.A. and Ionescu,
A. (2009), “File Systems”, Windows Internals
(5th edition), Microsoft Press. ISBN
0735625301.

22.

Nagar, R., (1997), “Windows NT File System
Internals : A Developer's Guide”, O'Reilly. ISBN
9781565922495.

23.

NTFS Concepts
http://www.priscilla.com/Courses/ComputerFor
ensics/pdfslides/03-NTFSConcepts.pdf,
Accessed on November 2010

24.

NTFS Documentation,
http://www.scribd.com/doc/2187280/NTFS-
Documentation, Accessed on November 2010

25.

http://www.ntfs.com, Accessed on November
2010.

26.

Probert, D.B., “Windows Kernel Development”,
Microsoft Corporation, http://i-web.i.u-
tokyo.ac.jp/edu/training/ss/lecture/new-
documents/Lectures/08-NTFS/NTFS.ppt,
Accessed on November 2010

27.

http://www.minix3.org/, Accessed on November
2010.

28.

http://en.wikipedia.org/wiki/MINIX_file_system,
Accessed on November 2010.

29.

The Virtual File System in Linux,
http://www.linux.it/~rubini/docs/vfs/vfs.html,
Accessed on November 2010

30.

Bach, M.J. (1986), “The Design of the UNIX
Operating System”, Prentice Hall, 1986.

31.

Card, R., Ts’o, T. and Tweedie, S., (1994),
“Design and Implementation of the Second
Extended Filesystem”, In Proceedings of the
First Dutch International Symposium on Linux,
Amsterdam, Holland, 1994.

32. McKusick, M.K., Joy, W.N., Leffler, S.J. and
Fabry, R.S., (1984), “A Fast File System for
UNIX”, In ACM Transactions of computer
Systems, Vol 2, No. 3, 1984.

33. Tweedie, S. (1998), “Journaling the Linux ext2fs
filesystem”, In LinuxExpo ’98,1998.

34. Ts’o, T. (2006), “Proposal and plan for ext2/3
future development work”. Linux kernel mailing
list. http://lkml.org/lkml/2006/6/28/454

35. HFS,http://en.wikipedia.org/wiki/Hierarchical_Fil
e_System, Accessed on November 2010.

36. HFS Plus,
http://en.wikipedia.org/wiki/HFS_Plus,
Accessed on November 2010.

37. TN1150, “HFS Plus Volume Format”,
http://developer.apple.com/library/mac/#techn
otes/tn/tn1150.html, Accessed on November
2010

38. Mac OS X: Mac OS Extended format (HFS
Plus) volume and file limits,

 http://support.apple.com/kb/HT2422, Accessed
on November 2010

39. Overview of FAT, HPFS, and NTFS File
Systems,
http://support.microsoft.com/kb/100108, ,
Accessed on November 2010.

40. Daily, S. (1996), “NTFS vs. FAT.” Windows NT
Magazine October 1996: 95.

41. NTFS Directories and Files,
 http://www.pcguide.com/ref/hdd/file/ntfs/files.ht
m, Accessed on November 2010.

42. Janes, M., “Progression of Linux File Systems”,
http://mjanes.public.iastate.edu/Engl314/indiv_
doc.pdf

43. Anjoy, R.G., Chakraborty, S.K., (2009), “Feature
Based Comparison of Modern File Systems”,
http://www.idt.mdh.se/kurser/ct3340/ht09/ADMI
NISTRATION/IRCSE09_submissions/ircse09_su
bmission_16.pdf

44. Mitchell, S. (1997), “Inside the Windows 95 File
System”, O'Reilly. ISBN 156592200X.

45. Tanenbaum, A.S., Woodhull, A.S., (2006). “File
Systems”, Operating Systems: Design and
Implementation (3rd edition.). Prentice Hall.
ISBN 0131429388.

46. Pate, S.D. (2003). “UNIX Filesystems:
Evolution, Design, and Implementation”, Wiley.
ISBN 0471164836.

47. Leffler, S.J. and McKusick, M.K., “The design
and implementation of the 4.3BSD UNIX
operating System Answer Book”, Addison-
Wesley, ISBN 0201546299

48. Bar, M., “Linux File Systems”, McGraw-Hill,
ISBN 0072129557

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

16

Oriental Journal of Computer Science &
Technology, Volume 3, No 1.

©2011 Global Journals Inc. (US)

49. Bovet, D.P. and Cesati, M. (2005),
“Understanding the Linux Kernel”,O´Reilly
Media, 3rd edition, 2005. ISBN 0596005652.

 Silberschatz, A., Galvin, P.B. and Gagne, G.,
(2004), “Storage Management”, Operating
System Concepts , 7th Edition, Wiley. ISBN
0471694665.

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

17

50.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
I
V
er
si
on

 I

A
pr

il
20

11

18

A Quick Review of On-Disk Layout of Some Popular Disk File Systems

This page is intentionally left blank

©2011 Global Journals Inc. (US)

	A Quick Review of On-Disk Layout of Some Popular Disk File
Systems
	Authors
	I. INTRODUCTION
	II. FAT File Systems
	a) BOOT Sector
	b) File Allocation Table (FAT)
	c)

Directory Structure

	III.

NT

File

System
	a) $BOOT
	b) $MFT
	c) $LogFile
	d) $Volume
	e) $AttrDef
	f) $Bitmap
	g) $BadClus
	h) $Secure
	i) $UpCase
	j) $Extend

	IV. Extended File Systems
	a)

Data Blocks
	b) I-node Lis
	c)

Boot Block & Super Block
	d) Super Block

	e) Block Group Descriptor

	f) Block & I-node Bitmaps
	g) I-node Table

	V. Hierarchical File Systems
	a)

Allocation File
	b) Catalog File
	c)

Extent Overflow File
	d) Bad Block File
	e)

Attributes File
	
f) Startup File

	VI.

Discussion And

Conclusion
	References Références Referencias

