
Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e | 9

A Dynamic Terrain-Spaced Maze Generation
Algorithm

Metin Turan1, Kenan Aydın2

Abstract-Maze algorithms are generally developed to create
mazes in a game board, which consist of single cell of
passages and nearly all cells are accessible. However, it would
be useful if some group of cells randomly separated for
terrain design and some passages was randomly irregular in
width or contains rooms for arrangement of game objects.In
this study a randomly irregular and terrain-spaced maze
generation algorithm has been developed. The randomly
produced rooms within the generated passages can be used for
planning game strategy. On the other hand the cells which
are not used for passages may be used for terrain design.
This algorithm only needs boundary check to prevent getting
out of the game board. Moreover maze complexity can be
identified by a ratio which is defined as the ratio of
passage cells number over total number of cells on the game
board.

I. INTRODUCTION

here are various kinds of maze algorithms in the
literature; most of them use tree structure to generate a

maze and others use sets to generate mazes. Maze
generation algorithms generally focus on generating perfect
mazes. A maze is perfect if every cell in the maze is
accessible and there is exactly one path to another cell.
Well known perfect algorithms using tree structure is Prim
algorithm [1] where using sets is Kruksal algorithm [2].
Both use same approach to create a random maze which
constructs cell walls using a random chosen side of the cell
to create a wall.Maze algorithms (perfect, braid, unicursal,
sparse, partial braid) [3,4,5,6,7] generate passages in a
given two or n- dimensional game board which is
composed of a number of cells. Passage width is
generally regular for all passages through the entire
game board. These algorithms aim is only to create a
solvable maze. They haven‟t got ability to generate rooms
within the passages. On the other hand, sparse algorithms
[8] create passages where some cells are left uncreated,
resulting in an irregular maze with wide passages and
rooms. However the maze shapes not eligible to design
rooms for game characters and to produce amusing maze
games. Moreover it is still impossible saving empty spaces
out of passages which would be used for designing
terrains.However, it should be noted that although there are
lots of tools available to make mazes more challenging
when generating them on a computer, often the most
interesting mazes are those designed and created by hand –
“it is hard to have a random algorithm which will also
generate a psychologically interesting maze”[9]. In other

About1 - Kültür University, Istanbul, Turkey m.turan@iku.edu.tr
About2- Kültür University, Istanbul, Turkey heret1que@hotmail.com

words, the passages of lots of two dimensional popular
games (maze, labyrinth and racing game categories) have
been designed statically. However, the proposed algorithm
generates dynamic (random) passages for each new play
which is more interesting for players.The proposed
algorithm assumes game board is a wall initially. The aim is
to construct randomly passages through the wall. This is a
reverse approach if it is compared with wall adding
techniques used in maze algorithms. The complexity of
maze can be controlled by a parameter (filled ratio) given to
proposed algorithm. It also creates loops and dead-ends in
the maze. Loops are connected to at least one passage. On
the other hand limited dead-ends help to create traps in
the artificial games.Proposed algorithm starts with a random
point on the board. Then it finds a random direction and a
random passage length (number of cells) to construct
passages in the maze. This step is repeated recursively until
it reaches the given maze complexity target which is
defined as the ratio of passage cells number over total
number of cells on the game board.Unlike other known
algorithms, proposed algorithm does not require extreme
memory except an n-dimensional matrix to simulate
the game board. A pixel or a predetermined
area size (e.g. 20x20 pixels) could be represented with a cell
in the matrix of size maxCOLUMN x maxROW, where for
two dimensional matrix n shows x coordinate and m shows
the y coordinate.The rest of the article is designed so to
describe the work in Section II, statistical findings in
Section III, algorithm analysis in section IV, game
example(using proposed algorithm) in Section V,
conclusion in Section VI and further works in section VII.

II. WORK
The proposed algorithm (generateMaze()) depends on
random values as the previous algorithms did. Due to the
randomization generates same values over and over again a
special randomize function is needed to construct
reliable mazes. This general randomize function is
constructed by adding CPU time on the current time which
gives highly better results.First of all, generateMaze()

finds a random starting point at one side of the board. It
may be on horizontal (x is between 1 and maxCOLUMN)
or vertical(y is 1 between maxROW) boundary which is
determined by a parameter(boardside).Then
generateMaze() creates the passages. Before a new
passage is created, it checks if the maze complexity target is
obtained. The maze complexity is provided by a parameter
(complexity). New passage direction is produced by general
randomize function. The board is divided into three regions

T

GJCST Classification
 I.2.1, I.2.2

P a g e |10 Vol.10 Issue 15 (Ver.1.0) December 2010 Global Journal of Computer Science and Technology

where each cell has different possible directions to route.
First region is the corner cells, where routing is lowest and
there are two possible directions to move since they are on
the corners of the game board. Second region is the side
cells excluding the corner cells, where routing has three
possible directions. Third region is the inner section of the
board, where routing has four directions. This is outlined at
Picture I.

Picture I: The regions of a game board

By the time the direction is selected, generateMaze() uses
a random length (number of cells) to go forward in the
selected direction. It checks the case of exceeding
boundaries. A generation method which doesn‟t use a
random length after direction decider will not produce a
complex maze. However it will generate different type of
terrain as in Picture II.

Picture II: A maze generated by proposed algorithm without
“how many cells it will go” function.

generateMaze() called recursively until it reaches maze
complexity.
Checking the complexity procedure calculates the ratio of
passage cells number over total number of cells on the game
board
Unlike other known maze-generation algorithms, the
generateMaze() doesn‟t create passages cell by cell, instead
use number of cells. This speeds up the construction time of

maze in the case of big boards. The generateMaze()

pseudo-code is given below.
void generateMaze(boardside, complexity)
{
col,row=call startPoint(boardside);
call generatePassage(col,row,complexity);
}
col,row startPoint(boardside)
{
return random row and column value using boardside;
/* on the vertical or on the horizontal side of the board /*
}
void generatePassage(currentRow,currentColumn,
complexity)
{
direction=decideDirection(randomize());

passageLength=randomize()
if (checkBoundary())
currentRow,currentColumn=createPassage(passageLength);
else
currentRow,currentColumn=createPassage(Length to the
boundary);
if (checkComplexity(complexity))
generatePassage(currentRow,currentColumn,complexity);
}
Example outputs of Kruskal, Prim and generateMaze() is given on
Picture III, Picture IV and Picture V respectively.

Picture III: A maze generated by Kruskal Algorithm

Picture IV: A maze generated by Prim Algorithm

Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e | 11

Picture V: A maze generated by Proposed Algorithm

Locating and storing the coordinates of the dead ends is also
possible by findDeadEnds() algorithm.
After the generation of the maze is completed,
findDeadEnds() will be called and simply looking for the
cells which only have one neighbor cell to access these cells.
void findDeadEnds()
{
for each counting numbers between 0 and maxROW , called
ROW
for each counting numbers between 0 and maxCOLUMN ,
called COL
If(NeighborCellsCount(ROW,COL)= =1)
DeadEnds[ROW][COL]=true;
}

Picture VI: A Maze generated by Proposed Algorithm by
using 30% Filled Ratio

Picture VII: A Maze generated by Proposed Algorithm by
using 45% Filled Ratio

Picture VIII: A Maze generated by Proposed
Algorithm by using 60% Filled Ratio

Picture IX: A Maze generated by Proposed
Algorithm by using75% Filled Ratio

Table I
Visual information of simulated mazes.

Above example maze outputs is given in pictures
Picture VI, Picture VII, Picture VIII and Picture IV per
different filled ratio values (0.3, 0.45, 0.6, 0.75). The
meaning of the colors in the mazes is given in Table I.

P a g e |12 Vol.10 Issue 15 (Ver.1.0) December 2010 Global Journal of Computer Science and Technology

III. STATISTICAL FINDINGS
Statistical work has been done for step, dead end, turn and
collision properties of generateMaze() algorithm by

running four different filled ratio values, each time it has
been executed 200 times (Table II).

Table II

Average values of Steps, Dead Ends, Turns and Collisions per filled ratio

Filled Ratio Step Dead Ends Turn Collision

30% 1420 24 469 2546

45% 2851 23 935 6520

60% 5876 20 1914 16661

75% 16784 16 5474 57130

Step means that the number of passage construction
movement (for each movement a number of cells are
processed- reverse movement on the existing passages is
also considered) produced by generateMaze().

 Dead ends are the cells which only have one
neighbor cell to access these cells.

 Turn is defined as changing previous direction.
 Filled ratio is the ratio of passage cells number

over total number of cells on the game board.
 Collision is the number of how many times

passages re-filled by reversing or overlapping.

In Figure I, it can be viewed that the average step values
gets higher as the filled ratio gets higher. As a result
average turn values gets higher. Nearly in every 3 steps
generateMaze() makes a turn.

Figure I: Average Step and Turn Values per Filled Ratio

In Figure II, it can be seen that the dead ends are gets lower
as the filled ratio gets higher. This means that there is a
negative correlation between these two properties. It is an

expected result of the generateMaze(). It makes various
kinds of turns which eliminate existing dead ends by
connecting them with other new passages that has been
intersected by the existing dead ends, since a dead end
occurs at cells which connected with only one neighbor cell.

Figure II: Number of Dead Ends versus Filled Ratio

Table III
Correlation values between Turn – Collision and Dead End

Correlation Values 30% 45% 60% 75%
Turn – Collision ~1 ~1 ~1 ~1
Dead End – Turn ~0 ~0 ~0 ~0
Dead End - Collision ~0 ~0 ~0 ~0

On the other hand, there is a positive correlation between
turn and collision. This is an expected result due to the
generateMaze() runs to create passages to reach to the filled
ratio(when steps increases, turns increases also Figure I),
while makes a lot of turns in random directions which
causes more collisions. However, Dead End is independent
property from turn and collision. It can be concluded from
Table III.

Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e | 13

IV. ALGORITHM ANALYSIS
Both Prim and Kruksal algorithm create vertices and edges
to construct their mazes. Their time complexity nearly same
and can be defined as O(E log V), where E and V implies
edges and vertices respectively[10]. However,
generateMaze() doesn‟t create edges or vertices. It randomly
produces passages. Passages are constructed on a board
which is represented by a matrix (maxCOLUMN is x,
maxROW is y). Moreover the filled ratio

(sparse area percentage) and random length (number of cells
to fill for each step) are also determines the time
complexity. Using these parameters we calculate the
following game board construction complexities for both
the worst and the best conditions under assumption of no
collision [11].For the worst condition, the random length
is 1. This time generatePassage() is called x*y times.
filled ratio* (max(x,y)²)*(4+length) where 4 shows the
number of steps executed in auxiliary functions and
inside the generatePassage(). If the matrix NxN size then
the worst game board cons t ruc t ion complexity is;
O(5*filled ratio*N²) For the best condition, the random
length is max(x,y). This time generatePassage() is called
only min(x,y) times. filled ratio* (min(x,y)*(4+max(x,y)))
And if the matrix NxN size then the shortest game board
construction complexity is; O (filled ratio*(N²+4N)) This
complexity values are acceptable and applicable if they
compared with the Kruskal‟s (O(E log V)) and Prim‟s (O(E +
V log V)) algorithms, where E and V shows edges and
vertices respectively.

V. AN EXAMPLE GAME
A simple 2-Dimensional Windows based game
developed by using the generateMaze() (Picture X)[12].
The goal of the game is to collect all the stars and
proceed through levels (1 to 10) to complete the game.
Player has to collect more stars for each next level. By the
time, player shouldn‟t collect skulls. It decreases lives of
the player (4). If player collect first-aid bags then it
increases player lives. Player character is chased by an AI
controlled character while collecting the stars. If AI
character catches the player the live is decreased by one.
generateMaze() allows creating dead end passages which
make this game more amusing. Also an algorithm is
developed so dispersing collectable items on dead-end
passages to challenge the game.

Picture X: An example game created by proposed algorithm.

VI. CONCLUSION

The generateMaze() is a flexible(parametric) algorithm and
if it is compared with the sparse algorithms in literature, it is
truly random (not stable) as a result of the used technique.
By the way, statistics from the hundreds of experiments
have shown that created mazes are not related to each other
and well-shaped. Moreover, computational complexity is
less than any sparse algorithm. The worst case is to check
only next matrix location O(1). On the other hand, memory
requirements depends on the game board matrix sized N
column and M rows. The worst case is not more than O(M x
N). It decreases by the dimension of the passage width.The
only problem using generateMaze() is the stack overflow
error above the 0.75 filled ratio. When the filled ratio gets
higher, collision increases and recursive call of
generatePassage() reaches a value which causes stack
overflow error. When filled ratio is greater than the 0.75
then generated maze is not well (Picture IX). So this is not a
big problem for algorithm acceptance.

VII. FURTHER WORKS
Algorithm optimization is needed to control dead end
generation and reduce the collision values which will speed
up the process of maze generation.This algorithm may also
be generalized to use in 3D terrain-spaced maze generation
easily.

VIII. REFERENCES
1) [R. C. Prim: Shortest connection networks and

some generalizations. In: Bell System Technical
Journal, 36 (1957), pp. 1389–1401

2) Joseph. B. Kruskal, “On the Shortest Spanning
Subtree of a Graph and the Traveling Salesman
Problem”, Proceedings of the American
Mathematical Society, vol. 7, no. 1 (Feb, 1956), pp.
48–50

3) Fisher A., “The Amazing Book of Mazes”, Harry
R. Abrams Inc.,2006

P a g e |14 Vol.10 Issue 15 (Ver.1.0) December 2010 Global Journal of Computer Science and Technology

4) http://www.conceptispuzzles.com
5) Kern H., “Through the Labyrinth: designs and

meanings over 5000 years”, Prestel , 2000
6) http://www.astrolog.org/labyrnth
7) T.H. Cormen, C. E. Leiserson, R.L. Rivest, and C.

Stein, “Introduction to Algorithms, MIT Press and
McGraw-Hill, 2001

8) Hans Pedersen and Karan Singh, “Organic
labyrinths and mazes”, Proceedings of the 4th
international symposium on non-photorealistic
animation and rendering NPAR ‟06, ACM Press,
June 2006

9) Danny Kodicek, “ Mathematics and Physics for
Programmers”, Charles River Media , 2005

10) Anany Levitin, “Introduction to The Design &
Analysis of Algorithms”, Addison Wesley,
International Edition, 2003.

11) Oliver Kullman, CS-232 algorithms and
complexity notes, October 2005.

12) K. Aydın, M. Turan, “A Simple Windows Based
Game”, Student Final Project, İstanbul Kültür
University, Dept. Of Comp. Science, January
2010.

	A Dynamic Terrain-Spaced Maze GenerationAlgorithm
	Authors
	Abstract
	I. INTRODUCTION
	II. WORK
	III. STATISTICAL FINDINGS
	IV. ALGORITHM ANALYSIS
	V. AN EXAMPLE GAME
	VI. CONCLUSION
	VII. FURTHER WORKS
	VIII. REFERENCES

