
P a g e |46 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

GJCST Classification (FOR)
H.2.1, H.3.5

Three Dimensional Database: Creating Dynamic
Web Controls Using XML and XSLT

R. Vadivel1,Dr. K. Baskaran2

Abstract-a dynamic web application is vital for online business.
It has increased the on-demand needs of client requirements.
When creating a data-driven Web site, one of the most
common tasks Web developers are faced with is creating data
entry forms. Data entry forms are Web pages that provide the
system's users with a means to input data. The task of creating
a particular data entry form typically starts with hammering
out the requirements that spell out specifically what
information needs to be collected from the user. With the
requirements defined, the next stage is designing the data entry
Web Form, which involves creating the graphical user
interface, as well as writing the code that updates the database
with the user's inputs. The main objective of this paper is to
construct controls dynamically, that is creating web controls in
run time and not in design-time. We can create large amount of
dynamic fields with dynamic validations with the help of XML,
XSL & Java script. A database plays a major role to
accomplish this functionality. We can use 3D (static, dynamic
and Meta) database structures. One of the advantages of the
XML/XSLT combination is the ability to separate content from
presentation. A data source can return an XML document,
then by using an XSLT, the data can be transformed into
whatever HTML is needed, based on the data in the XML
document. The flexibility of XML/XLST can be combined with
the power of ASP.NET server/client controls by using an XSLT
to generate the server/client controls dynamically, thus
leveraging the best of both worlds. This synergy is
demonstrated by creating a publication domain application.
Keywords- three dimensional database, extensible Mark-up
Language, web application, dynamic controls, extensible
stylesheet language

I. INTRODUCTION

hen creating a data-driven Web site, one of the most
common tasks Web developers are faced with is

creating data entry forms. Data entry forms are Web pages
that provide the system's users with a means to input data.
The task of creating a particular data entry form typically
starts with hammering out the requirements that spell out
specifically what information needs to be collected from the
user. With the requirements defined, the next stage is
designing the data entry Web Form, which involves creating
the graphical user interface, as well as writing the code that
updates the database with the user's inputs.When the data
entry forms requirements are well-known in advance, and
when such data entry forms are identical across all users for
the system, creating such entry forms is hardly challenging.

About1-Computer Science, Karpagam University Pollachi Road,
Eachanari, Coimbatore, Tamilnadu India 641
024vadivel.rangasamy@gmail.com
About2-Computer Science, Karpagam UniversityPollach Road, Eachanari,
Coimbatore, Tamilnadu India 641 024vadivel.rangasamy@gmail.com

The task becomes more arduous, however, if the data
entryforms need to be dynamic. For example, consider a
company's Internet Web application whose purpose is
tocollect information about the product purchased by a
customer; a sort of online product registration system. With
such an application, the questions the user is presented with
might differ based on what product they purchased, or if
they purchased the product from a store or from the
company's Web site.When faced with needing to provide
dynamic data entry user interfaces, as in the example
mentioned above, one option might be to "brute force" a
solution. You could create a separate Web page for each
product your company sells, with each page having the
specific data entry elements needed. The problem with this
naive approach is that it requires adding new pages when
new products are released. While creating these new pages
might not be terribly difficult, it is time consuming and
prone to errors without sufficient debugging and testing
time.Ideally, when new products are released, a non-
technical co-worker could specify what questions are
required through an easy-to-use Web-based interface. Such
a system is quite possible with ASP.NET thanks to the
ability to dynamically load controls on an ASP.NET Web
page at runtime. With just a bit of an initial investment in
development and testing time, you can create a reusable,
dynamic data entry user interface engine. One that allows
even the least computer savvy users the ability to easily
create customized data entry forms. In this article, we will
look at the fundamentals of working with dynamic controls
in ASP.NET, and then I will present a complete, working
dynamic data entry system that can be easily customized and
extended.

II. EXISTING SYSTEM

In existing database structure is flat or two dimensional
definitions is simple database design consisting of one large
table instead of several interconnected tables of a relational
database. Called 'flat' because of its only two dimensional
(data fields and records) structure, these databases cannot
represent complex data relationships. Also called flat file
database or flatform database.
Having a flat table to store all the data poses the following
issues:

table grows very large
indexing the table is problematic
not optimized for either update or read
no stringent type checking as everything is stored in
the database as a string (varchar/nvarchar)
catering for text and number is problematic

W

mailto:024vadivel.rangasamy@gmail.com

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 47

 downloading the data requires several joins to group

and instance tables which has an impact on
performance and adds complexity to the query

A static field structure is a created for an input data set
which is not supposed to change within the scope of the
problem. When a single field is to be added or deleted, the
update of a static field structure incurs significant costs,
often comparable with the construction of the field structure
from scratch. Create a static field it should know the all
required fields and also to take much development time and
need to given static names for those fields on design time
and also there is no possible to apply unique style. A main
disadvantage of static field is not specifying the data types
(such as integer, string and etc.,) on run time and flat
database structures are used. ―N‖ number of lines to taken
creating static fields and occupy the memory on design time
and it may be possible to leakage of memory. In hacker can
be easily hack those fields on run time and they can create
the pseudo code to collapse those fields. Testing results for
web controls on one web page, size of web page is 6.0 KB,
available static fields is 7 and apply for 5 iterations so that
get 35 fields and given below controls loading time for each
iterations,

Iterations Page size

(Run Time)
Loading Time

1. 150.2K 2.262s
2. 150.2K 1.258s
3. 150.2K 1.766s
4. 150.2K 1.794s
5. 150.2K 1.484s
Total 751 K 8.564s

III. RELATED WORKS

The three dimensional database has been played major rule
on the creation dynamic fields. Database architecture for
creating dynamic web controls is a three dimensional
structure, where we use three terms static, meta and
dynamic. Here Static data is generally creating the tables
and fields to the database. Meta data is a bridge between
static and dynamic data. Dynamic data is the dynamic
resultant tables or views that the user needs. An output of
database is XML format and it contains data definition and
data values. XSL is a presentation part which transforms
XML data to output HTML.In three dimensional databases
has used two types of SQL statements Static and Dynamic.
Static SQL is SQL statements in an application that do not
change at runtime and, therefore, can be hard-coded into the
application. Dynamic SQL is SQL statements that are
constructed at runtime; for example, the application may
allow users to enter their own queries. Thus, the SQL
statements cannot be hard-coded into the application.XSLT
is designed for use as part of XSL, which is a style sheet
language for XML. In addition to XSLT, XSL includes an
XML vocabulary for specifying formatting. XSL specifies
the styling of an XML document by using XSLT to describe
how the document is transformed into another XML
document that uses the formatting vocabulary.XSLT is also

designed to be used independently of XSL. However, XSLT
is not intended as a completely general-purpose XML
transformation language. Rather it is designed primarily for
the kinds of transformations that are needed when XSLT is
used as part of XSL.

1) Data Model

The data model used by XSLT is the same as that used by
XPath with the additions described in this section. XSLT
operates on source, result and stylesheet documents using
the same data model. Any two XML documents that have
the same tree will be treated the same by XSLT. Processing
instructions and comments in the stylesheet are ignored: the
stylesheet is treated as if neither processing instruction
nodes nor comment nodes were included in the tree that
represents the stylesheet.

2) Root Node Children

The normal restrictions on the children of the root node are
relaxed for the result tree. The result tree may have any
sequence of nodes as children that would be possible for an
element node. In particular, it may have text node children,
and any number of element node children. When written out
using the XML output method (see [16 Output]), it is
possible that a result tree will not be a well-formed XML
document; however, it will always be a well-formed external
general parsed entity.When the source tree is created by
parsing a well-formed XML document, the root node of the
source tree will automatically satisfy the normal restrictions
of having no text node children and exactly one element
child. When the source tree is created in some other way, for
example by using the DOM, the usual restrictions are
relaxed for the source tree as for the result tree.

3) Base URI

Every node also has an associated URI called its base URI,
which is used for resolving attribute values that represent
relative URIs into absolute URIs. If an element or
processing instruction occurs in an external entity, the base
URI of that element or processing instruction is the URI of
the external entity; otherwise, the base URI is the base URI
of the document. The base URI of the document node is the
URI of the document entity. The base URI for a text node, a
comment node, an attribute node or a namespace node is the
base URI of the parent of the node.

IV. EXPERIMENTAL RESULTS

Solis architecture provides three main areas of functionality
self-updating interface on the web, robust database
administration, searchable front-end for end users. That
system is designed so that dynamic data at the core of the
integrated system is available in any output or view. The
data administrator has control over the data content, various
templates and user permissions, thereby giving an unrivalled
level of flexibility and control in content collection,
management and presentation.

http://www.w3.org/TR/xpath#data-model
http://www.w3.org/TR/xslt#output

P a g e |48 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

1) Data Administration

Acomplete database administration application that provides
the full range of control and flexibility needed for complete
editorial control over any type of database. Features of the
Data Administration component include:

 User permission management
 Saved-search templates to speed data interrogation
 Management control over:
 field types and structure
 data groups
 data viewing tabs
 data record structure
 taxonomy and categorization
 flat downloads
 online subscribers
 Output listing levels.
 Approvals system for self-updated submissions
 Sub-group counting by specification
 Data entity linking
2) Self-Updating

This component is an advanced user permission/restriction
that enables the data administrator to give access per data
record to both editors and directly to users. The access is via
an editorial interface that enables the user to access and
update information pertaining to a specific data record.
Changes and information are submitted into the Approvals
are of the Data Administration.

 Fully customizable
 E-commerce capability
 Dynamic paths
 Graphics and rich media upload
 Data record linking (single owner, multiple records)

3) Customer-Facing Front-end

This component enables the system owner to create custom
print or online views of the database that can be integrated
into existing websites.

 Web search versions (using template results sets)
 E-commerce control
 Search reconfiguration
 Advertising support
 Permission-based data download
 Automate data output to print (using Adobe InDesign

and/or Quark)

4) Methodology

Database: The proposed database architecture for creating
dynamic web controls is a three dimensional structure,
where we use three terms static, meta and dynamic. Here
Static data is generally creating the tables and fields to the
database. Meta data is a bridge between static and dynamic
data. Dynamic data is the dynamic resultant tables or views
that the user needs.XML / XSL: The proposed XML
comprises the data definition and data values. Data
definition contains a label names and data values contains
label values. XSL is a presentation part which transforms

XML data to output HTML. Here the screen have show the
output of the XML format

Fig – 1 XML format for data definition

Fig – 2 XML format for data value

<Ddid="100"name="Kirschner200708"dt="0">

<Ggid="501"name="Adjusters Basic
Information"desc="Adjuster Listing
Information"n="1"s="1"vfp="1"vm="1"vd="1"gt="3"o="2
"tf="0"dt="This information is published online and in
CD version of the directory.">

<Ffid="5039"name="UpdatedDate"l="Updated
Date"ft="2"o="0"vtl="0" />

<Ffid="5040"name="Adv"l="Advertiser in
Print?"ft="3"o="1"vtl="0" />

<Ffid="5041"name="Name1"l="First Name of
Company"ft="2"o="2"vtl="0" />

<Ffid="5042"name="Name2"l="Last Name of
Company"ft="2"o="3"vtl="0" />

<Ffid="5043"name="COMPANY"l="Company
Name"ft="2"o="4"vtl="1" />

<Ffid="5044"name="Addr_P"l="PO Box"ft="2"o="5"vtl="1" />

<Ffid="5045"name="City_P"l="PO Box City"ft="2"o="6"vtl="1"
/>

</G>

<Ggid="508"name="Service Coverage
States"desc="Service Coverage
States"n="1"s="1"vfp="1"vm="1"vd="1"gt="3"o="9"tf="
0"dt="">

<Ffid="5316"name="TX"l="Texas"ft="3"o="45"vtl="1" />

</G>

</D>

<Uuid="2944"MKT-ID="1000"ACC-NO="adj3559"DIR-
ID="100">

<Guid="2944"gid="501"pid="6033"del="0">

<Ffid="5039"approval="0"data="2000/06/01" />

<Ffid="5041"approval="0"data="" />

<Ffid="5042"approval="0"data="Fleetwood Claim Serv" />

<Ffid="5043"approval="0"data="Fleetwood Claim Serv" />

<Ffid="5044"approval="0"data="2855 Mangum Rd" />

<Ffid="5045"approval="0"data="Houston" />

</G>

<Guid="2944"gid="508"pid="663278"del="0">

<Ffid="5316"approval="0"data="true" />

</G>

……………………

……………………

……………………

</U>

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 49

Building blocks of XML documents are nested, tagged
elements. Each tagged element has zero or more sub
elements; zero or more attribute, and may contain textual
information (data content). Elements can be nested at any
depth in the document structure. Attributes can be of
different types, allowing one to specify element identifiers
(attributes of type ID), additional information about the
element (e.g., attribute of type CDATA containing textual
information), or link to other elements of the document
(attributes of type IDREF(s)). An example of XML
document is presented in Figure 1 and 2. The document
represents the data definition and data values of the
publication fields. The XML document contains also all
information on the custom fields.To develop on a formal
basis our approach for secure publishing of XML documents
we introduce a formal model of XML documents that we
use throughout the paper. In the following, we denote with
Label be a set of element tags and attribute names, and
Value a set of attribute/element values. An XML document
can be formally defined as follows.

Fig – 3 XSLT for display the XML files into web

Fig – 4 Display custom data types

Fig – 5 Field creations

<xsl:templatename="DisplayFieldValue">

<xsl:paramname="GroupID" />

<xsl:paramname="InstanceID" />

<xsl:paramname="FieldID" />

<xsl:paramname="FieldType" />

<xsl:paramname="FieldXInfo" />

<xsl:paramname="IsTable" />

<xsl:paramname="ExternalValues" />

<xsl:variablename="dataValue">

<xsl:choose>

<xsl:whentest="/ROOT/U/G[@gid=$GroupID and
@pid=$InstanceID]/F[@fid=$FieldID and @approval !=
'0']">

<xsl:value-ofselect="/ROOT/U/G[@gid=$GroupID and
@pid=$InstanceID]/F[@fid=$FieldID and @approval !=
'0']/@data" />

</xsl:when>

<xsl:otherwise>

<xsl:value-ofselect="/ROOT/U/G[@gid=$GroupID and
@pid=$InstanceID]/F[@fid=$FieldID and @approval =
'0']/@data" />

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:choose>

<xsl:whentest="$FieldType='3'">

<xsl:choose>

P a g e |50 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

Fig – 6 Display field with values

5) Outputs

Fig 1 – is a Data Definition XML and herewith details about

tags ―D‖ is data, ―G‖ is group, ―gid‖ is a group id, ―F‖ is

field, ―fid‖ is field id, ―name‖ is name for the field, ―l‖ is

label, ―ft‖ is field data type and ―o‖ is display order.

Fig 2 – is a Data Value XML and herewith details about

tags, ―U‖ is a Definition about the data, ―G‖ is group, ―gid‖

is a group id, ―F‖ is field, ―fid‖ is field id, ―approval‖ is a

status of the data. There is three types of status that is ―0‖

approved data, ―1‖ data has been newly added or edited

existing but waiting for approval and ―2‖ data has been

deleted but waiting for approval and ―data‖ is holding on

current data.

Fig 3 – Display those XML’s to web pages using XSL

syntax

Fig 4 – Displaying custom data types which implemented in

web application

Fig 5 – Creating field with them data types and custom label

for display the user editable field.

Fig 6 – Display the custom fields with values. Here textbox

displays when data type is string, dropdown displays when

data type is external list and checkbox displays when data

type is yes/no.

V. CONCLUSION

In this article, produced core of the three dimensional

database structure and it have five key terms that directory,

entities, groups, fields and field values and rationalization of

those key terms is directory has many entities. Each entity

has many groups but entity must have one primary group

and implemented successfully on publication domain.

Implemented three dimensional databases to product based

projects.Web pages consist of a control hierarchy, which is

usually composed strictly of statically-defined controls.

However, at runtime we can manipulate this control

hierarchy by adding dynamic controls to the Controls

collection of existing controls in the hierarchy. We also

looked at techniques for accessing dynamically-added

controls and common patterns for adding and interacting

with these controls.Herewith showed statical information

about implemented three dimensional database and testing

results for dynamic web controls on one web page, size of

web page is 10.2 KB, available dynamic fields is more than

10 and apply for 5 iterations so that get more than 50 fields

and given below controls loading time for each iterations,

Iterations Page size

(Run Time)

Loading Time

1. 203.7K 1.602s

2. 203.7K 1.486s

3. 203.7K 1.430s

4. 203.7K 1.540s

5. 203.7K 1.270s
Total 1018.5K 7.328s

Being able to manipulate a web page's control hierarchy at

runtime is a powerful and useful tool that has applications in

many common scenarios. Armed with this article, you

should be able to confidently work with dynamic controls in

your web pages.

VI. REFERENCE

1) Ke Yi , Feifei Li , Graham Cormode , Marios

Hadjieleftheriou , George Kollios , Divesh Srivastava,

Small synopses for group-by query verification on

outsourced data streams, ACM Transactions on

Database Systems (TODS), v.34 n.3, p.1-42, August

2009

2) HweeHwa Pang , Jilian Zhang , Kyriakos Mouratidis,

Scalable verification for outsourced dynamic

databases, Proceedings of the VLDB Endowment, v.2

n.1, August 2009

3) Alberto Trombetta, Danilo Montesi, "Equivalences and

Optimizations in an Expressive XSLT Fragment" IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 20, NO. 11, JULY 2009

4) Kyriakos Mouratidis , Dimitris Sacharidis , Hweehwa

Pang, Partially materialized digest scheme: an efficient

verification method for outsourced databases, The

VLDB Journal — The International Journal on Very

Large Data Bases, v.18 n.1, p.363-381, January 2009

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 51

5) HweeHwa Pang , Kyriakos Mouratidis, Authenticating

the query results of text search engines, Proceedings of
the VLDB Endowment, v.1 n.1, August 2008

6) http://www.dnzone.com/go?151&LinkFile=page1.htm
7) http://msdn.microsoft.com/en-

us/library/aa479330.aspx

	8. Three Dimensional Database: Creating Dynamic Web Controls Using XML and XSLT
	Authors
	Abstract
	Keywords
	I. INTRODUCTION
	II. EXISTING SYSTEM
	III. RELATED WORKS
	1) Data Model
	2) Root Node Children
	3) Base URI

	IV. EXPERIMENTAL RESULTS
	1) Data Administration
	2) Self-Updating
	3) Customer-Facing Front-end
	4) Methodology
	5) Outputs

	V. CONCLUSION
	VI. REFERENCE

