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Abstract-Shortest path algorithms have large number 
ofpractical applications in computer networks to flow the 
information from one computer to the another computer 
system in the minimum possible time. Researchers are 
continuously designing new algorithms to solve the shortest 
path problems which have less time complexity as well as less 
space complexity as compared to the existing algorithms. In 
this paper, analysis of shortest path algorithm is being done 
and it has been concluded that researchers have got 
remarkable success in designing better algorithms in the terms 
of space & time complexity to solve shortest path algorithms. 
General TermsAlgorithms, Theory. 
Keywords-Shortest path algorithms. 

I. INTRODUCTION 

n algorithm is defined as computational procedure 
which takes a particular input and produces aparticular 

output. Algorithms are used to solve widerange of problems. 
If G(V,E) is directed weightedgraph, where V represents the 
set of vertices ofgraph & E represents the set of edges f 
graph. |V|represents the total number of vertices in graph & 
|E|represents the total number of edges in the graph. I 
nshortest path problems, a directed weighted graph isgiven 
& the goal is to determine the shortest pathamong vertices. 
There are many variants of shortestpath problems which are 
given below. In Singlesource shortest path problems, a 
graph G(V,E) isbeing given & the goal is to find a shortest 
pathfrom a given vertex to the remaining vertices of 
thegraph. In Single destination Shortest path problem,the 
goal is to determine the shortest path from eachvertex of a 
graph to a particular destination vertex.In Single pair 
shortest path problem, a pair ofvertices (u,v) is being given 
and the goal is to findthe shortest path from vertex u to the 
vertex v. In allpair shortest path problems, the goal is to 
determineM a shortest path from u to v for every pair of 
verticesu & v in the graph G(V,E). 

II. COMPARISONS OF ALGORITHMS FOR SHORTEST PATH 
PROBLEMS 

Bellman ford algorithm can be used to solve the single 
source shortest path problems in which edge weight may be 
negative. This algorithm returns a Boolean value which  
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indicates whether there is negative weight cycle or not in a 
particular graph. If there is a negative weight cycle which is 
reachable from the source vertex, then Bellman Ford 
algorithm indicates that there is no any solution but if there 
is negative cycle then the algorithm produces the shortest 
path from the single source vertex to the remaining vertices. 
If G(V,E) be the graph, Where V represents the set of 
vertices & E represents the set of edges, then the 
timecomplexity for Bellman Ford algorithm is O(|V||E|). 
Dijikstra algorithm can also be used to solve the single 
source shortest path problems on a given weighted, directed 
graph G(V,E) if andonly if all the weights of edges are 
positive The time complexity of Dijikstra algorithm depends 
upon the implementation of min priority queue. If the 
minpriority queue is being implemented by using binary 
heap, then the time complexity of Dijikstra algorithm is 
O((V+E)lgv). But if the minpriority queue is being 
implemented by using Fibonacci Heap, then the time 
complexity for Dijikstra algorithm is O(VlgV+E). All pair 
shortest path problems can be solved by Floyd Warshall 
algorithm within the time complexity of O(V3). But the 
constraint is that there is no any negative weight cycle in the 
given graph but the edge may be of negative weight. 
Johnson‘s algorithm can be used to solve all pair shortest 
path problems within the time complexity of O(V2lgV+VE) 
time. If the graph contain negative cycle then Johnson‘s 
algorithm reports that the graphcontains negative cycle. If 
the graph does not contain negative cycle then Johnson‘s 
algorithm returns a particular matrix which shows the 
shortest distance among vertices. If the lengths of edges of a 
graph are integers, whose absolute value are bounded by N, 
then the time complexity of the algorithm which is used to 
calculate the shortest path from a given source node s to the 
remaining vertices is O(n05mlg(N)). Researchers are 
continuously applying their best efforts to design the new 
algorithms for shortest path problems which have less time 
complexity as well as less space complexity as compared to 
the existing algorithms. The time complexity for the shortest 
path algorithm which is given by Upton et al. [1979] is 
O(n1.5). Henzinger et al.[1997] designed a new algorithm 
for single source shortest pat problem which has the time 
complexity of O(n4/3log2/3 (D)) Where D represents the 
sum of the absolute value of the length. Fakcharoenphol and 
Rao[2006] designed a new algorithm for single source 
shortest pat problem in planar graph which has the time 
complexity of O(nlog3n) & the space complexity of 
O(nlogn). Ahuja[1] designed a new algorithm for single 
source shortest path problem which has the time complexity 
of O(E+V(lgW)0.5) for graph with positive edge weights 
where w is the longest weight of any edge in the graph. 
Thorup[2009] designed a new algorithm for single source 
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shortest path problems which has the tiem complexity of 
O(ElglgV). Thorup[2] also designed a new algorithm for 
single source shortest path problem for undirected graph 
which has the time complexity of O(E +V). Researchers are 
continuously applying best efforts in designing new 
improved algorithm for computing shortest path. 
Fredman[3] proves that all pair shortest path problems can 
be solved by using O(V5/2) comparisons between the sums 
ofweights of edges and has designed a new algorithm which 
has the time complexity ofO(V3(lglgV/lgV)1/3)time, which 
is better than the running time complexity of theFloyd-
Warshall algorithm. Suppose O(nw) be the running time of 
the algorithm for multiplying n × n Matrices. As w < 2.376 . 
Galil and Margalit [4, 5] and Seidel [6] designed an 
algorithms that solve the all-pairs shortest paths problem for 
undirected graphs with the time complexity of (Vw p(V)), 
where p(V) represents a particular function which is 
polylogarithmically boundedin v. After then several 
researchers have extended these results to give algorithms to 
solve the all-pairs shortest paths problem in undirected 
graphs in which the weights of are integers in the range 
{1,2,_ _ _,W}. Shoshan and Zwick [7], designed an 
algorithm which has the time complexity of O(W Vw p(V 
W)). Karger, Koller, and Phillips[8] and independently 
McGeoch[9] have designed a new algorithm for a graph 
with nonnegative edge weights, which has the time 
complexity of O(V E*+V2 lg V) where E* represents the set 
of edges in E that participate insome shortest path. For graph 
with real edge weights, Yuster[10] designed a new 
algorithm which achieves subcubic running time with the 
constraint that the number of weight edges emanating from 
each vertex is O(n0.338). If n is the total number of vertices 
then the space complexity of this algorithm is O(n2). The 
upper bound of the space complexity matches the lower 
bound of the space complexity.N The quadratic bound for 
space complexity for all pair shortest path problems is the 
major bottleneck for many various large scale applications 
e.g. in the case of internet, the table size of the order of n*n 
for answering the given distance queries is much larger than 
the network itself. The n*n table size is too large to be 
stored in random access memory. So researchers are 
applying their best efforts to design the efficient algorithms 
for the all pair approximate shortest path problems. 
Approximate shortest  distance is different from exact 
shortest distance between two vertices. It means there is 
some error in the case of approximate shortest distance 
between two vertices. This error can be additive(surplus) or 
multiplicative(stretch). Suppose _(x,y) denotes the actual 
distance between two vertices x & y in a given graph 
G(V,E). An algorithm is said to compute all pair 
approximate (stretch) distance for any given graph G(V,E) if 
for any pair of vertices x,yEV, the distance determined by 
that algorithm isat least s(x,y) and at most t s(x,y). Similarly 
an algorithm is said to be compute distance with surplus c if 
the distance determined by the algorithm isatleast s (x,y) and 
at most c+ s(x,y). An algorithm which compute all pair t 
approximate distance wit t<2 can be easily used to calculate 
the Boolean matrix multiplication of two n*n boolean 

matrices. So computing all pair distances with stretch less 
than two is as hard as the multiplication of two Boolean 
matrices[11]. Any kind of data structure which is capable of 
answering a distance query with stretch less than three in 
constant time must occupy at least o(n2)space in the worst 
case. Zwick and Cohen[12] designed a new O(n1.5m0.5) 
algorithm to calculate all pair 2 approximate distances. They 
also designed an algorithm to compute all pair 7/3 
approximate distances which has the time complexity of 
O(n7/3) & the space complexity of _(n2)for stretch less than 
three. Zwick and Cohen[12] also designed an algorithm for 
stretch equal to three which has the 
time complexity of O(n2lg(n)) & the spacecomplexity of 
_(n2). Thorup and Zwick[13] designeda new algorithm for 
all pair approximate shortestpaths. They showed that for an 
integer c>=2, anundirected weighted graph can be 
preprocessed inthe expected tiem of O(cmn1/k) to design a 
datastructure of size O(cn1+1/c). This particular 
datastructure is being capable of answering any 
distancequery with a stretch 2c-1 within the time 
complexityof O(c). In fact this particular data structure is 
notstoring all pair approximate distances explicitly,even 
then it can give the answer of any distancequery in the 
constant time. So this particular datastructure is known as 
approximate distance oracle.Algorithm for all pair three 
stretch distances as given 
by Thorup & Zwick[13] is preferred when space has to be 
optimized as compared to the time. Algorithm for all pair 
three stretch distance as given by Cohen & Zwick[12] is 
being preferred when time has to be optimized as compared 
to the space. Aingworth et al. [14] designed a simple 
algorithm for finding all distances with an additive error of 
at most 2 in an unweighted, undirected graph which has the 
time complexity of O(n5/2). Dor et al.[11] extended the 
algorithms as given by Aingworth et al. [14] and designed a 
new algorithm to determine the distances with surplus 
2(k−1) for all pair of vertices in unweighted undirected 
graphs which has the time complexity of O(kn2-
1/km1/kpolylogn). There are also large number of algorithms 
for all pair approximate shortest paths in unweighted graphs 
which have multiplicative error as well as additive error 
simultaneously and which achieve close to quadratic 
running time. 

III. CONCLUSION 

In this paper, analysis of shortest path algorithm is being 
done and it has been concluded that researchers have got 
remarkable success in designing better algorithms in the 
terms of space & time complexity to solve shortest path 
algorithms. 
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