
P a g e | 66 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

GJCST Computing Classification
 F 2.2, I 4.7

Configuration Complexity: A Layered based

Configuration Repository Architecture for conflicts

identification

Uzma Afzal
1
 Dr. Syed Irfan Hyder

2

Abstract-An unstable product configures if conflicts (features\

requirements\decision) identify in late phases of software

product configuration. This late discovery of conflicts makes

the configuration process more complex. We proposed layered

base complexity by capturing conflicts at the time of their

generation.

Keywords-Configuration, Feature Conflicts, Configuration

complexity

I. INTRODUCTION

oday, configuration management (CM) is more

important than ever because customers want new

designs of products of higher quality at lower prices.

Efficient CM can shorten the product life cycle, minimize

production cost, and guarantee product quality [1]. Market

competitiveness forces product vendors to build flexible

products that not only support a specific customer’s need but

also a group of customers having similar requirements

domain. A software product line is a set of software-

intensive systems sharing a common, managed set of

features that satisfy specific needs of a particular market or

mission, and that are developed from a common set of core

assets in a prescribed way, according to the definition used

by the Software Engineering Institute (SEI) [2]. Product

configuration has proven to be an effective means to

implement mass customization [3]. Through a configuration

process, product modules or components are selected and

assembled according to customer requirements [u2] into 4.

Product configuration is a collaborative process and

Deriving a product from a product line is a complex task

requiring the involvement of many heterogeneous

stakeholders. Taking their different roles and needs into

account is essential to exploit the possible benefits of

product lines. Numerous stakeholders need to be supported

in understanding the variability provided by the product line.

Integration of processes and people is critical. Many critical

failures of today’s major systems are the consequence of

inadequate management and control over an integrated set

of components [5]. Abstraction and instantiation are two

steps to realize product configuration. So-called abstraction

About-
1
Department of computer science, Federal Urdu University of Arts

Science & Technology (e-mail-u.afzalkhan@gmail.com)
About-

2
 PAF-Karachi Institute of Engineering & Technology

is to elicit a product model from all products, and use a

product model, a configuration rule base, and a part instance

base to represent all products. Instantiation is according to a

customer’s demands to confirm the value of every

component in the product model tree, and the process of

confirmation is based on the product model, configuration

rules, and part instance base [6].

II. SPL CONFIGURATION

Software product lines, typically separating two key areas:

 Domain engineering

 Application engineering.

 Figure 1 shows the relationship between domain

engineering and application engineering. During domain

engineering, the variability and commonalities of the

product line’s reusable core assets such as requirements,

architectural elements, or solution components are captured

in variability models. A significant body of research is

available on modeling approaches and notations for this

purpose. During application engineering, concrete products

are derived from the product line by selecting, configuring,

integrating, and deploying the core assets. Compared to the

vast amount of research results on building product lines,

few approaches and tools are available for product

derivation [7].

T

Product line

use case

model

Product line

architecture

Product line

detail design

Product line

implementati

on

Product B

Product use

case model

Product

architecture

Product

detail design

Product

implementati

on

Product A

Product use

case model

Product

architecture

Product

detail design

Product

implementati

on

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 67

Figure 1 : Modeling Dependencies [8]

Configuration of SPL is a collaborative process and its usual

steps are:

 Organization selects the product that meets its

business objectives.

 Configuration team starts working.

 Configuration manger splits product into

configuration units (configuration repository is

single and shared).

 Each configuration unit is assigned to

single/multiple developer(s).

 Configuration units are re-assembled into a single

product.

III. SPL CONFIGURATION MANAGEMENT

Software product configuration is the process of selecting

components from the existing repository and their

assembling with the objective of timely, cost effective

product delivery. It is, an integral part of any software

development activity, takes on a special significance in

software product line context. This is due to the special

property of software product line, in which the core assets

are shared by all products. There are more member products

in one product family than in conventional software

systems. Hence, in product line, there are much more

number of products, assets, and components that needs to be

configuration managed. To reduce the working load and the

complication of configuration management, it is important

to select the right artifacts under configuration management

[9].

It also involves identifying the configuration of software

(i.e. selected software work products and their description)

at given point in time, systematically controlling changes to

the configuration through out the software development life

cycle [10]. As a result of configuration process,

configuration model are produced containing a list of

desired product feature [11].

IV. SPL FEATURE MODEL

Features are key distinctive characteristics of a product [12].

A feature design provides a graphical tree like notation that

shows the hierarchical organization of features [12]. A

feature model is commonly used to guide the configuration

process since it breaks down the variabilities and

commonalities of product line into a hierarchy of feature as

shown in figure 2. Additionally feature model encompass

constraints that prevents the derivation of inconsisted

product specification i.e. product containing incompatible

feature [13].

Figure 2 : SPL from domain to application engineering

A feature model allows for inclusion and exclusion of

various features and variants so that a valid feature

configuration is produced. A feature model also guides

product configuration and can be used to validate a

particular configuration for conformance [14]. Feature

model provide the base for the configuration of whole

system. Normally feature model develops in beginning of

the development / configuration process. However, Change

pervades the entire software life cycle. Requirements change

when developers improve their understanding of the

application domain. [9]. These changes affect the feature

model and its consistency. An invalid feature model leads to

an invalid product configuration or it can be said that only

consistent and valid feature model gives a successfully

configured product Additionally, In global environment, the

software configuration becomes critical due to the

characteristic of distributed development (physical distance,

cultural differences, trust, communication and other factors

[10].

V. SPL CONFIGURATION ISSUES

As shown in figure 3, a large-scale product configures from

a centralized, shared repository and divides into different

modules to make configuration process less complex.

Enabling collaborative product configuration brings new

and challenging problems such as the proper coordination of

configuration decision [13].because a typical software

development team consists of multiple developers who work

together on closely related sets of common artifacts [15].

Figure 3 : Configuration from Multiple Sites

The main cause of the system design problems lay with the

adhoc way in which large and distributed systems are built,

where individual make their own decisions about

configuration and life cycle[16] from a configuration and

life cycle management perspective failure and recovery was

usually inconsistently detected and handled[16].

In an ideal scenario either configuration is collaborative or

not, feature model plays an important role in configuration

and provides a base and work like a blue print for whole

configuration process, only modeled features are configured

in final product. Unfortunately, we are not living in an ideal

environment in which every thing is according to our desire.

Real /practical environment is quite different and it is very

clear that the root cause of major configuration issues is the

configuration of the products in an ad hoc way where each

individual take his own configuration decisions. This late

discovery of conflicts makes the configuration process more

Shared Configuration

Repository

Development Site

1

Development Site

2

Development Site

3

P a g e | 68 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

complex and strongly affects the cost, efforts and schedule

of the product.

A. Is It Really A Problem?

Distributed configuration management is intended to

support the activities of project that is configured from

multiple sites [16]. Multiple developers from multiple sites

configure a product from a product family. SPL variant can

not be constructed arbitrarily e.g. a car can not have both

ABS and Standard braking software controller. A key step

in building a SPL is therefore creating a model of the SPL

variability and the constraints on variant configuration [18]

however a model is an abstract representation of actual

implementation.

In a distributed configuration environment there must be

some collaborative mechanism to keep configuration

synchronized. For software product configuration

management tool support for collaboration on model is

therefore crucial [19]. Traditional SCM have support this

task for textual artifacts such as source code on the

granularity of files and textual lines. They do not work well

for graph like models [19]. However SPL product

configuration is a decision making process in which group

of stake holders chose features for a product [20] and in our

collaborative scenario involvement of multiple stakeholders

is a basement of product configuration, different

configuration units are assigned to different developers that

create problem when each individual takes his own

configuration decisions (for e.g. feature selection) without

going in detail. Integration of the asynchronous efforts of

engineers who may be adhering to different configuration

management procedures and practice is one of the critical

issues [17]. There is a lot of techniques to describe features

are existed but common to all of these notation is that they

still require maintainers to identify and understand the

interaction among features in systems [21].

VI. PROPOSED SOLUTION

An unstable product configures if conflicts are not captured

or captured in the late phases of software product

configuration so an approach is required to capture these

conflicts in earlier stage.

To solve the problem we proposed a Layered based

configuration repository (shared) architecture to reduce the

configuration complexity by capturing conflicts

(Requirements conflicts, features conflicts, decision

conflicts) at earlier stage.

We separate the features from the usual configuration

repository and proposed a layered based architecture for

feature repository and provide facility to exchange

information between layers on a common infrastructure to

avoid feature\requirement\decision conflicts of collaborative

configuration. The service of proposed shared repository

does not merely concern storing data but the mechanism for

conflicts detection.

A. Architecture Of Proposed Repository

We proposed architecture of the configuration repository

that is shared between multiple developers and suggest the

storage of configuration data in layer format. Our repository

consists on two main layers and one intermediate

communication layer.

Layers are listed below.

 Product domain layer [PDL]

 Intermediate control layer [ICL]

 Product Application layer [PAL]

PDL and PAL will communicate via ICL. Product domain

layer is also divided into two parts that are features layer and

constraints layer.ICL plays an important role in conflicts

identification because no feature will be added to the

application layer until or unless Product Application Layer

talk to Product domain Layer through Intermediate control

Layer.

Figure 4: shared repository used by multiple developers

from multiple sites

B. Product domain layer

It is the very first layer of Configuration repository and store

features and constraints, related to the Product domain.

Features Repository sub layer: Features repository is the

base of the product domain layer. Features are key

distinctive characteristics of a product [12]. A feature design

provides a graphical tree like notation that shows the

hierarchical organization of features [I2]. A unique identifier

is assigned to each feature (naming convention can be used

for ease). All features that stored here are the part of the

domain of product line or they can be said the core features

of product. Different types of features are stored in the

repository figure 5 describes the two classifications that are:

Independent/dependent and mandatory/variable [22].

Figure 5: features classification

Independent Features: Because they are not depended on

any other feature for their configuration and will not affect

the any other component configuration and do not evolve

any type of conflicts so only independent feature constraints

that apply on them with feature identification tag are stored.

Features

Dependent/ Independent Mandatory/ variable

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 69

Dependent Features: because they are dependent on other

features for their configuration or the configuration of any

other dependent feature can affect them so applied

constraint with feature identification tag and dependent

feature tag are stored in the repository.

Mandatory Features: must be presented in all member

products of Software Product Line. Mandatory features

illustrate product family commonality [22]. They are stored

with a mandatory tag and part of the all variants of any SPL

product.

Variable Features: not necessarily appear in all member

products in a SPL. Variable features illustrate product

family variability [22].

Constraints Repository: It is the second sub layer of the

product domain layer that contains all the constraints apply

on features. How they stored in repository is dependent on

their nature (Uni feature Constraint and multi feature

constraint).

These listed constraints are taken from [23] and modified

accordingly but it is not the limit other constraints can

also be added to the repository.

Mandatory: A feature or a product P requires a feature F.

Optional: The existence of F in P is optional.

Or: In a feature or a product P, there is F1 or F2 or F3... or

Fn.

Alternative: if (P > 0) then sum (F1, F2, Fn) in {1..1} else

F1 = 0, F2 = 0, ..Fn = 0.

Implies: if (P > 0) then f > 0. That is, if there is a Feature P

in a product, then there must be at least a feature F there.

Excludes: if (P > 0) then F = 0. C cannot exist in a product

P.

C. Product Application Layer

It is the second layer of proposed layered repository. This

layer contains a reference tag for each derived product of the

product family, uniquely identified by a Product identifier.

As the configuration is moved on and features are

configured their unique ids are linked with the product

identifier tag by exchanging information from the product

domain layer via intermediate layer.

D. Intermediate control layer

It is a middle layer that is used for communication between

the two main layers. Both layers talk to each other or

exchange information via this communication layer. At the

time of product derivation no feature will be added to the

PAL until or unless PDL communicate to PAL and find a

positive response that the feature addition will not create any

feature conflict.

VII. LAYERS COMMUNICATION MECHANISM

Figure 6: Communication mechanism

Figure 6 :communication mechanism

VIII. PROTOTYPE & RESULTS

A tool named ―Product Configuration Tool‖ is developed to

support the proposed architecture (conflict identification

interface is shown in figure 7). An interface is related to

each layer of the configuration repository.

Tool has two views.

 For the population of configuration repository

 For the product derivation

Business pattern data of an ERP system is used to validate

the repository architecture and its supportive tool. We

mapped the business pattern to our proposed schema and

then plugged it to the Product Configuration Tool and setup

a test environment figure 9 shows a sample of test case.

Figure 8 shows the graphical representation of obtained

results that proves our thesis statement.

Feature Configuration Request from Product

PAL starts product derivation

PAL communicate to PDL for successful configuration

PDL checks the nature of requested feature

For each independent feature give +ve Reply

For dependent feature PDL communicate to PAL through ICL

If any conflict identified –ve Reply to PAL

Else +ve Reply to PAL

P a g e | 70 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

Figure 7 conflict identification view

Figure 8: Graphical comparison of existing and proposed

repository architecture

Figure 9: Sample test case

IX. CONCLUSION & FUTURE WORK

An unstable product configures if conflicts are not identified

or identified in the late phases of software product

configuration so an approach is required to capture these

conflicts in earlier stage. We proposed a Layered based

configuration repository (shared) architecture that reduces

the configuration complexity by capturing conflicts

(Requirements conflicts, features conflicts, decision

conflicts) at earlier stage to reduce the configuration

complexity.

23%
29%

16%

3% 2% 2%

0%

10%

20%

30%

40%

Product 1 Product 2 Product 3

Usual Repository

Proposed Repository

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 71

A ―Product Configuration Tool‖ (PCT) is developed to

support the proposed architecture. PCT has two views one

for the population of configuration repository and other for

the product derivation. Business pattern data of an ERP

system is used to validate the repository architecture and its

supportive tool.

Future directions include the integration of architecture with

existing feature analysis tools and Extend the interface to

visualize the model and Enable Architecture to support

distributed repository.

X. REFERENCES

1) I. Choi and S. Bae: An Architecture for Active

Product Configuration Management in Industrial

Virtual Enterprises, Int J Adv Manuf Technol

(2001) 18:133–139 2001 Springer-Verlag London

Limited

2) Paul Clements and Linda Northrop: Software

Product Lines: Practices and Patterns, Addison-

Wesley, 2001.

3) Chunjing Zhou & Zhihang Lin & Chuntao Liu:

Customer-driven product configuration

optimization

4) for assemble-to-order manufacturing enterprises,

Int J Adv Manuf Technol (2008) 38:185–194 DOI

0.1007/s00170-007-1089-6

5) Zhang Jinsong · Wang Qifu · Wan Li · Zhong

Yifang: Configuration-oriented product modelling

and knowledge management formmade-to-order

manufacturing enterprises, DOI 10.1007/s00170-

003-1871-z, Int J Adv Manuf Technol (2005) 25:

41–52

6) S R Moor, J Gunne-Braden and K J Gleen:

Enterprise configuration management —

controlling integration complexity, BT Technol J

Vol 15 No 3 July 1997

7) F. S. Zeng . Y. Jin: Study on product configuration

based on product model, Int J Adv Manuf Technol

,DOI 10.1007/s00170-006-0500-z

8) Mag. Rick Rabiser: A User-Centered Approach to

Product Configuration in Software Product Line

Engineering. Christian Doppler Laboratory for

Automated Software Engineering.

9) John D. McGregor:Software Product Lines,

JOURNAL OF OBJECT TECHNOLOGY

10) Liguo Yu1 and Srini Ramaswamy :‖ A

Configuration Management Model for Software

Product Line‖

11) Leonardo Pilatti,, Jorge, Luis Nicolas Audy, Rafael

Prikladnicki: Software Configuration Management

over a Global Software Development Environment:

Lessons Learned from a Case Study, GSD’06, May

23, 2006, Shanghai, China.

12) [Marcilio Mendonca1, Thiago Tonelli Bartolomei2,

Donald Cowan: Decision-Making Coordination in

Collaborative Product Configuration, SAC’08,

March 16-20, 2008, Fortaleza, Ceará, Brazil.

13) LUO Daizhong, DIAO Shanhui: Feature

Dependency Modeling for Software Product Line,

International Conference on Computer Engineering

and Technology,2009

14) Marcilio Mendonca, Krzysztof Czarnecki :

Towards a Framework for Collaborative and

Coordinated Product Configuration, OOPSLA’06

October 22-26, 2006, Portland, Oregon, USA.

15) Goetz Botterweck1, Steffen Thiel1, Ciarán

Cawley1, Daren Nestor1, André Preußner2: Visual

Configuration in Automotive Software Product

Lines, Annual IEEE International Computer

Software and Applications Conference,2008

16) Anita Sarma, David Redmiles and André van der

Hoek :‖Empirical Evidence of the Benefits of

Workspace Awareness in Software Configuration

Management, SIGSOFT 2008/FSE-16, November

9--15, 2008. Atlanta, Georgia, USA

17) Patrick Goldsack, Julio Guijarro, Steve Loughran,

Alistair Coles, Andrew Farrell, Antonio Lain, Paul

Murray, Peter Toft: The SmartFrog Configuration

Management Framework, HP Laboratories

18) Andre van der hoek, Dennis Heimbigner and

Alexenser l.Wolf: A generic peer to peer repository

for distributed configuration management,

,Proceeding of ICSE-18

19) J.White and D. C. Schmidt , D. Benavides and P.

Trinidad and A. Ruiz–Cortés: Automated

Diagnosis of Product-line Configuration Errors in

Feature Models, 12th International Software

Product Line Conference,IEEE 2008.

20) Maximilian Koegel, Jonas Helming, Stephan

Seyboth: Operation-based conflict detection and

resolution, CVSM’09, May 17, 2009, Vancouver,

Canada

21) Marcilio Mendonca1, Thiago Tonelli Bartolomei2,

Donald Cowan1: Decision-Making Coordination in

Collaborative Product Configuration , SAC’08,

March 16-20, 2008, Fortaleza, Ceará, Brazil.

22) Maryam Shiri, Jameleddine Hassine, Juergen

Rilling : Feature Interaction Analysis: A

Maintenance Perspective, , ASE’07, November 5-9,

2007, Atlanta, Georgia, USA.

23) Yuqin Lee and Wenyun Zhao : A feature oriented

approach to managing domain requirements

dependencies in software product lines, proceeding

of the first international multi symposium on

computer and computational science(IMSCC06)

24) Cheng Thao1 Ethan V. Munson1 Tien N.

Nguyen2,:Software Configuration Management for

Product Derivation in Software Product Families,

15th Annual IEEE International Conference and

Workshop on the Engineering

	Configuration Complexity: A Layered based Configuration Repository Architecture for conflicts identification
	Author
	Abstract
	I. INTRODUCTION
	II. SPL CONFIGURATION
	III. SPL CONFIGURATION MANAGEMENT
	IV. SPL FEATURE MODEL
	V. SPL CONFIGURATION ISSUES
	A. Is It Really A Problem?

	VI. PROPOSED SOLUTION
	A. Architecture Of Proposed Repository
	B. Product domain layer
	C. Product Application Layer
	D. Intermediate control layer

	VII. LAYERS COMMUNICATION MECHANISM
	VIII. PROTOTYPE & RESULTS
	IX. CONCLUSION & FUTURE WORK
	X. REFERENCES

