
P a g e | 28 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

GJCST Computing Classification
 D 2.3,D 2.m,K 6.4, K 6.3

Impact of Aspect Oriented Programming on
Software Development Quality Metrics

 Kotrappa Sirbi1 Prakash Jayanth Kulkarni2

Abstract-The aspect-oriented programming (AOP) is a new
paradigm for improving the system’s features such as
modularity, readability and maintainability. Owing to a better
modularisation of cross-cutting concerns, the developed system
implementation would be less complex, and more
readable.Thus, software development efficiency would
increase, so the system would be created faster than its object-
oriented programming (OOP) equivalent. In this paper, we
provide some insight into the OO software development quality
metrics were significantly associated with using AOP.The
method that we are currently studying is based on a popular C
& K metrics suite that extends the metrics traditionally used
with the OO paradigm and also extend to AO paradigm. We
argue that a shift similar to the one leading to the Chidamber
and Kemerer’s metrics is necessary when moving from OO to
AOP software.
Keywords- Aspect Oriented Programming (AOP), Aspect
Oriented (AO) system, AO metrics, AspectJ.

I. INTRODUCTION

HE past decade has seen the increased use of Aspect
Oriented Programming (AOP) based software

development techniques as a means to modularize
crosscutting concerns in software systems, thereby
improving a development organization‘s working practices
and return on investment (ROI).Numerous industrial-
strength aspect-oriented (AO) programming frameworks
exist, including AspectJ, JBoss, and Spring, as do various
aspect-oriented analysis and design techniques. The “Major
Industrial Projects Using AOP‖ are many notable
applications, of which the most prominent is the IBM
WebSphere Application Server. Developers considering
AOP techniques must ask three fundamental questions:
• How is AOP being used in industrial projects today?
Developers must determine whether AOP techniques are
suited to the problem at hand and the particular project
context.
Does the improved modularity yield real benefits when
engineering and evolving software?
Developers must understand whether the potential
benefits outweigh the costs of introducing a new technology
and, if so, be able to convince management of its long-term
profitability.
•What do developers need to be aware of when using AOP
techniques?

About-1Kotrappa Sirbi, Department of Computer Science & Engineering, K
L E’s Dr.M.S.Sheshagiri College of Engineering & Technology, Belgaum,
India.
About-2 Prakash Jayanth Kulkarni, Department of Computer Science &
Engineering ,Walchand College of Engineering,Sangli, India.

Developers must avoid known pitfalls and deploy design
strategies and tools to help counter their potential threat to
product quality.
Answers to these questions are not readily available, and
narrowing knowledge from existing literature on the topic is
difficult, but there is some insight by working with many
several medium and large-scale open source projects
employing AOP techniques. Much AO adoption shows that
software development projects mainly rely on basic features
of AO languages to modularize well-known crosscutting
problems; developers introduce AOP concepts
incrementally, initially addressing evelopmental concerns
and not core product features. In addition, AOP techniques
improve design stability over a system‘s evolution and can
substantially reduce design model size [1].
The aspect oriented programming (AOP) is a relatively
recent approach that has been argued to better enable
modularization of crosscutting concerns [2] and
consequently accelerate the development process. The
hypotheses are that well separated concerns are more easily
maintained, changed and developed, so the total
programmer‘s working time should be shorter than the
development time of analogous system, realized without
mechanisms offered by AOP.The validation of these
hypotheses requires empirical studies. Many researchers in
literature present results of preliminary empirical evaluation
of the impact of AOP on software development efficiency
and design quality. This paper includes a comparison of
developed AOP and OOP systems, based on software
metrics proposed by Chidamber and Kemerer (hereafter CK)
[3], Distance from the Main Sequence metric proposed by
Martin [4], external code quality metric (defined as a
number of acceptance tests passed) [5, 6, 7], and
programmers‘ productivity metric.CK software metrics [3]
were adapted to new properties of aspect-oriented software
[8, 9].
Subramanyam and Krishnan state that research on metrics
for object oriented software development is limited, and
empirical evidence, linking the object-oriented methodology
and project outcomes, is scarce [10]. Even more scarce is
empirical evidence of the effect of aspect-
oriented programming on software design quality, or
development efficiency metrics. Therefore, the aim of this
paper is to fill this gap and provide empirical evidence of the
impact of aspect-oriented programming on software
development efficiency and design quality metrics, as
design aspects are extremely important to produce high
quality software [10]. The hypothesis that design quality
metrics are good predictors of the fault proneness is
supported in [11] and [12].

T

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 29

The rest of the paper is organized as follows, Section II
provides a related work in the field of OO and AO metrics,
Section III give a brief overview of Aspect-Orientated
Programming(AOP), Section IV explaining importance of
OO software metrics in OOD, Section V explaining
requirements of AO software metrics, Section VI explains
the potential effect of AO on the C&K metrics and Section
VII implementation of case study AJHotDraw and Section
VIII shows the impact of AO metrics on AJHotDraw and
includes the results of the experiment. The conclusion of the
paper is presented in Section IX.

II. RELATED WORK

The literature available on the quantitative assessment of
aspect-oriented solutions [14]. Kersten and Murphy [15]
described the effect of aspects on object-oriented
development practices, as well as some rules and
policies that were employed to achieve maintainability
and modifiability. Walker et al. [16] provided initial insights
into the usefulness and usability of aspect-oriented
programming.Soares et al. [17] reported that the AspectJ
implementation of the Web-based information system has
significant advantages over the corresponding pure Java
implementation. Garcia et al. [18] presented a quantitative
study, designed to compare the maintenance and reuse
support of a pattern-oriented approach, and an aspect-
oriented approach for a multi-agent system. It turned out
that the aspect-oriented approach allowed the construction
of the investigated system with improved modularization of
the crosscutting agent-specific concerns. The use of aspects
resulted in superior separation of the agent-related concerns,
lower coupling (although less cohesive) and fewer lines of
code. Tsang et al. [19] evaluated the effectiveness of AOP
for separation of concerns. They applied the CK metrics
suite to assess and compare an aspect-oriented and object-
oriented real-time system in terms of system properties.
They found improved modularity of aspect- oriented system
over object-oriented system, indicated by the reduction in
coupling and lack of cohesion values of the CK metrics.
Hannemann and Kiczales [20], as well as Garcia et al. [21],
have developed systematic studies that investigated the use
of aspect-oriented programming to implement classical
design patterns. It is worth mentioning that
Tonella and Ceccato [22] performed an empirical assessment
of refactoring the aspectizable interfaces. This study
indicates that migration of the aspectizable interfaces has a
limited impact on the principal decomposition size, but, at
the same time, it produces an improvement of the code
modularity. From the point of view of the external quality
attributes, modularization of the implementation of the
crosscutting interfaces clearly simplifies the comprehension
of the source code. Unfortunately, most empirical studies
involving aspects have been based on subjective criteria and
qualitative investigation [14].

III. ASPECT ORIENTATION PROGRAMMING(AOP)

Aspect Oriented Programming (AOP) is a novel software
development paradigm that aims at modularizing aspects,

which are defined as well-modularized crosscutting
concerns [23][24].This type of concerns cuts across
traditional module boundaries such as classes and interfaces,
and their implementation is scattered and tangled with the
implementation of other concerns. AspectJ is the popular
Java extension language of AOP [23].This basic constructs
of the language are
Join point: A join point is a well-defined point in the
execution of a component. It can be a method call or
execution, an access to an attribute, or the execution of a
constructor.
Pointcut: A pointcut is the mechanism that encapsulates
join points. It can be compose of one or more join point.
Advice: An advice specifies the action (i.e., code) that must
take place at a certain pointcut (i.e., a group of join points).
With both abstractions mentioned above, advice gives
developer the ability to implement crosscutting concerns.
There are three types of advice:
–before: The code declared is executed before
 the join point.
–after: The code declared is executed after the
 Join point.
–around: The code declared is executed instead
 of the one in the join point.
Inter-type declaration: This mechanism allows the
developer to crosscut concerns in a static way. It permits
alterations to classes and inheritance hierarchies from
outside the original class definition. We enumerate below
the types of possible changes through Inter-type declaration:
–Add members (methods, constructors, fields)
 to types (including other aspects).
–Add concrete implementation to interfaces.
–Declare that types extend new types or
 implement new interfaces.
–Declare aspect precedence.
–Declare custom compilation errors or warnings.
–Convert checked exceptions to unchecked.
Aspect: An aspect is the container for the encapsulation of
pointcuts, advice code, and inter-type declaration. Acting
like a Java classes, it can contain its own attributes and
methods.
In AspectJ, an application consists of two parts: base code
which corresponds to standard Java classes and interfaces,
and aspect code which contains the crosscutting code. Next
we describe the two types of crosscuts that AspectJ
provides.
Static Crosscuts

Static crosscuts affect the static structure of a program
[25,33]. We consider Inter-Type Declarations (ITDs), also
known as introductions, that add fields, methods, and
constructors to existing classes and interfaces [25, 33].
Dynamic Crosscuts
Dynamic crosscuts run additional code when certain events
occur during program execution. The semantics of dynamic
crosscuts are commonly described and defined in terms of
an event-based model [26][27]. As a program executes,
different events fire. These events are called join points.
Examples of join points are: variable reference, variable
assignment, execution of a method body, method call, etc. A

P a g e | 30 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

pointcut is a predicate that selects a set of join points. Advice
is code executed before, after, or around each join point
matched by a pointcut[26].

IV. OBJECT ORIENTATION (OO) SOFTWARE METRICS

The inadequacy of the metrics in use with procedural code
(size, complexity, etc.), when applied to OO systems, led
to the investigation and definition of several metrics suites
accounting for the specific features of OO software.
However, among the available proposals, the one that is most
commonly adopted and referenced is that by Chidamber and
Kemerer [3].Some notions used in the Chidamber and
Kemerer‘s suite can be easily adapted to AOP software, by
unifying classes and aspects, as well as methods and
advices. Aspect introductions and static crosscutting require
minor adaptations. However, novel kinds of coupling are
introduced by AOP, demanding for specific measurements.
For example, the possibility that a method execution is
intercepted by an aspect pointcut, triggering the execution of
an advice, makes the intercepted method coupled with the
advice, in that its behavior is possibly altered by the advice.
In the reverse direction, the aspect is affecting the module
containing the intercepted operation, thus it depends on its
internal properties (method names, control flow, etc.) in
order to successfully redirect the operation‘s execution and
produce the desired effects.

V. ASPECT ORIENTED(AO) SOFTWARE METRICS

In this section, the Chidamber and Kemerer‘s metrics suite
is revised. Some of the metrics are adapted or extended, in
order to make them applicable to the AOP software. Since
the proposed metrics apply both to classes and aspects, in
the following the term module will be used to indicate either
of the two modularization units. Similarly, the term
operation subsumes class methods and aspect
advices/introductions.
 WOM (Weighted Operations in Module): Number

of operations in a given module.
Similarly to the related OO metric, WOM captures the
internal complexity of a module in terms of the number
of implemented functions. A more refined version of this
metric can be obtained by giving different weights to
operations with different internal complexity.

 DIT (Depth of Inheritance Tree): Length of the
longest path from a given module to the class/aspect
hierarchy root.
Similarly to the related OO metric, DIT measures the
scope of the properties. The deeper a class/aspect is
in the hierarchy, the greater the number of operations it
might inherit, thus making it more complex to
understand and change. Since aspects can alter the
inheritance relationship by means of static crosscutting,
such effects of aspectization must be taken into account
when computing this metric.

 NOC (Number Of Children): Number of immediate
sub- classes or sub-aspects of a given module.
Similarly to DIT, NOC measures the scope of the
properties, but in the reverse direction with respect to

DIT. The number of children of a module indicates the
proportion of modules potentially dependent on
properties inherited from the given one.

 CAE (Coupling on Advice Execution): Number of
aspects containing advices possibly triggered by the
execution of operations in a given module.
If the behavior of an operation can be altered by an
aspect advice, due to a pointcut intercepting it, there is an
(implicit) dependence of the operation from the advice.
Thus, the given module is coupled with the aspect
containing the advice and a change of the latter might
impact the former. Such kind of coupling is absent in
OO systems.

 CIM (Coupling on Intercepted Modules): Number
of modules or interfaces explicitly named in the pointcuts
belonging to a given aspect.
This metric is the dual of CAE, being focused on the
aspect that intercepts the operations of another module.
How- ever, CIM takes into account only those modules
and inter- faces an aspect is aware of – those that are
explicitly mentioned in the pointcuts. Submodules,
modules implementing named interfaces or modules
referenced through wild- cards are not counted in this
metric, while they are in the metric CDA (see below),
the rationale being that CIM (differently from CDA)
captures the direct knowledge an aspect has of the rest of
the system. High values of CIM indicate high coupling
of the aspect with the given application and low
generality/reusability.

 CMC (Coupling on Method Call): Number of
modules or interfaces declaring methods that are
possibly called by a given module.
This metric descends from the OO metric CBO (Cou-
pling Between Objects), which was split into two (CMC
and CFA) to distinguish coupling on operations from
coupling on attributes. Aspect introductions must be
taken into ac- count when the possibly invoked methods
are determined. Usage of a high number of methods
from many different modules indicates that the function
of the given module can- not be easily isolated from the
others. High coupling is associated with a high
dependence from the functions in other modules.

 CFA (Coupling on Field Access): Number of modules
or interfaces declaring fields that are accessed by a
given module.
Similarly to CMC, CFA measures the dependences of a
given module on other modules, but in terms of
accessed fields, instead of methods. In OO systems
this metric is usually close to zero, but in AOP, aspects
might access class fields to perform their function, so
observing the new value in aspectized software may be
important to assess the coupling of an aspect with other
classes/aspects.

 RFM (Response For a Module): Methods and advices
potentially executed in response to a message received
by a given module.

P a g e | 32 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

Similarly to the related OO metric, RFM measures the

potential communication between the given module and

the other ones. The main adaptation necessary to apply

it to AOP software is associated with the implicit

responses that are triggered whenever a pointcut

intercepts an operation of the given module.

 LCO (Lack of Cohesion in Operations): Pairs of

operations working on different class fields minus pairs

of operations working on common fields (zero if

negative).

Similarly to the LCOM (Lack of Cohesion in Methods)

OO metric, LCO is associated with the pairwise

dissimilarity between different operations belonging to

the same module. Operations working on separate

subsets of the module fields are considered dissimilar

and contribute to the in- crease of the metric‟s value.

LCO will be low if all operations in a class or an aspect

share a common data structure being manipulated or

accessed.

 CDA (Crosscutting Degree of an Aspect): Number

of modules affected by the pointcuts and by the

introductions in a given aspect.

This is a brand new metric, specific to AOP software,

that must be introduced as a completion of the CIM

metric. While CIM considers only explicitly named

modules, CDA measures all modules possibly affected

by an aspect. This gives an idea of the overall impact

an aspect has on the other modules. Moreover, the

difference between CDA and CIM gives the number of

modules that are affected by an aspect without being

referenced explicitly by the aspect, which might indicate

the degree of generality of an aspect, in terms of its

independence from specific classes/aspects. High values

of CDA and low values of CIM are usually desirable.

 Weighted Methods per Class (WMC): WMC is
 a measure of the number of methods implemented

within a class. This metric measures

understandability, maintainability, and reusability as

follows:

 The number of methods in a class reflects the

time and effort required to develop and maintain

the class.

 The larger the number of methods, the greater

the potential impact on children, since children

inherit all of the methods defined in a class.

A class with a large number of methods is more

application-specific, and therefore is not likely to be

reused.

 Lack of Cohesion in Methods (LCOM): LCOM is

the degree to which methods within a class are related

to one another and work together to provide well-

bounded behavior. Well-designed s y s t e m s s h o u l d

m a x i m i z e c o h e s i o n , s i n c e i t p romotes

e n c a p s u l a t i o n . LCOM measures the degree of

similarity of methods by data input variables or class

attributes. In [28], two ways of measuring LCOM are

describe d:

 Calculate for each data field in a class what

percentage of the methods use that data field.

Average the percentages then subtract from

100%. Lower percentages mean greater cohesion

of data and methods in the class.

 Methods are more similar if they operate on the

same attributes. Count the number of disjoint sets

produced from the intersection of the sets of

attributes used by the methods.

This metric evaluates efficiency and reusability. High

cohesion indicates good class subdivision. Low

cohesion increases complexity, thereby increasing the

likelihood of errors during the development process.

Classes with low cohesion could probably be

subdivided into two or more subclasses with increased

cohesion.

 Coupling Between Objects (CBO): CBO is a count

of the number of other classes to which a class is

coupled. CBO is measured by counting the number of

distinct non- inheritance related class hierarchies on

which a class depends. Excessive coupling prevents

reuse. The more independent a class is, the more likely

it can be reused. The higher the coupling the more

sensitive the system is to changes in other parts

of the design, and therefore maintenance is more

difficult. High coupling also reduces the system‟s

understandability because it makes the module harder

to understand, change, or correct by itself if it is

interrelated with other modules.

 Response For a Class (RFC): RFC is the number

of all methods that can be invoked in response to a

message to an object of the class or by some

method in the class. This measures the amount o f

communication w i t h other classes. The larger

the number o f methods that can be invoked from a

class through messages, the greater the complexity of

the class. If a large number of methods can be invoked

in response to a message, the testing and debugging

of the class becomes complicated as it requires a

greater level of understanding on the part of the

developer. This metric evaluates understandability,

maintainability, and testability.

VI. THE EFFECT OF AO ON THE C&K SUITE

In this section, i t provides an analysis of the effect of

aspect- orientation on the C&K metrics suite. It is based

o n the case studies found in the literature about re-

designing some existing software systems to incorporate

the aspect- oriented paradigm.

 Weighted Methods per Class: aspects might

help reduce the number of methods per class as

follows:

 Aspects combine crosscutting functionalities in

modular, encapsulated units. Without aspect-

oriented design, these crosscutting functionalities

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 33

would be tangled in the core class.

 In some cases, a sub- class might have to over- ride a

function in its parent class in order to define its own

aspectual behavior (not a core behavior). Let‟s take

exception handling as an example. A function in the

subclass might have to override a super- class

function just to implement the sub-class‟s method of

handling a certain exception. If exception handing was

implemented as an aspect, the subclass will not have to

add a function to implement its own exception handling

technique. This reduces the WMC factor. Dealing with

exception handling as aspects is discussed in more

detail in [29].

 Depth of Inheritance Tree: subclasses that might

be defined only for the purpose of applying their
own implementation of aspectual behavior will not

exist in systems designed using the AO Paradigm,

because aspects will be responsible for that. This
helps in reducing the depth of inheritance tree.

 Number Of Children: the same argument of “Depth

of Inheritance Tree” is valid for this metric.

 Lack of Cohesion in Methods: aspects filter out

crosscutting behavior, and therefore increases

cohesion. Figure 1 is an example of this. The

function Movable() is likely to contain

synchronization checking that determine if the

function Move can be invoked on an object of type

Shape. This can be seen as a synchronization aspect,

which uses its own flags to determine synchronization.

Such a crosscutting function reduces the cohesion of

the class Shape.

 Coupling Between Objects: the presence of

aspects is likely to decrease the coupling between

core classes, yet increase the coupling between core

classes and aspect classes. This is because aspects

are new entities on which core classes depend. It

should be noted, however, that, unlike aspects, core

classes are more likely to be reused. Decreasing the

coupling between core -classes is a beneficial issue,

and increasing coupling between aspects and core

classes in return can be seen as a good trade- off.

Given that a design might involve coupling between c

lasses, it would be better to have this coupling occur

between core and aspect classes, rather than having it

happen between core classes.

 Response For a Class: RFC is likely to increase in

the presence of aspects. This is because the number

of entities that a class communicates with

increases, and classes have to communicate with

aspects. The positive point with using aspects is

that they can be designed in a way that

encapsulates the logic and the objects with

which a class communicates in a modular way.

Figure 1:JHotDraw Command Hierarchy

VII. CASE STUDY : AJHOTDRAW

The case study selected is AJHotDraw [30], an AspectJ

implementation of JHotDraw [31]. The original JHotDraw

project was developed by Erich Gamma and Thomas

Eggenschwiler. It is a Java GUI frame- work for technical

and structured graphics. It has been developed as a design

exercise but it is quite powerful. Its design relies heavily on

some well-known design pat- terns. The AJHotDraw

program contains more than 400 elements (classes,

interfaces and aspects). To our best knowledge, there is no

application of that size that has been carefully studied in the

past regarding aspect- oriented quality. The Command

P a g e | 34 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

hierarchy in JHOTDRAW, shown in figure 1, implements

the design pattern bearing the same name. The (12) undo-

able commands store a reference to their associated undo

activity. These command‟s execution through dedicated

factory methods.AJHotDraw is an open source software

project that provides numerous features for drawing and

manipulating graphical and planar objects [1]. It consists of

13 features for a total of ~ 50KLOC. It is implemented with

279 classes and interfaces and only 31 aspects. Not

surprisingly approximately 99% per-cent of the code is

standard Java and only 1% of aspect code, of which almost

all comes from ITDs.The modularized crosscutting concerns

are persistence, design policies, contract enforcement, Undo

command.

VIII. IMPACT OF AO METRICS ON AJHOTDRAW

The proposed metrics have been computed on an open

source project AJHotDraw, taken from the implementation

of some design patterns [32] provided by

Jan Hannemann both in Java and in AspectJ (appropriate

AO Metrics are shown in Figure 2)

The practical implementation is based on Observer design

pattern [32], in which there are two distinct roles, the

Subject and the Observer. The Subject is an entity that can

be in several different states. Some of the state changes are

of interest to the Observer, which may take some actions in

response to the change.

Figure 2: AOP C & K Metrics

The Observer pattern requires that the Observer registers

itself on those Subjects it intends to observe. The Subject

maintains a list of the Observers registered so far. When the

Subject changes its state, it notifies the Observers of the

change, so that the Observers can take the appropriate

actions. In the OO implementation by Jan Hannemann, this

design pattern consists of two interfaces, ChangeSubject and

ChangeObserver, with the abstract definitions of the Subject

and Observer roles. Moreover, the implementation contains

the Point and the Screen classes, the first playing the role of

Subject whereas the second plays both roles in two different

instances of the pattern. The Main class contains the code to

set up the two different pattern instances and run them. In

the first pattern instance Point acts as the Subject and Screen

as the Observer. In the second case, an instance of the class

Screen is the Subject, while other instances of the same

classes are its Observers. The AOP implementation contains

a different version of the classes Point and Screen, with no

code regarding the Subject/Observer roles.

ObserverProtocol is an abstract aspect defining the general

structure of the aspects that implement the Observer pattern.

This abstract aspect is extended by

ScreenObserver,ColorObserver and CoordinateObserver.

These concrete aspects contain the actual implementation of

the protocol. By means of inter-type declarations, they

impose roles onto the involved classes and by means of

appropriate pointcuts they specify the Subject actions to be

observed. Moreover, these aspects contain the mapping that

connects a Subject to its Observers. The class Main runs

the code for the initialization of the patterns for their

execution. The output of the metric suite to the two

implementations of the Observer pattern and the median

values produced by the tool are shown in Table 1. The value

of LCO for the OO code is indicated as 1-12, since these

two values are adjacent to the median point. We observer

that the improvement in some metrics (WOM, LCO, CMC

and RFM), no change in other metrics (NOC and CFA) and

a worse value of DIT (due to the superaspect

ObserverProtocol).But the general values change only a

little bit, for RFM the change is relatively high, passing

from 7 to 2. LCO is also affected positively, going from 1-

12 to 0. The cost to be paid for such improvements is an

increase of the CIM metric, due

to the aspects intercepting method executions (AOP

coupling).

Table 1: AOP Metrics for AJHOTDRAW

IX. CONCLUSIONS AND FUTURE WORK

Assessing the quality of software has been the

preoccupation of software engineers for two decades. The

problem of separation of concerns led to the apparition

of the aspect-oriented paradigm. This new paradigm

raises questions about quality, due to its close relations

with object-oriented programming. In this paper, we

argue that the impact o f AOP on software development

quality metrics is significant. The proposed work shall be

validated through empirical studies. In fact, case study

used here shall enable us to appraise the quality of an

aspect-oriented system over object oriented system.

Some of the issues that require more research and metrics

are:

Aspect Granularity: how many crosscutting functionalities

should an aspect encapsulate. Dependency between aspect

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 35

and class: how aspects can be designed such that

the dependency of core classes on them is minimal.

Understandability: how aspects affect the system‟s

understandability.

Depth of aspect inheritance tree: are there limitations

for aspect- inheritance? And how far does it affect the

design understandability.

X. REFERENCES

1) Awais Rashid et al “Aspect-Oriented Software

Development in Practice: Tales from AOSD-

Europe”, Lancaster University, UK.Published by

the IEEE Computer Society, February, 2010.

2) Kiczales, G., Lamping, J., Mendhekar, A., Maeda,

C., Lopes, C. V., Loingtier, J.-M., and Irwin, J.:

„Aspect-Oriented Programming‟,Proc. European

Conf. Object-Oriented Programming (ECOOP

1997), vol. 1241 of Lecture Notes in Computer

Science, Jyv¨askyl¨a, Finland, June 1997, pp. 220–

242

3) Chidamber, S. R., and Kemerer, C. F.: „A Metrics

Suite for Object Oriented Design‟, IEEE Trans.

Softw. Eng., 1994, 20, (6), pp. 476– 493

4) Martin, R. C.: „OO Design Quality Metrics: An

Analysis of Dependencies‟,

http://www.objectmentor.com/resources/articles/oo

dmetrc.pdf, accessed September 2006

5) George, B., and Williams, L. A.: „An Initial

Investigation of Test Driven Development in

Industry‟, Proc. ACM Symposium on Applied

Compupting (SAC 2003), Melbourne, USA, March

2003, pp. 1135–1139

6) George, B., and Williams, L. A.: „A structured

experiment of test driven development‟, Inf. Softw.

Tech., 2004, 46, (5), pp. 337–342

7) Madeyski, L.: „Preliminary Analysis of the Effects

of Pair Programming and Test-Driven

Development on the External Code Quality‟, in

Zieli´nski, K., and Szmuc, T. (Ed.): „Software

Engineering: Evolution and Emerging

Technologies‟, vol. 130 of Frontiers in Artificial

Intelligence and Applications, (IOS Press, 2005),

pp. 113–123

8) Ceccato, M., and Tonella, P.: „Measuring the

Effects of Software Aspectization‟, Proc.

Workshop on Aspect Reverse Engineering (WARE

2004), Delft, The Netherlands, November 2004

(Cd-rom)

9) Aopmetrics project, http://www.e-

informatyka.pl/sens/Wiki.jsp?page=Projects.AOP

Metrics, accessed September 2006

10) Subramanyam, R., and Krishnan, M. S.: „Empirical

Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software

Defects‟, IEEE Trans. Softw. Eng., 2003, 29, (4),

pp. 297–310

11) Briand, L. C., W¨ust, J., Ikonomovski, S. V., and

Lounis, H.: „Investigating Quality Factors in

Object-Oriented Designs: an Industrial Case

Study‟, Proc. Int. Conf. on Software Engineering

(ICSE 1999), Los Alamitos, USA, May 1999, pp.

345–354

12) Emam, K. E., Melo, W. L., and Machado, J. C.:

„The Prediction of Faulty Classes Using Object-

Oriented Design Metrics‟, J. Syst. Softw., 2001, 56,

(1), pp. 63–75

13) Basili, V. R., Caldiera, G., and Rombach, H. D.:

„The Goal Question Metric Approach‟, in

Marciniak J.J. (Ed.): Encyclopedia of Software

Engineering, (Wiley, 1994), pp. 528–532

14) Garcia, A. F., Sant‟Anna, C., Figueiredo, E.,

Kulesza, U., Lucena, C. J. P.de, and Staa, A.von:

„Modularizing Design Patterns with Aspects: A

Quantitative Study‟, in Rashid, A., and Aksit, M.

(Ed.): T. Aspect-Oriented Software Development I,

2006, vol. 3880 of Lecture Notes in Computer

Science, pp. 36–74

15) Kersten, M., and Murphy, G. C.: „Atlas: A Case

Study in Building a Web-Based Learning

Environment using Aspect-oriented Programming‟,

Proc. ACM SIGPLAN Conf. on Object-Oriented

Programming, Systems, Languages, and

Applications (OOPSLA 1999), New York, USA,

November 1999, pp. 340–352

16) Walker, R. J., Baniassad, E. L. A., and Murphy, G.

C.: „An Initial Assessment of Aspect-oriented

Programming‟, Proc. Int. Conf. on Software

Engineering (ICSE 1999), Los Alamitos, USA,

May 1999, pp. 120–130

17) Soares, S., Laureano, E., and Borba, P.:

„Implementing Distribution and Persistence

Aspects with AspectJ‟, Proc. ACM SIGPLAN

Conf. on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2002),

New York, USA, November 2002, pp. 174–190

18) Garcia, A. F., Sant‟Anna, C., Chavez, C., Silva, V.

T.da, Lucena, C. J. P.de, and Staa, A.von:

„Separation of Concerns in Multi-agent Systems:

An Empirical Study‟, Proc. Int. Workshop on

Software Engineering for Large-Scale Multi-Agent

Systems (SELMAS 2003), vol. 2940 of Lecture

Notes in Computer Science, pp. 49–72

19) Tsang, S. L., Clarke, S., and Baniassad, E. L. A.:

„An Evaluation of Aspect-Oriented Programming

for Java-Based Real-Time Systems Development‟,

Proc. Int. Symposium on Object-Oriented Real-

TimeDistributed Computing (ISORC 2004),

Vienna, Austria, May 2004, pp. 291–300

20) Hannemann, J., and Kiczales, G.: „Design Pattern

Implementation in Java and AspectJ‟, Proc. ACM

SIGPLAN Conf. on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA

2002), New York, USA, November 2002, pp. 161–

173

21) Garc´ıa, F., Bertoa, M. F., Calero, C., Vallecillo,

A., Ru´ız-S´anchez, F., Piattini, M., and Genero,

M.: „Towards a consistent terminology for software

http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.AOPMetrics
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.AOPMetrics
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.AOPMetrics

P a g e | 36 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

measurement‟, Inf. Softw. Tech., 2006, 48, (8), pp.

631–644

22) Tonella, P., and Ceccato, M.: „Refactoring the

aspectizable interfaces: An empirical assessment.‟,

IEEE Trans. Softw. Eng., 2005, 31, (10), pp. 819–

832

23) AspectJ, http://eclipse.org/aspectj/

24) Kiczales, G., Hilsdale, E., Hugunin, J., Kirsten, M.,

Palm, J., Griswold, W.G.: „An overview of

AspectJ‟. ECOOP (2001)

25) Laddad, R.:. „AspectJ in Action. Practical Aspect-

Oriented Programming‟. Manning (2003)

26) Lämmel, R.: „Declarative Aspect-Oriented

Programming‟. PEPM (1999),

27) Wand, M., Kiczales, G., Dutchyn, C.: „A Semantics

for Advice and Dynamic Join Points in Aspect

Oriented Programming‟. TOPLAS (2004)

28) Rosenberg, Linda H. and Lawrence E. Hyatt.

“Software Quality Metrics for Object-Oriented

Environments”. NASA, SATC.

http://www.satc.gsfc.nasa.gov/support/CROSS_AP

R97/oocross.html

29) Lippert, Martin, Cristina Videira Lopes. „A Study

on Exceptio n Detection and Handling Using

Aspect- Oriented Programming‟. Xerox Palo Alto

Research Center. Technical Report, Dec. 99.

30) Ajhotdraw project.

http://sourceforge.net/projects/ajhotdraw/.

31) Jhotdraw project. http://www.jhotdraw.org/.

32) E . Gamma, R. Helm, R.Johnson, and J. Vlissides.

„Design Patterns: Elements of Reusable Object

Oriented Software‟. Addison-Wesley Publishing

Company, Reading, MA, 1995.

33) LADDAD, R. „Enterprise AOP with Spring

Applications: AspectJ in Action‟ 2nd Edition,

Manning Publications, 2010.

http://eclipse.org/aspectj/
http://www.satc.gsfc.nasa.gov/support/CROSS_APR97/oocross.html
http://www.satc.gsfc.nasa.gov/support/CROSS_APR97/oocross.html
http://sourceforge.net/projects/ajhotdraw/
http://www.jhotdraw.org/

	Impact of Aspect Oriented Programming on Software Development Quality Metrics
	Authors
	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. ASPECT ORIENTATION PROGRAMMING(AOP)
	IV. OBJECT ORIENTATION (OO) SOFTWARE METRICS
	V. ASPECT ORIENTED(AO) SOFTWARE METRICS
	VI. THE EFFECT OF AO ON THE C&K SUITE
	VII. CASE STUDY : AJHOTDRAW
	VIII. IMPACT OF AO METRICS ON AJHOTDRAW
	IX. CONCLUSIONS AND FUTURE WORK
	X. REFERENCES

