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Abstract-In the web server farm, the Join the Shortest Queue 

(JSQ) routing policy is well-liked. This policy is optimal in 

single-server queues system. But it is very difficult to analyze in 

multiple server system. The web server farm consists of N 

identical queues with infinite buffers, and each of the queue 

has one server. When a job arrives at the system, it is sent to 

the queue with smallest number of jobs. For exponential multi 

server systems with queue in parallel in which jobs are enter 

into one of the shortest queue upon arrival and in which 

jockeying is not possible. The objective of this paper is to 

compute the possibility of worst case for systems in which the 

new arrival job join one of the shortest queues upon arrival.  

We used the modified power-series algorithm to compute the 

stationary queue length. 

Keywords-Join-the-shortest queue, multi server system, 

parallel queues, response time, No jockeying, power-series 

algorithm. 

I.   INTRODUCTION 

he server farm is a popular architecture of computing 

centers. It consists of a front-end router/dispatcher 

which receives all the incoming requests (jobs), and 

dispatches each job to one of a collection of servers which 

do the actual processing, as depicted in Figure 1. The 

dispatcher employs  
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scalability (it is easy to add and remove servers) and high 

reliability (failure of individual servers does not bring the 

whole system down). One of the most important design 

goals of a server farm is choosing a routing policy which a 

routing policy (also called a ―task assignment policy‖, or 

TAP), which decides when and to which server an incoming 

request should be routed. Server farms afford low cost 

(many slow servers are cheaper than one fast server), high 

will yield low response times; the response time is the time 

from the arrival of a request to its completion. 

In this paper we consider web server farm architecture 

serving static request. Requests for files (or HTTP pages) 

arrive at a front-end dispatcher. The dispatcher then 

immediately routes the request to one of the servers in the 

farm for processing using a JSQ routing policy. It is 

important that the dispatcher does not hold back the arriving 

connection request or the client will time out and possibly 

submit more requests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Server farm with front-end dispatcher and K 

identical FCFS back-end servers 

A.  Model and Notation 

The system considered in this paper consists of N, N≥2, 

identical queues each of which has buffer with infinite 

capacity; each of the queues has single servers. Each queue 

is served in a First-come-First-service (FCFS) order. Let c 

be the number of servers in the system. A job dispatcher is 

used to assign jobs to queues. The job arrival process to the 
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system is assumed to be Poisson with rate λ. The job service 

times are assumed to be exponentially distributed with mean 

1/µ. At the arrival instant, a job is sent to one of the queues 

according to the join the Shortest Queue (JSQ) policy; i.e., it 

is assigned to the queue with the smallest number of jobs. 

No jockeying between queues is permitted. 

B.  Contribution/Outline 

In a web server farms it has c ≥ 2 parallel server. Services 

performed by server j have an exponentially distributed 

duration with a mean 1/µj, j = 1,…,c. While job arrives at 

web server farms it will immediately assign any one of the 

server randomly and assign the queue which has minimal 

job size. The arrival job enter in such systems often notice 

that the job in other queues are being served faster than 

those in their own queue, and that they are overtaken by job 

that arrived later. Of course, this phenomenon may be due to 

different skills, and hence different service rates, among the 

servers. But even if the service rates of all servers are equal, 

this phenomenon frequently occurs. A simple explanation is 

found by considering the situation that the arrival job meets 

an equal number of jobs in the system       n ≥ 1 in each of 

the queues upon arrival. Then, by the lack of memory of the 

exponential service time distributions and the symmetry of 

the system, each queue has the same possibility of becoming 

the queue that is soonest exempted of its n jobs. Hence, the 

arriving job has in this situation (c - 1)/c of chances that the 

job does not join the queue in which his service would have 

started earliest.   

II. PRIOR WORK 

The systems with single server queues, the JSQ policy has 

been proved to be optimal in that it maximizes the 

throughput of the system and also minimizes the expected 

total time to complete the service of all jobs arriving before 

some fixed time. For the case N = 2,         Height [9] studied 

the JSQ problem allowing jockeying between two queues. 

Zhao and Grossman[15] developed an algorithm for 

computing the probability that are exactly k jobs in each 

queue and then finding the joint distribution of the queue 

lengths in the system. The matrix-geometric approach, as 

introduced by M.F.Neuts [12] in his book, has proved to be 

powerful tool for the analysis of Markov processes with 

large and complicated state spaces, particularly the ones that 

appear when modeling Queueing or maintenance systems. 

Gertsbakh and Kao et al. [8][10][13] used the matrix-

geometric technique to calculate the state occupancy 

probabilities approximately for two-queue systems with  

unequal service rates. Adan, Wessels and Zijm [1], using 

one partitioning of the state space, obtained an explicit  

ergodicity condition from Neuts‘ mean drift condition and 

also explicitly determined another partitioning of the 

associated R-matrix.  [6] In his paper in IEEE Transaction 

on computers appeared in 1990, F.Bonomi compared the job 

assignment problem with processor sharing queues in the 

JSQ policies with First-come-First (FCFS) service. He 

demonstrate that the JSQ policy offers a very good solution 

to the job assignment problem for PS parallel system,  even 

though this is not necessarily optimal for nonexponential 

service time distribution. In 1996, Lin and C.S.Raghvandra 

[11] developed a method to analyze the performance of the 

JSQ policy, applicable for systems with both single server 

and multiserver queues, assuming the job arrival process to 

be Poisson and service time distribution exponential. This 

method uses birth-death markov process to model the 

evaluation of the number of jobs in the system using 

simulation. Later, Harchol Balter et.al., [14] provided the 

first approximate analysis of JSQ in the PS server farm 

model for general job size distributions and obtained the 

distribution of queue length at each queue. For this, they 

approximate queue length of each queue in the server farm 

by a one dimensional Markov chain. The aim of the present 

paper is to compute the possibility of worst case for systems 

in which the job join one of the shortest queues upon arrival.  

For the computations reported in this paper we have used 

the modified power-series algorithm to compute the 

stationary queue length distribution as described in Blanc 

[2],[3],[4],[5] for the shortest-queue system.  

The rest of this paper is organized as follows. The analytical 

model of the system is discussed in section 3. Finally, some 

concluding remarks are made in section 4. 

III. ANALYTICAL MODEL 

A. Homogeneous servers 

In the first case we consider the servers in the web server 

farms are homogeneous, which is the service rate of all 

servers are equal, µj = µ, j = 1,…,c, and the arrival job joins 

one of the shortest queues with equal possibilities. The 

system load can be defined as ρ = λ / (Ncµ), and for stability 

it is assumed that ρ ˂ 1.Given that the arrival job joins a 

queue in which n jobs were already present, the waiting time 

Wn of this new arrival job as an Erlang distribution with 

mean n/µ and consist of n phases, n = 1,2,…, by the 

assumption of exponential service times.  The other 

possibility of the arrival job join the another queue is 

defined as follows. Suppose the system is in state (n1,…,nc), 

with nk the length of the queue k, k = 1,…,c, and the 

arriving job join the queue j, the ϕj(n1,…,nc) is the 

possibility of that some other server i,        i ≠ j, will be the 

first to complete service of its current ni jobs. This 

probability can be determined from relation 

𝜙𝑗  𝑛1, … , 𝑛𝑐 = 𝑃𝑟  min𝑖=1,…𝑐 𝑊𝑛𝑖
< 𝑊𝑛𝑗

 , 𝑗 = 1, … , 𝑐;                                   

                                                                                                                                                                                               (1)     

Here, Wni, i =1,…, c, represent independent, Erlang distributed random variable with mean ni/µ and consisting of ni phases. 

To keep notation simple this probability will be evaluated for the case j=1; the other cases follow by interchanging the 

indices. Clearly, if n1=0 an arriving job has zero waiting time, and, hence, for all n2,…,nc ϵ IN, 

ϕ1(0,n2,…,nc) = 0                                                                                                               (2) 
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Next,  let n1 ≥ 1. By conditioning on the length y of the n1 services in queue 1 this conditional probability becomes, for 

n2,…,nc  ≥ 1, 

𝜙1(𝑛1, … , 𝑛𝑐) = 1 −   𝑃𝑟
∞

0
 𝑊𝑛2

> 𝑦, … , 𝑊𝑛𝑐
> 𝑦 𝑑 Pr 𝑊𝑛1

≤ 𝑦                                                                                       (3) 

 

By the independence of the service by the various servers this can be written as 

             𝜙1(𝑛1, … , 𝑛𝑐) = 1 −   𝑃𝑟
∞

0
 𝑊𝑛2

> 𝑦} … Pr{𝑊𝑛𝑐
> 𝑦 𝑑 Pr 𝑊𝑛1

≤ 𝑦                                                                                     

                                                                                                                                                             (4) 

Using the explicit expression for the Erlang distribution and its follows that 

ϕ1 (n1,…,nc) = 1 -    
(µ𝑦)

𝑖𝑗

𝑖𝑗 !

𝑛𝑗 −1
𝑖𝑗=0

𝑐
𝑗=2 𝑒

−µ𝑦
 

∞

0
µ

(µ𝑦)𝑛1−1

(𝑛1−1)!
𝑒−µ𝑦𝑑𝑦                                                   (5) 

By interchanging the order of summation and integration this expression can be written as 

ϕ1 (n1,…,nc) = 1- … 
1

(𝑛1−1)!2!…𝑖𝑐!

𝑛𝑐−1
𝑖𝑐=0

𝑛2−1
𝑖2=0

 µ(µ𝑦)
𝑛1+𝑖2+⋯𝑖𝑐−1 𝑒−𝑐µ𝑦𝑑𝑦

∞

0
                                           (6) 

This integral can be evaluated as, for n1,…,nc ≥ 1, 

ϕ1 (n1,…,nc) = 1- … 
(𝑛1+ 𝑖2+⋯+𝑖𝑐− 1)!

(𝑛1−1)!2!…𝑖𝑐!

𝑛𝑐−1
𝑖𝑐=0

𝑛2−1
𝑖2=0

 
1

𝑐
𝑛1+𝑖2+⋯+𝑖𝑐

 

 

                                                                                                                                                              (7) 

In the special case that all queues are equally short this probability becomes. For n ≥ 1, 

ϕ1 (n1,…,nc) = 1-  … 
(𝑛1+ 𝑖2+⋯+𝑖𝑐− 1)!

(𝑛1−1)!2!…𝑖𝑐!

𝑛𝑐−1
𝑖𝑐=0

𝑛2−1
𝑖2=0

 
1

𝑐
𝑛1+𝑖2+⋯+𝑖𝑐

=1-
1

𝑐
=

𝑐−1

𝑐
 ,                                           (8) 

which is immediate for homogeneous system, as mention in

section 3.1. 

Table 1: Worst case for joining the new arrival job in queue 1 in the 

homogeneous system with c=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

able 2: Worst case for joining the new arrival job in queue 1 

 

if n1 = 2 in the homogeneous system with c=3 
𝑛3 𝑛2  2 3 4 5 6 

6 0.5066 0.3271 0.2117 0.1431 0.1045 

5 0.5158 0.3448 0.2379 0.1764 0.1431 

4 0.5364 0.3813 0.2887 0.2379 0.2117 

3 0.5802 0.4527 0.3813 0.3448 0.3271 

2 0.6667 0.5802 0.5364 0.5158 0.5066 

      

 

𝑛2 𝑛1  1 2 3 4 5 6 

6 0.0156 0.0625 0.1445 0.2539 0.3770 0.5000 

5 0.0313 0.1094 0.2266 0.3633 0.5000 0.6230 

4 0.0625 0.1875 0.3438 0.5000 0.6367 0.7461 

3 0.1250 0.3125 0.5000 0.6563 0.7734 0.8555 

2 0.2500 0.5000 0.6875 0.8125 0.8906 0.9375 

1 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 
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Table 1 shows the worst case of ϕ1 (n1, n2) for new arrival job joining queue 1 in the case       c = 2, for 

n1, n2 = 1,…,6. Note that the values ϕ1 (n + m, n), n ≥ 1, m ≥ 1, are irrelevant since an arriving job will 

join the shorter queue, and, hence, not queue 1 in these states. Further, observe that ϕ1 (n, n+m) → 0 as 

m →∞ for fixed n ≥ 1, but that ϕ1 (n , n + m) increases with increasing n for fixed m ≥ 1. Moreover, 

using (7) it follows with the aid of Stirling‘s formula that for fixed m ≥ 1, as n → ∞, 

ϕ1 (n, n + m) = 1 –  
 𝑛+𝑖−1 !

 𝑛−1 !𝑖!

𝑛+𝑚−1
𝑖=0

1

2𝑛+𝑖  
=  

1

2
−    

2𝑛 + 𝑘 − 1
𝑛 − 1

  
1

22𝑛+𝑘
𝑚−1
𝑘=0 ↑

1

2
                                  (9) 

Table 2 shows the worst case of 𝜙1 (2, 𝑛2  , 𝑛3) for arriving job joining queue 1 in the case c=3, for n2, 

n3 = 2,…,6. Note that ϕ1 ( 2, 2+m, 2) → 
1

2
 as m → ∞, which agrees with values of ϕ1 ( 2, 2) for c = 2. 

More generally, as m→∞, ϕ1 (n, n+k+m)= ϕ1 (n, n+k+m, n + k) tends to the value of ϕ1 (n, n+k) for 

c=2. For instance, for n = 2 and k = 1 the limit is                         ϕ1 (2, 3)=0.3125, see Tables 2 and 1. 

Hence, the limiting behavior of the conditional probabilities for c = 3 is more complex than that for c = 

2. However, the most important property is that parallel to the main diagonal n1 = n2 = n3 these 

probabilities tend to 
2

3
 , although rather slowly. For instance, ϕ1 (n, n, n+1)= ϕ1 (n, n+1, n) equals 

0.6527 for n = 100 and 0.6568 for  n = 200, while ϕ1 (n, n+1, n+1 )equals 0.6379 for  n = 100 and 

0.6464 for     n = 200. 

The (unconditional) probability of worst case is defined as  

𝑃𝐵𝐿 =   …∞
𝑛1=1  𝑝(𝑛1

∞
𝑛𝑐=1 , … , 𝑛𝑐)  ϒ𝑗  

𝑐
𝑗=1  𝑛1, …𝑛𝑐 𝜙𝑗  𝑛1, … , 𝑛𝑐 ;                                       (10) 

here, ϒ𝑗  𝑛1, … , 𝑛𝑐 ,  j= 1,…,c, denotes the probability that a job joins queue j  when the system is in 

state (n1,…,nc). It is defined by, with 𝐼 .  the indicator function, 

      ϒ𝑗  𝑛1, … , 𝑛𝑐 =  𝐼 ∀𝑖 𝑛𝑖≥𝑛𝑗  
 𝐼 𝑛𝑖=𝑛𝑗  

,𝑐
𝑖=1  𝑗 = 1, … , 𝑐, 𝑛1, … , 𝑛𝑐  Є IN;                                      (11) 

in particular,  ϒ𝑗  𝑛1, … , 𝑛𝑐  = 0 whenever 𝑛𝑗 >  𝑛𝑖  for some 𝑖 ≠ 𝑗, 𝑗 = 1, … , 𝑐. For application of the 

power-series algorithm, the stability state of probabilities 𝑝(𝑛1 , … , 𝑛𝑐) of the joint queue length process 

in equation (10) are represented as 



Global Journal of Computer Science and Technology Vol. 10 Issue 4 Ver.  1.0  June  2010   P a g e | 43 

 

                        𝑝 𝑛1 , … , 𝑛𝑐 =  𝜌𝑛1+⋯+𝑛𝑐   𝜌𝑘∞
𝑘=0 𝑏 𝑘; 𝑛1, … , 𝑛𝑐 , 𝑛1 , … , 𝑛𝑐  𝜖 IN.                       (12) 

The coefficients 𝑏(𝑘; 𝑛1 , …𝑛𝑐) can be recursively computed by scheme (see Blanc 1987a, 1987b, 1992) 

that follows after substitution of equation (12) into the following global balance equation 

  𝜆 +   µ𝑗 𝐼 𝑛𝑗≥1 
𝑐
𝑗=1   𝑝 𝑛 =  𝜆  ϒ𝑗

𝑐
𝑗=1 (𝑛 − 𝑒𝑗 )𝐼 𝑛𝑗≥1 𝑝(𝑛 − 𝑒𝑗 ) +  µ𝑗

𝑐
𝑗=1 𝑝 𝑛 + 𝑒𝑗  ;             (13) 

Here, 𝑛 =  𝑛1 , … , 𝑛𝑐  Є IN
c
 denotes a state vector, and 𝑒𝑗  are vector of all zeros except a 1 at the jth 

coordinate, 𝑗 = 1, … , 𝑐. 

Figure 2 shows the possibility of Worst case for to join the 

job in a queue of homogeneous servers with c = 2,3,4,5 

servers, respectively, and a fixed service capacity of 𝑐µ = 1, 

as a function of the load ρ. Recall that 𝜌 =  𝜆 ˂ 1 if  cµ = 1. 

It can be seen that at fixed, low values of ρ the probability of 

Worst case is decreasing with the number of servers. This 

can be explained by noting that in light traffic the possibility 

that a new arrival job finds an idle server upon arrival, and 

hence has zero probability of worst case, increases with an 

increasing number of servers. In fact, it follows from the 

power-series expansion at ρ = 0 that in light traffic: for c = 

2,3,…, 

 

 

 

  

Figure 2: Probability of Worst case in homogeneous systems, for c = 2,3,4,5. 

 

 

 

 

 

 

 

 

 

  𝑃𝐵𝐿~
𝑐𝑐−2𝜌𝑐

 𝑐−2 !
−

𝑐𝑐−2𝜌𝑐+1

𝑐!
  𝑐3 − 𝑐2 − 𝑐 + 2 + 𝑂(𝜌𝑐+2), ρ ↓0.                                                (14) 

On the other hand, the figure 2 shows that at fixed values of 

ρ close to 1 the possibility of worst-case increasing with the 

number of servers. For these moderate number of servers the 

possibility of worst-case seems to tend to (𝑐 − 1) 𝑐  as 

𝜌 → 1. This is supported by (9) for the case c=2.  

3.2 Heterogeneous servers 

 

In the second case we consider a heterogeneous system in 

which server j servers request at µ𝑗  ,𝑗  =1,…,𝑐 . The arrival jobs 

are supposed to be not aware of these differences among the 

servers, and still join the shortest queue upon arrival. Hence, 

we will apply (11) unless stated otherwise. Expression (2.7) 

is generalized for this case, for 𝑛1, … , 𝑛𝑐 ≥ 1, 

       𝜙1 𝑛1, … , 𝑛𝑐 = 1 −  … 
 𝑛1+𝑖2+⋯+𝑖𝑐−1 !

 𝑛1−1 !𝑖2!…𝑖𝑐 !

𝑛𝑐−1
𝑖𝑐=0

𝑛2−1
𝑖2=0

 
µ1
𝑛1 µ2…

𝑖2 µ𝑐
𝑖𝑐

(µ1+⋯+µ𝑐)
𝑛1+𝑖2+⋯+𝑖𝑐

.                         (15) 
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Table 3: Conditional probability of Worst-Case if queue 1 is joined, for                                

   𝑐 = 2,  µ
1

= 1.2,    µ
2

= 0.8 

 

𝒏𝟐 𝒏𝟏  1 2 3 4 5 6 

6 0.0041 0.0188 0.0498 0.0994 0.1662 0.2465 

5 0.0102 0.0410 0.0963 0.1737 0.2666 0.3669 

4 0.0256 0.0870 0.1792 0.2898 0.4059 0.5174 

3 0.0640 0.1792 0.3174 0.4557 0.5801 0.6846 

2 0.1600 0.3520 0.5248 0.6630 0.7667 0.8414 

1 0.4000 0.6400 0.7840 0.8704 0.9222 0.9533 

 

Table 3 shows the conditional probability of worst-case 

𝜙1(𝑛1, 𝑛2)for the arrival job joining queue 1 in the case 

𝑐 = 2, µ1 = 1.2, µ2 = 0.8 for 𝑛1, 𝑛2 = 1, … ,6. The values                

𝜙1 𝑛 + 𝑚, 𝑛 , 𝑛 ≥ 1, 𝑚 ≥ 1, are again irrelevant as in 

Table 1, but they indicate that in some cases (when 𝜙1 𝑛 +

𝑚, 𝑛 ≤
1

2
) arriving jobs would be better off if they did not 

join the shorter queue. Further, note that 𝜙2 𝑛1, 𝑛2 =  1 −
𝜙1 𝑛1, 𝑛2 for all 𝑛1, 𝑛2 = 1,2, …. 

In lightly to moderately loaded systems, heterogeneous in 

the service rates increases the probability of worst case. This 

has more to do with an increase of congestion with 

increasing difference between the service rates than with the 

conditional probabilities of worst-case. For instance, 

𝑃𝐵𝐿 ~ 𝑝 1,1   
1

2
 𝜙1 1,1 +

1

2
 𝜙2 1,1   𝜌 ↓ 0 ,   see (10), 

(12) and 

 

𝑝  1,1 ~ 
1

2
 𝜌2 (µ1+µ2)2

µ1µ2
 (𝜌 ↓ 0) increases for fixed (small) 

load ρ as µ1 = 2 − µ2 increases, while 
1

2
𝜙1 1,1 +

1

2
𝜙2 1,1 =

1

2
 remains constant.  

 

Suppose the system is heavily loaded, in the heterogeneous 

servers service rates decreases the possibility of worst-case. 

This can be explained by the features that if server 1 works 

faster (µ1 > µ2), the joint queue length process will tend to 

spend more time in the area 𝑛1 < 𝑛2 than in the area 

𝑛1 > 𝑛2, while for 𝑛1 < 𝑛2, 𝜙1(𝑛1, 𝑛2) is smaller than its 

opposite 𝜙2 𝑛1, 𝑛2 = 1 − 𝜙1(𝑛2, 𝑛1), see Table 3. A  

 

further analysis indicates that PBL approaches 

 
µ2

(µ1+µ 2)
 as 𝜌 ↑ 1 if µ1 >  µ2, while the approach of this limit 

is less steep with increasing value of µ1 = 2 − µ2, 1 ≤  µ1 ≤
2. This limit is obtained from numerical analysis. There is 

no simple generalization of (9) to the heterogeneous system, 

since, e.g., 𝜙1(𝑛, 𝑛)↓0 as 𝑛 → ∞, see Table 3. 

 

IV.    CONCLUSION 

This paper has studied the analysis of worst-case in JSQ 

routing policy in web server farms. A new arrival job is said 

to experience bad luck (Worst-case) if it joined one of the 

shortest queues upon arrival, but it service would have 

started earlier if it had joined one of the other queues. In 

homogeneous system, the possibility of worst case may well 

exceed 
1

2
 when there are three or more servers, but this only 

occurs if the load of the system is very close to 1. The 

approach of this probability to its heavy traffic limit is very 

steep, so that this limit, which is easily computable, will not 

be a good approximation for most values of the load. 

Heterogeneous in the service rates tends to increase this 

probability in light traffic, but to decrease it in moderate to 

heavy traffic. 
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