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Abstract- Computer component fabrication is approaching 

physical limits of traditional photolithographic fabrication 

techniques. Alternative computer architectures are being 

enabled by the rapidly maturing field of nanotechnology, and 

range from nanoelectronics and bioelectronics to nano-

mechanical computational machines and other nanoscale 

components. In this study, the design of a nanocompiler, which 

targets a simulated hydrocarbon assembler, is presented. The 

compiler framework demonstrates the feasibility of a hardware 

compiler to produce building block components, a necessary 

first step in full molecular assembly of nano-mechanical 

computers. As a proof of concept, the resulting nano-

mechanical machine components are simulated using a 

Colored Petri Net model of a 32-bit adder and an atomic-level 

gate simulator. Performance and size bound estimates and key 

nano-mechanical component design issues are given. 

Keywords- Nanocompilers, Mechanical logic gates, 

Compiler-directed mechanosynthesis, modeling. 

 

I INTRODUCTION 
 

espite recent significant advancements in feature size 

to 45nm, announced in 2007 by Intel, there is growing 

consensus that the familiar density-doubling prediction of 

Moore‘s Law as it concerns 2D fabrication techniques is 

reaching limits [1,2]. The trend clearly is away from 

techniques that fit increasing numbers of transistors onto a 

chip, as manufacturers pursue technology that enables 

increasing numbers of processing cores on a single chip [3]. 

The movement toward increased coarse-grained parallelism, 

the seeming approach of inherent limits of photolithographic 
techniques, and the continued maturation of the field of 

nanotechnology could hint at a serendipitous convergence of 

needs and capabilities. 

The way forward in chip design and fabrication may well 

include applied computational nanotechnology as originally 

foreseen by Eric Drexler [4], and furthered by many others 

[5-8]. Current chip design techniques, and in fact virtually 

all software and hardware design of any significance, make 

use of a variety of automated compiler tools to generate 

complex designs, layouts or executable code from an 

original human-readable specification or source program 

[2]. Molecular manufacturing, and other applications of 
nanotechnology, are likely to require a similar approach in 

order to manage the scope and complexity of translating a 

high-level processor specification into nanoscale 

components. Computer science techniques, such as compiler 

design, optimization and software engineering, are likely to 

play an important role in the molecular design and 

fabrication process. [4] 

\ 

 
Modern compilers for high performance computer 

architectures apply a sequence of sophisticated analyses and 

optimizations to translate a source language program into 

efficient binary machine code. Machine specific 

optimizations, customized to the particular target 

architecture, are required to achieve significant speedup on 

modern, high-performance architectures [2,9]. In spite of 

public announcements made in early 2007 of advances in 

feature-size reduction by Intel and AMD, heat dissipation 

and barriers of physics remain as problems [1,5]. 

Nanotechnology, manufacturing performed through 

manipulation of atoms and molecules, or through other 
nanoscale manufacturing techniques, is capable of 

overcoming these barriers [4]. The continuing trend toward 

flexible computer architectures with higher degrees of 

parallelism suggests that the field of reconfigurable 

computing, perhaps enabled through the use of 

nanotechnology, is the next evolutionary step in processor 

design [5,10]. 

Nanocomputing is taken to mean the class of highly 

reconfigurable, nanotechnology-based, computer 

architectures, and a nanocompiler is the software-hardware 

system that targets such a nanocomputer. In this paper, we 
present the design of a nanocompiler framework that targets 

one form of nanoscale computer architecture, nano-

mechanical computing devices. This compiler framework 

translates a source code program into both an optimized 

executable program and a customized nanocomputer on 

which the executable program will be ideally suited to run. 

Much as traditional compilers customize the program to suit 

the machine [9], this proposed compiler customizes the 

machine to fit the program. Since no such nanocomputer 

architecture yet exists, our study demonstrates the approach 

using a molecular design language, a simulated hydrocarbon 

assembler, and a mathematical modeling tool to demonstrate 
and estimate the performance of this approach. 

 

II BACKGROUND 

 

Nanocomputer architectures, which form a subset of 

reconfigurable architectures that include FPGA, FCCM, 

cellular array, synthetic neural systems and many others 

[6,10], are produced using some form of a molecular 

manufacturing and provide a natural successor to current 

general-purpose microprocessor architectures [6]. To be 

accepted, nanocomputers functionally must be at least as 
capable as their predecessors, fast, inexpensive, robust and 

capable of operating at room temperature and of executing 

legacy code [5]. In order to produce such nanoscale 

architectures, molecular manufacturing and 
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mechanosynthesis techniques must be understood, including 

the use of hydrocarbon assemblers. As this technology is not 

yet realized, the use of a variety of research tools to model 

and simulate the proposed architecture is required. 

The capabilities of various nanotechnologies as applied to 

science and manufacturing generally are classified into one 

of a range of generations or stages. Roco describes four 
generations [11] of nanotechnology development: passive 

nanostructures, active nanostructures, systems of 

nanosystems and molecular nanosystems. Hall defines a set 

of five stages [12] of increasing precision, complexity and 

difficulty: bulk process chemistry, molecular self-assembly, 

cellular-scale machinery, special purpose macro-scale 

molecular assembly, and general molecular manufacturing. 

Current advancements in nanotechnology are in Roco‘s 

second generation or Hall‘s second stage. The research 

reported in this paper assumes advancements will continue 

forward to at least Roco‘s third generation and Hall‘s fourth 
stage. 

 

A. Nanoscale Computer Architectures 

 

Among the proposed nanoscale computer architectures are 

silicon-based resonant-tunneling devices (RTDs) consisting 

of tunneling diodes paired with field-effect transistors 

(FETs) [5], carbon nanotube semiconductors [13], 

diamondoid carbon transistors synthesized using Chemical 

Vapor Deposition (CVD) techniques [14], a variety of 

quantum, DNA-based and single-electron transistor (SET) 

nanoscale electronic devices [7], and novel nano-mechanical 
computing devices constructed of moving, nanoscale 

components [4]. Such nano-mechanical computers are 

reminiscent of Charles Babbage‘s Analytical Engine [2], 

albeit nine or ten orders of magnitude smaller. Although 

these potential technologies hold promise, all but nano-

mechanical devices appear to be constrained to two 

dimensions, limiting their potential for improvement over 

time in the same way that current photolithographic 

techniques are limited. The recent press release 

announcement regarding the maturation of IBM‘s chip-

stacking technology may hint at a future for 3D electronic 
devices, although issues of resistance, heat dissipation, 

interconnectivity and quantum tunneling remain as 

significant hurdles [4,7,12]. 

Nano-mechanical devices such as logic gates and registers 

will be constructed from a series of molecular logic rods 

called interlocks and driven by kinetic forces [4]. Although 

this atomic-scale computational machinery will operate 

more slowly than traditional electronic devices, the 

difference will be only approximately one order of 

magnitude due to its much smaller size. Nano-mechanical 

devices can have much higher densities since interlock logic 

gates can be stacked in three dimensions while transistors 
must be placed on a 2-dimensional substrate. The density of 

nano-mechanical devices is estimated to be 1011 greater than 

that of silicon transistor devices, enabling the very real 

potential to produce massively parallel networks of 

nanoscale processors [4]. Other benefits to nano-mechanical 

computing architectures include precision, tolerance to 

physical wear, and improved fault tolerance [15]. 

The interlocks used for logic gates as described in Drexler‘s 

architecture consist of sliding rods that have knob 

protrusions which slide between one another. Depending on 

their position, one rod may block another or allow a rod to 

continue sliding along its vector of movement, with input 
and output provided by additional interlock rods, all 

enclosed in a stiff housing. Rods can be combined easily to 

form a logic gate that computes the output of a NAND 

operation, a logical component from which all other logical 

operations can be constructed. Estimates for clock speeds of 

nano-mechanical logic gates are 1000 MIPS, or 

approximately 1 GHz. The ability to fabricate in three 

dimensions means that massively parallel processors could 

be formed in very dense volumes. A complete nano-

mechanical CPU system of 106 logic gate ―transistors‖ 

forming a cube 400 nm on a side, with each logic gate being 
smaller than a single rhinovirus, would fit in the same 

surface area as just 80 transistors at the 45 nm scale. [4] 

 

B. Mechanosynthesis And Hydrocarbon Assemblers 

 

Building molecular mechanical computers with atomic 

precision will require direct control of the chemical 

reactions that occur between atoms and molecules. The 

process of manufacturing machinery through such methods 

is known as Molecular Manufacturing [14]. So far, 

chemistry has relied on methods of controlled, probabilistic 

reactions resulting from collisions between masses of atoms 
in order to synthesize useful compositions, but without 

guarantee of atomic precision. Mechanosynthesis is 

performed using atomically precise tools that rely on 

chemical bonding to produce positional control of 

mechanical forces [16], which would be used to synthesize 

useful molecules from their constituent atoms, as well as 

higher-order structures [14]. 

Ideally, mechanosynthesis would be performed using a 

Universal Constructor, a nano-mechanical computer 

controlled machine that could follow sequences of 

instructions to assemble raw atomic material into arbitrary 
molecular structures, including exact copies of itself [15]. 

Drexler's proposal for a general-purpose molecular 

assembler is an example of such a constructor [4,15], an 

approach that is reminiscent of Alan Turing‘s notion of a 

Universal Machine which eventually led to the modern, 

stored-program computer [2]. Research has focused on the 

hydrocarbon assembler, which is a simplified universal 

constructor that builds diamondoid structures [4], including 

copies of itself. The small molecular computers in each 

assembler are controlled by a broadcast mechanism 

emanating from a macroscale computer. Instructions from 

the macroscale controller in such a broadcast architecture 
are passed through acoustic waves that vibrate through a 

liquid environment surrounding the assemblers. The 

instructions are received by mechanical pressure-actuated 

devices in the assemblers. These pressure activated devices 

initiate instructions to the mechanical logic units in the 
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assembler computer. As a result, the assembler can be 

reprogrammed to make different molecular structures [8]. 

 

C. Modeling Of Nano-Mechanical Structures 

 

Molecular machinery can require billions or trillions of 

atoms in the final design. Thus, there is a need for a set of 
―molecular compilers,‖ which take a high level of 

abstraction input for molecular components and transform 

them into atomically positioned devices [10]. To enable 

high-level specification of nano-mechanical structures, an 

abstract scripting language, MolML, was developed that can 

be compiled into hydrocarbon assembler instructions [17]. 

MolML is an Extensible Markup Language (XML) based 

language that is designed to factor out the redundancy in 

molecular structures that have large amounts of symmetry 

and repetition. The language is written to provide 

communication between a macroscale computer and a 
molecular assembler, facilitating the correspondence of 

input instructions to the assembler. Using MolML, it is 

possible to define 3-dimensional molecular structures of 

arbitrary complexity [17]. 

In order to visualize and simulate the molecular structures 

defined with MolML, a software tool was developed to 

parse, display and animate a MolML design. The MolSim 

tool [17] implements basic Newtonian Laws by using vector 

geometries, accounting for the position, velocity, and 

acceleration of particles in the simulation environment. The 

simulation engine was tested against a MolML document 

that defined the structure of Drexler‘s nano-mechanical 
NAND gates, using the tetrahedral lattice molecular 

structure of rigid diamond molecules to form the logic rods. 

For efficiency concerns, the housing was omitted. The 

molecular design was inspired from an examination of the 

repetitive symmetries inherent in the lattice [6]. 

Simulation of atomic interactions and molecular structures 

in the current version of MolSim is infeasible for larger 

structures, so these larger structures such as adders can be 

constructed as formal, mathematical models using Colored 

Petri Nets (CPNs) [18]. Petri Nets provide a modeling 

language that is well suited for larger systems, drawing on 
the power of generalization provided by mathematical 

modeling techniques. In practice, a CPN model is created 

using a graphical tool, enabling visual representation and 

analysis of a CPN model. With the addition of timing 

parameters, CPN can realistically model the function of a 

nano-mechanical NAND gate and higher-order molecular 

structures constructed hierarchically by reusing the NAND 

model in varying configurations. 

 

D. Nanocompiler Design 

 

The two major goals of the work reported in this paper are 
refinement of the design of a nanocompiler [19] and a 

simulation of a common nano-mechanical component that 

can be generated by the nanocompiler. Our nanocompiler 

design generates as its output both as an executable version 

of the original source program and the description of a 

machine on which the executable will run. Traditional 

compilers take the source code and translate it into a binary 

form suitable for a specific processor, optimized to run as 

well as possible on that target machine. Knowledge of the 

target machine is needed to perform machine-dependent 

optimizations. Our approach is a generalization of 

compilation for reconfigurable computing in that the 

configuration of the target machine is unknown when 
compilation begins. The machine configuration is extracted 

from the source program, based on analyses of program 

characteristics. In this way, the resulting machine is an 

excellent fit to the program. 

Figure 1 illustrates the organization of the proposed 

nanocompiler from a high level. Source code is processed 

by the Front end of the compiler, including machine-

independent optimizations. The resulting intermediate form 

is passed to a Machine requirements analysis phase, which 

performs static analysis, providing metrics to the Machine 

description generation phase. The resulting machine 
description is used by the Processor generator phase to 

generate or reconfigure the target machine, and by the 

compiler Back end to perform machine-dependent 

optimizations and generate the executable code. The 

Processor generator and even runtime profiling information 

can feed information back into the Machine requirements 

analysis phase to enable iterative refinement of the machine 

description, and thus of the processor itself. 

 
Fig.1. Organization of a nanocompiler 

 

Inside the Processor generator (Figure 2), a machine is 

reconfigured or generated using a nanotechnology approach. 

The machine description is analyzed through a sequence of 

phases that translate the description into a layout of circuits 

(e.g., VHDL) or other structures (e.g., MolML) that 

implement the machine, which in turn is implemented using 
logic gates, which are either reconfigured as with FPGAs or 

assembled using molecular manufacturing techniques, to 

produce the target processor. 
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Fig.2. Organization of a nanotechnology-based processor 

generator. 

In the current implementation, we focus on the generation of 

a nano-mechanical machine description for an addition 

instruction. Thus, we restrict the scope of the research 

results reported in this paper to the machine description and 

processor generation phases, and more specifically on how a 
machine description for low-level components, nano-

mechanical NAND gates, can be combined into a higher-

level component, a 32-bit nano-mechanical adder. 

Designing nano-mechanical computer components at this 

scale raises a number of important issues that may need to 

be addressed in future research, including 

 

A. Compilation Time 

 

Determine the time needed to analyze source code, produce 

a machine specification, and fabricate components using 

hydrocarbon assemblers, which can enable near-exponential 
assembly capability through an initial self-replication 

process. 

 

B. Design Feasibility 

 

Determine whether the approach is feasible, and identify 

further what technology must be developed to construct a 

complete, working nanocompiler. Extend 2-D fabrication to 

an understanding of 3-D fabrication made possible with 

mechanical components. 

 
C. Performance Efficiency 

 

Determine the efficiency of inherently slower nano-

mechanical processing, evaluate for potential speedup 

through increased parallelism, and predict throughput and 

related latencies. Design realistic models that reflect 

predicted behavior. 

 

D. Requirements Analysis 

 

Determine what essential information is needed in the 

compiler, including analyses performed for parallelization, 
resource requirements, and efficiently scalable 

reconfiguration and fabrication. 

 

E. Usability Of Massive Parallelism 

 

Identify approaches that can successfully utilize the extreme 

parallelism that may be available, including integration of 

ILP, thread- and task-level parallelism. 

 

III SIMULATION OF NANOSCALE COMPONENTS 

 

Simulation of a 32-bit nano-mechanical adder was 

accomplished through a sequence of four developmental 

stages:  nano-mechanical NAND gate, CPN model of a 

NAND gate, CPN model of a 1-bit adder, and a CPN model 

of a 32-bit adder. In the first stage of development, an 

atomic-level nano-mechanical description language 

(MolML) and a simulation tool (MolSim) were designed, 

enabling a realistic, visual modeling of a single NAND gate 

(Figure 3). By extending earlier work on MolSim [17], we 

created an atomic and molecular description of a NAND 
gate that could be generated given a few positional 

parameters, which is then translated by MolSim into the full 

atomic and molecular description that provides details of the 

placement and configuration for each atom and molecule. 

Based on proposed functional parameters of nano-

mechanical logic gates [4], a variety of estimated 

characteristics are provided in Table I. The rod component 

of the NAND gate can be constructed using relatively few 

Carbon atoms, while the housing which encloses the gate 

(not shown) requires significantly more. Atomically precise 

modeling tools are needed to quantify these material 

requirements. The proposed speed for a nano-mechanical 
processor is approximately 1 ns per operation, operating at 

1000 MIPS, or 1 GHz, with logic and arithmetic operations 

requiring about 1 ns [4]. We assume 0.1 ns per NAND 

calculation, with 0.2 ns for reset latency. The volume of a 

single NAND gate is approximately 16 nm3 [4], so 

6.25e+16 such components can fit in a single cubic 

millimeter. Clearly this is a much higher density than the 

current best practical feature size of 45 nm. 

 

 
Fig. 3. MolSim model of a NAND gate. 

 

Table I. Estimated characteristics of mechanical NAND 

gate model [4]. 

Characteristic 
Estimated 
value 

Time to perform operation  (Transistors 

require 0.01 ns) 
0.1 ns 

Time to reset  (2x op time) 0.2 ns 

Machine description

Circuit generator

Circuit layout optimizer

Logic gate generator

Molecular gate assembler

Processor

Machine description

Circuit generator

Circuit layout optimizer

Logic gate generator

Molecular gate assembler

Processor
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Surface area of gate  (Transistors each 
require 106 nm2) 

4 nm2 

Volume of gate  (gates are stackable in 3D) 16 nm3 

Improvement in volumetric packing density 
compared to transistors 

>1011 

 

In the second stage, CPN was used to model the same 

NAND gate at a higher level of abstraction (Figure 4), but 

with identical behavior characteristics. Time units are 

measured by the addition of a timestamp notation to the 

NAND gate, such that the function of each NAND gate 

accounts for one unit of time. Time units accumulate during 

the simulation, enabling straightforward scaling to other 

time units as needed. Because of the nature of the binary 
calculations being performed, the NAND gate was designed 

to operate on Boolean, rather than decimal, values. 

 
Fig. 4. CPN model of a NAND GATE. 

 

In the third stage, a CPN model was constructed of a 1-bit 

adder by connecting nine NAND gate models in a standard 

adder configuration (Figure 5). Time measurement of the 
NAND gate model produced output of a carry value in 5 

units of time, and a sum value in 6 time units, which equates 

to a total time of 0.6 ns to perform a 1-bit addition. 

 
Fig. 5. CPN model of a 1-bit Adder. 

In the fourth and final stage, a CPN model of a 32-bit adder 

was constructed using the hierarchical features of CPN Tool, 

combining four 1-bit adders into a 4-bit adder, then four 4-

bit adders in a 16-bit adder, and finally two 16-bit adders 

into a 32-bit adder (Figure 6). Timing for addition of two 32 

bit values was a total of 68 time units, which is generalized 

to the equation: 2(n-1)+6, where n is the number of bits. 
Although the carry value requires 5 units to calculate in each 

individual adder, because calculation of the sum does not 

require the previous carry for the first 3 time units, 

significant overlapping (i.e., parallel) computation occurs. 

Table II summarizes selected characteristics, providing 

initial estimates. Based on our models, and other proposed 

characteristics [4], a 32-bit nano-mechanical adder requires 

288 NAND gates connected using roughly 96 connector 

rods, possibly constructed of nanotubes in a housing. The 

models predict 6.8 ns per addition, with latency between the 

start of subsequent additions of 7.0 ns, including the 0.2 ns 
reset time. Drexler‘s proposed CPU requires approximately 

1 ns per operation [4], suggesting that some amount of 

parallelism may be inherent in a nano-mechanical adder that 

is not captured in the current model. At this estimated size, 

2e+14 such adders would fit in a volume of one cubic 

millimeter. Extrapolating these values, the presented 32-bit 

adder model is within specification of a proposed nano-

mechanical CPU that would be contained in a cube 400 nm 

on a side [4]. 

Table II. 

Estimated characteristics of a 32-bit nano-mechanical 

adder model.[4] 

 
Characteristic Est. value 

Total NAND gates @ 16 nm3 288 

Total connectors @ 1 nm3 96 

Estimated volume  (approx 16 nm cube) 

   (288 x 16  nm3) + (96 x 1 nm3) 

4,704 nm3 

Estimated time for 1-bit addition 0.6 ns 

Time to perform 32-bit addition based on 
simulation 

6.8 ns 

Predicted time of 32-bit addition [6] 1 ns 

Estimated throughput of model 142 MIPS 

Predicted throughput [6] 1000 MIPS 
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Fig. 6. CPN model of a 32-bit Adder 

 

IV RELATED WORK 

 

Reconfigurable architectures, including nanocomputing, are 

likely to provide a better fit and allow continued 

performance improvements for general-purpose 

computation. [5,6,10,20]. Design space exploration as 

applied to compilation for FPGA-based and other 

reconfigurable architectures demonstrates the performance 
improvements possible with customized architectures [21-

23]. The concept of ―program in, chip out‖ (PICO) relies on 

compiler analysis, particularly targeted automatic 

parallelism, to identify program fragments that will benefit 

most from customized hardware [21]. While PICO targets 

primarily embedded processors and uses design space 

exploration, our approach envisions a desktop or embedded 

computer that reconfigures its own hardware to any arbitrary 

configuration, using machine requirements analysis and 

nanotechnology. This process may resemble FPGA 

reconfigurability, or physical molecular reassembly, 
performed at compile-time or run-time. 

An innovative approach to large-scale, homogeneous, 

undifferentiated, reconfigurable architecture improves upon 

FPGAs using a less expensive nanoscale cell matrix 

approach [6]. This work describes how networks of atomic-

scale switches can be configured in parallel and used to 

fabricate scalable processors that are customized to specific 

tasks. Our research can be targeted to a nanocomputer cell 

matrix architecture, focusing on use of the compiler to 

automatically generate reconfiguration instructions. 

Although recent advancements in nanotechnology center on 

medicine, pharmaceuticals, chemistry, physics and computer 
engineering [12], most are early-generation nanotechnology. 

Our research pursues basic and applied nanocompiler 

research, focusing on applied molecular manufacturing 

techniques. Continued research in this area in the near future 

will require more powerful modeling and simulation tools.  

 

 

 

 

Although CPN provides a flexible framework for modeling, 

true molecular models that more accurately depict the 

underlying physics and enable large-scale simulation are 

needed, though they will be computationally expensive. A 

variety of tools are available for molecular modeling and 

simulation (i.e., nanohub.org), with a promising recent tool 
being Nanorex‘s NanoEngineer (i.e., nanorex.com). 

 

V CONCLUSION AND FUTURE WORK 

 

Reconfigurable computing is a rapidly advancing area, and 

the early promise of nanotechnology is being recognized. In 

this paper, we have proposed the design of a nanocompiler 

framework and demonstrated how molecular computing 

components can be generated from a higher-level 

representation, such as source code. Although this research 

is limited to simulation of a nano-mechanical adder 
component, the same approach can be used to generate the 

full range of components needed to construct an arbitrarily 

complex nano-mechanical multi-processor. With the 

significant flexibility and capability of nanocomputers, it is 

likely that the responsibility for guiding the configuration 

will fall to the compiler, and this research demonstrates the 

feasibility of that approach. Rather than the compiler 

customizing the program to suit the machine as in traditional 

compilation, the compiler may customize the machine to 

suit the program, extending code generation to include the 

ability to reconfigure the processor or guide its design and 

fabrication. 
We are conducting extensive research and experimentation 

in the area of nanocompiler design and molecular nano-

mechanical machine generation, including program 

characterization analysis, automatic parallelization, and 

molecular modeling. The long-term goal of this research is 

compiler control of physical, molecular assembly hardware 
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such as STMs and their descendants. Early work with an 8-

bit adder model that uses a carry-lookahead approach [24] 

indicates that practical performance improvements are 

possible. Models for other components, including logic 

units, multipliers, and memory, are being developed using 

Colored Petri Nets for to conceptualize design and behavior 

and NanoEngineer to visualize the structure and physics of 
these nanoscale components. 
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