
P a g e | 36 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

GJCST Computing Classification
D.2.2, C.5.3 & B.1.4

Compiling Mechanical Nanocomputer Components

Thomas Way, Tao Tao
and Bryan Wagner

Department of Computing Sciences Villanova University

Villanova, PA, USA thomas.way@villanova.edu

Abstract- Computer component fabrication is approaching

physical limits of traditional photolithographic fabrication

techniques. Alternative computer architectures are being

enabled by the rapidly maturing field of nanotechnology, and

range from nanoelectronics and bioelectronics to nano-

mechanical computational machines and other nanoscale

components. In this study, the design of a nanocompiler, which

targets a simulated hydrocarbon assembler, is presented. The

compiler framework demonstrates the feasibility of a hardware

compiler to produce building block components, a necessary

first step in full molecular assembly of nano-mechanical

computers. As a proof of concept, the resulting nano-

mechanical machine components are simulated using a

Colored Petri Net model of a 32-bit adder and an atomic-level

gate simulator. Performance and size bound estimates and key

nano-mechanical component design issues are given.

Keywords- Nanocompilers, Mechanical logic gates,

Compiler-directed mechanosynthesis, modeling.

I INTRODUCTION

espite recent significant advancements in feature size

to 45nm, announced in 2007 by Intel, there is growing

consensus that the familiar density-doubling prediction of

Moore‘s Law as it concerns 2D fabrication techniques is

reaching limits [1,2]. The trend clearly is away from

techniques that fit increasing numbers of transistors onto a

chip, as manufacturers pursue technology that enables

increasing numbers of processing cores on a single chip [3].

The movement toward increased coarse-grained parallelism,

the seeming approach of inherent limits of photolithographic
techniques, and the continued maturation of the field of

nanotechnology could hint at a serendipitous convergence of

needs and capabilities.

The way forward in chip design and fabrication may well

include applied computational nanotechnology as originally

foreseen by Eric Drexler [4], and furthered by many others

[5-8]. Current chip design techniques, and in fact virtually

all software and hardware design of any significance, make

use of a variety of automated compiler tools to generate

complex designs, layouts or executable code from an

original human-readable specification or source program

[2]. Molecular manufacturing, and other applications of
nanotechnology, are likely to require a similar approach in

order to manage the scope and complexity of translating a

high-level processor specification into nanoscale

components. Computer science techniques, such as compiler

design, optimization and software engineering, are likely to

play an important role in the molecular design and

fabrication process. [4]

\

Modern compilers for high performance computer

architectures apply a sequence of sophisticated analyses and

optimizations to translate a source language program into

efficient binary machine code. Machine specific

optimizations, customized to the particular target

architecture, are required to achieve significant speedup on

modern, high-performance architectures [2,9]. In spite of

public announcements made in early 2007 of advances in

feature-size reduction by Intel and AMD, heat dissipation

and barriers of physics remain as problems [1,5].

Nanotechnology, manufacturing performed through

manipulation of atoms and molecules, or through other
nanoscale manufacturing techniques, is capable of

overcoming these barriers [4]. The continuing trend toward

flexible computer architectures with higher degrees of

parallelism suggests that the field of reconfigurable

computing, perhaps enabled through the use of

nanotechnology, is the next evolutionary step in processor

design [5,10].

Nanocomputing is taken to mean the class of highly

reconfigurable, nanotechnology-based, computer

architectures, and a nanocompiler is the software-hardware

system that targets such a nanocomputer. In this paper, we
present the design of a nanocompiler framework that targets

one form of nanoscale computer architecture, nano-

mechanical computing devices. This compiler framework

translates a source code program into both an optimized

executable program and a customized nanocomputer on

which the executable program will be ideally suited to run.

Much as traditional compilers customize the program to suit

the machine [9], this proposed compiler customizes the

machine to fit the program. Since no such nanocomputer

architecture yet exists, our study demonstrates the approach

using a molecular design language, a simulated hydrocarbon

assembler, and a mathematical modeling tool to demonstrate
and estimate the performance of this approach.

II BACKGROUND

Nanocomputer architectures, which form a subset of

reconfigurable architectures that include FPGA, FCCM,

cellular array, synthetic neural systems and many others

[6,10], are produced using some form of a molecular

manufacturing and provide a natural successor to current

general-purpose microprocessor architectures [6]. To be

accepted, nanocomputers functionally must be at least as
capable as their predecessors, fast, inexpensive, robust and

capable of operating at room temperature and of executing

legacy code [5]. In order to produce such nanoscale

architectures, molecular manufacturing and

D

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 37

mechanosynthesis techniques must be understood, including

the use of hydrocarbon assemblers. As this technology is not

yet realized, the use of a variety of research tools to model

and simulate the proposed architecture is required.

The capabilities of various nanotechnologies as applied to

science and manufacturing generally are classified into one

of a range of generations or stages. Roco describes four
generations [11] of nanotechnology development: passive

nanostructures, active nanostructures, systems of

nanosystems and molecular nanosystems. Hall defines a set

of five stages [12] of increasing precision, complexity and

difficulty: bulk process chemistry, molecular self-assembly,

cellular-scale machinery, special purpose macro-scale

molecular assembly, and general molecular manufacturing.

Current advancements in nanotechnology are in Roco‘s

second generation or Hall‘s second stage. The research

reported in this paper assumes advancements will continue

forward to at least Roco‘s third generation and Hall‘s fourth
stage.

A. Nanoscale Computer Architectures

Among the proposed nanoscale computer architectures are

silicon-based resonant-tunneling devices (RTDs) consisting

of tunneling diodes paired with field-effect transistors

(FETs) [5], carbon nanotube semiconductors [13],

diamondoid carbon transistors synthesized using Chemical

Vapor Deposition (CVD) techniques [14], a variety of

quantum, DNA-based and single-electron transistor (SET)

nanoscale electronic devices [7], and novel nano-mechanical
computing devices constructed of moving, nanoscale

components [4]. Such nano-mechanical computers are

reminiscent of Charles Babbage‘s Analytical Engine [2],

albeit nine or ten orders of magnitude smaller. Although

these potential technologies hold promise, all but nano-

mechanical devices appear to be constrained to two

dimensions, limiting their potential for improvement over

time in the same way that current photolithographic

techniques are limited. The recent press release

announcement regarding the maturation of IBM‘s chip-

stacking technology may hint at a future for 3D electronic
devices, although issues of resistance, heat dissipation,

interconnectivity and quantum tunneling remain as

significant hurdles [4,7,12].

Nano-mechanical devices such as logic gates and registers

will be constructed from a series of molecular logic rods

called interlocks and driven by kinetic forces [4]. Although

this atomic-scale computational machinery will operate

more slowly than traditional electronic devices, the

difference will be only approximately one order of

magnitude due to its much smaller size. Nano-mechanical

devices can have much higher densities since interlock logic

gates can be stacked in three dimensions while transistors
must be placed on a 2-dimensional substrate. The density of

nano-mechanical devices is estimated to be 1011 greater than

that of silicon transistor devices, enabling the very real

potential to produce massively parallel networks of

nanoscale processors [4]. Other benefits to nano-mechanical

computing architectures include precision, tolerance to

physical wear, and improved fault tolerance [15].

The interlocks used for logic gates as described in Drexler‘s

architecture consist of sliding rods that have knob

protrusions which slide between one another. Depending on

their position, one rod may block another or allow a rod to

continue sliding along its vector of movement, with input
and output provided by additional interlock rods, all

enclosed in a stiff housing. Rods can be combined easily to

form a logic gate that computes the output of a NAND

operation, a logical component from which all other logical

operations can be constructed. Estimates for clock speeds of

nano-mechanical logic gates are 1000 MIPS, or

approximately 1 GHz. The ability to fabricate in three

dimensions means that massively parallel processors could

be formed in very dense volumes. A complete nano-

mechanical CPU system of 106 logic gate ―transistors‖

forming a cube 400 nm on a side, with each logic gate being
smaller than a single rhinovirus, would fit in the same

surface area as just 80 transistors at the 45 nm scale. [4]

B. Mechanosynthesis And Hydrocarbon Assemblers

Building molecular mechanical computers with atomic

precision will require direct control of the chemical

reactions that occur between atoms and molecules. The

process of manufacturing machinery through such methods

is known as Molecular Manufacturing [14]. So far,

chemistry has relied on methods of controlled, probabilistic

reactions resulting from collisions between masses of atoms
in order to synthesize useful compositions, but without

guarantee of atomic precision. Mechanosynthesis is

performed using atomically precise tools that rely on

chemical bonding to produce positional control of

mechanical forces [16], which would be used to synthesize

useful molecules from their constituent atoms, as well as

higher-order structures [14].

Ideally, mechanosynthesis would be performed using a

Universal Constructor, a nano-mechanical computer

controlled machine that could follow sequences of

instructions to assemble raw atomic material into arbitrary
molecular structures, including exact copies of itself [15].

Drexler's proposal for a general-purpose molecular

assembler is an example of such a constructor [4,15], an

approach that is reminiscent of Alan Turing‘s notion of a

Universal Machine which eventually led to the modern,

stored-program computer [2]. Research has focused on the

hydrocarbon assembler, which is a simplified universal

constructor that builds diamondoid structures [4], including

copies of itself. The small molecular computers in each

assembler are controlled by a broadcast mechanism

emanating from a macroscale computer. Instructions from

the macroscale controller in such a broadcast architecture
are passed through acoustic waves that vibrate through a

liquid environment surrounding the assemblers. The

instructions are received by mechanical pressure-actuated

devices in the assemblers. These pressure activated devices

initiate instructions to the mechanical logic units in the

P a g e | 38 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

assembler computer. As a result, the assembler can be

reprogrammed to make different molecular structures [8].

C. Modeling Of Nano-Mechanical Structures

Molecular machinery can require billions or trillions of

atoms in the final design. Thus, there is a need for a set of
―molecular compilers,‖ which take a high level of

abstraction input for molecular components and transform

them into atomically positioned devices [10]. To enable

high-level specification of nano-mechanical structures, an

abstract scripting language, MolML, was developed that can

be compiled into hydrocarbon assembler instructions [17].

MolML is an Extensible Markup Language (XML) based

language that is designed to factor out the redundancy in

molecular structures that have large amounts of symmetry

and repetition. The language is written to provide

communication between a macroscale computer and a
molecular assembler, facilitating the correspondence of

input instructions to the assembler. Using MolML, it is

possible to define 3-dimensional molecular structures of

arbitrary complexity [17].

In order to visualize and simulate the molecular structures

defined with MolML, a software tool was developed to

parse, display and animate a MolML design. The MolSim

tool [17] implements basic Newtonian Laws by using vector

geometries, accounting for the position, velocity, and

acceleration of particles in the simulation environment. The

simulation engine was tested against a MolML document

that defined the structure of Drexler‘s nano-mechanical
NAND gates, using the tetrahedral lattice molecular

structure of rigid diamond molecules to form the logic rods.

For efficiency concerns, the housing was omitted. The

molecular design was inspired from an examination of the

repetitive symmetries inherent in the lattice [6].

Simulation of atomic interactions and molecular structures

in the current version of MolSim is infeasible for larger

structures, so these larger structures such as adders can be

constructed as formal, mathematical models using Colored

Petri Nets (CPNs) [18]. Petri Nets provide a modeling

language that is well suited for larger systems, drawing on
the power of generalization provided by mathematical

modeling techniques. In practice, a CPN model is created

using a graphical tool, enabling visual representation and

analysis of a CPN model. With the addition of timing

parameters, CPN can realistically model the function of a

nano-mechanical NAND gate and higher-order molecular

structures constructed hierarchically by reusing the NAND

model in varying configurations.

D. Nanocompiler Design

The two major goals of the work reported in this paper are
refinement of the design of a nanocompiler [19] and a

simulation of a common nano-mechanical component that

can be generated by the nanocompiler. Our nanocompiler

design generates as its output both as an executable version

of the original source program and the description of a

machine on which the executable will run. Traditional

compilers take the source code and translate it into a binary

form suitable for a specific processor, optimized to run as

well as possible on that target machine. Knowledge of the

target machine is needed to perform machine-dependent

optimizations. Our approach is a generalization of

compilation for reconfigurable computing in that the

configuration of the target machine is unknown when
compilation begins. The machine configuration is extracted

from the source program, based on analyses of program

characteristics. In this way, the resulting machine is an

excellent fit to the program.

Figure 1 illustrates the organization of the proposed

nanocompiler from a high level. Source code is processed

by the Front end of the compiler, including machine-

independent optimizations. The resulting intermediate form

is passed to a Machine requirements analysis phase, which

performs static analysis, providing metrics to the Machine

description generation phase. The resulting machine
description is used by the Processor generator phase to

generate or reconfigure the target machine, and by the

compiler Back end to perform machine-dependent

optimizations and generate the executable code. The

Processor generator and even runtime profiling information

can feed information back into the Machine requirements

analysis phase to enable iterative refinement of the machine

description, and thus of the processor itself.

Fig.1. Organization of a nanocompiler

Inside the Processor generator (Figure 2), a machine is

reconfigured or generated using a nanotechnology approach.

The machine description is analyzed through a sequence of

phases that translate the description into a layout of circuits

(e.g., VHDL) or other structures (e.g., MolML) that

implement the machine, which in turn is implemented using
logic gates, which are either reconfigured as with FPGAs or

assembled using molecular manufacturing techniques, to

produce the target processor.

Source code

Front end

Machine requirements

analysis

Machine description

generation

Back end

processor

Executable code

Processor generator

Dynamic profiler

Source code

Front end

Machine requirements

analysis

Machine description

generation

Back end

processor

Executable code

Processor generator

Dynamic profiler

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 39

Fig.2. Organization of a nanotechnology-based processor

generator.

In the current implementation, we focus on the generation of

a nano-mechanical machine description for an addition

instruction. Thus, we restrict the scope of the research

results reported in this paper to the machine description and

processor generation phases, and more specifically on how a
machine description for low-level components, nano-

mechanical NAND gates, can be combined into a higher-

level component, a 32-bit nano-mechanical adder.

Designing nano-mechanical computer components at this

scale raises a number of important issues that may need to

be addressed in future research, including

A. Compilation Time

Determine the time needed to analyze source code, produce

a machine specification, and fabricate components using

hydrocarbon assemblers, which can enable near-exponential
assembly capability through an initial self-replication

process.

B. Design Feasibility

Determine whether the approach is feasible, and identify

further what technology must be developed to construct a

complete, working nanocompiler. Extend 2-D fabrication to

an understanding of 3-D fabrication made possible with

mechanical components.

C. Performance Efficiency

Determine the efficiency of inherently slower nano-

mechanical processing, evaluate for potential speedup

through increased parallelism, and predict throughput and

related latencies. Design realistic models that reflect

predicted behavior.

D. Requirements Analysis

Determine what essential information is needed in the

compiler, including analyses performed for parallelization,
resource requirements, and efficiently scalable

reconfiguration and fabrication.

E. Usability Of Massive Parallelism

Identify approaches that can successfully utilize the extreme

parallelism that may be available, including integration of

ILP, thread- and task-level parallelism.

III SIMULATION OF NANOSCALE COMPONENTS

Simulation of a 32-bit nano-mechanical adder was

accomplished through a sequence of four developmental

stages: nano-mechanical NAND gate, CPN model of a

NAND gate, CPN model of a 1-bit adder, and a CPN model

of a 32-bit adder. In the first stage of development, an

atomic-level nano-mechanical description language

(MolML) and a simulation tool (MolSim) were designed,

enabling a realistic, visual modeling of a single NAND gate

(Figure 3). By extending earlier work on MolSim [17], we

created an atomic and molecular description of a NAND
gate that could be generated given a few positional

parameters, which is then translated by MolSim into the full

atomic and molecular description that provides details of the

placement and configuration for each atom and molecule.

Based on proposed functional parameters of nano-

mechanical logic gates [4], a variety of estimated

characteristics are provided in Table I. The rod component

of the NAND gate can be constructed using relatively few

Carbon atoms, while the housing which encloses the gate

(not shown) requires significantly more. Atomically precise

modeling tools are needed to quantify these material

requirements. The proposed speed for a nano-mechanical
processor is approximately 1 ns per operation, operating at

1000 MIPS, or 1 GHz, with logic and arithmetic operations

requiring about 1 ns [4]. We assume 0.1 ns per NAND

calculation, with 0.2 ns for reset latency. The volume of a

single NAND gate is approximately 16 nm3 [4], so

6.25e+16 such components can fit in a single cubic

millimeter. Clearly this is a much higher density than the

current best practical feature size of 45 nm.

Fig. 3. MolSim model of a NAND gate.

Table I. Estimated characteristics of mechanical NAND

gate model [4].

Characteristic
Estimated
value

Time to perform operation (Transistors

require 0.01 ns)
0.1 ns

Time to reset (2x op time) 0.2 ns

Machine description

Circuit generator

Circuit layout optimizer

Logic gate generator

Molecular gate assembler

Processor

Machine description

Circuit generator

Circuit layout optimizer

Logic gate generator

Molecular gate assembler

Processor

P a g e | 40 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

Surface area of gate (Transistors each
require 106 nm2)

4 nm2

Volume of gate (gates are stackable in 3D) 16 nm3

Improvement in volumetric packing density
compared to transistors

>1011

In the second stage, CPN was used to model the same

NAND gate at a higher level of abstraction (Figure 4), but

with identical behavior characteristics. Time units are

measured by the addition of a timestamp notation to the

NAND gate, such that the function of each NAND gate

accounts for one unit of time. Time units accumulate during

the simulation, enabling straightforward scaling to other

time units as needed. Because of the nature of the binary
calculations being performed, the NAND gate was designed

to operate on Boolean, rather than decimal, values.

Fig. 4. CPN model of a NAND GATE.

In the third stage, a CPN model was constructed of a 1-bit

adder by connecting nine NAND gate models in a standard

adder configuration (Figure 5). Time measurement of the
NAND gate model produced output of a carry value in 5

units of time, and a sum value in 6 time units, which equates

to a total time of 0.6 ns to perform a 1-bit addition.

Fig. 5. CPN model of a 1-bit Adder.

In the fourth and final stage, a CPN model of a 32-bit adder

was constructed using the hierarchical features of CPN Tool,

combining four 1-bit adders into a 4-bit adder, then four 4-

bit adders in a 16-bit adder, and finally two 16-bit adders

into a 32-bit adder (Figure 6). Timing for addition of two 32

bit values was a total of 68 time units, which is generalized

to the equation: 2(n-1)+6, where n is the number of bits.
Although the carry value requires 5 units to calculate in each

individual adder, because calculation of the sum does not

require the previous carry for the first 3 time units,

significant overlapping (i.e., parallel) computation occurs.

Table II summarizes selected characteristics, providing

initial estimates. Based on our models, and other proposed

characteristics [4], a 32-bit nano-mechanical adder requires

288 NAND gates connected using roughly 96 connector

rods, possibly constructed of nanotubes in a housing. The

models predict 6.8 ns per addition, with latency between the

start of subsequent additions of 7.0 ns, including the 0.2 ns
reset time. Drexler‘s proposed CPU requires approximately

1 ns per operation [4], suggesting that some amount of

parallelism may be inherent in a nano-mechanical adder that

is not captured in the current model. At this estimated size,

2e+14 such adders would fit in a volume of one cubic

millimeter. Extrapolating these values, the presented 32-bit

adder model is within specification of a proposed nano-

mechanical CPU that would be contained in a cube 400 nm

on a side [4].

Table II.

Estimated characteristics of a 32-bit nano-mechanical

adder model.[4]

Characteristic Est. value

Total NAND gates @ 16 nm3 288

Total connectors @ 1 nm3 96

Estimated volume (approx 16 nm cube)

 (288 x 16 nm3) + (96 x 1 nm3)

4,704 nm3

Estimated time for 1-bit addition 0.6 ns

Time to perform 32-bit addition based on
simulation

6.8 ns

Predicted time of 32-bit addition [6] 1 ns

Estimated throughput of model 142 MIPS

Predicted throughput [6] 1000 MIPS

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 41

Fig. 6. CPN model of a 32-bit Adder

IV RELATED WORK

Reconfigurable architectures, including nanocomputing, are

likely to provide a better fit and allow continued

performance improvements for general-purpose

computation. [5,6,10,20]. Design space exploration as

applied to compilation for FPGA-based and other

reconfigurable architectures demonstrates the performance
improvements possible with customized architectures [21-

23]. The concept of ―program in, chip out‖ (PICO) relies on

compiler analysis, particularly targeted automatic

parallelism, to identify program fragments that will benefit

most from customized hardware [21]. While PICO targets

primarily embedded processors and uses design space

exploration, our approach envisions a desktop or embedded

computer that reconfigures its own hardware to any arbitrary

configuration, using machine requirements analysis and

nanotechnology. This process may resemble FPGA

reconfigurability, or physical molecular reassembly,
performed at compile-time or run-time.

An innovative approach to large-scale, homogeneous,

undifferentiated, reconfigurable architecture improves upon

FPGAs using a less expensive nanoscale cell matrix

approach [6]. This work describes how networks of atomic-

scale switches can be configured in parallel and used to

fabricate scalable processors that are customized to specific

tasks. Our research can be targeted to a nanocomputer cell

matrix architecture, focusing on use of the compiler to

automatically generate reconfiguration instructions.

Although recent advancements in nanotechnology center on

medicine, pharmaceuticals, chemistry, physics and computer
engineering [12], most are early-generation nanotechnology.

Our research pursues basic and applied nanocompiler

research, focusing on applied molecular manufacturing

techniques. Continued research in this area in the near future

will require more powerful modeling and simulation tools.

Although CPN provides a flexible framework for modeling,

true molecular models that more accurately depict the

underlying physics and enable large-scale simulation are

needed, though they will be computationally expensive. A

variety of tools are available for molecular modeling and

simulation (i.e., nanohub.org), with a promising recent tool
being Nanorex‘s NanoEngineer (i.e., nanorex.com).

V CONCLUSION AND FUTURE WORK

Reconfigurable computing is a rapidly advancing area, and

the early promise of nanotechnology is being recognized. In

this paper, we have proposed the design of a nanocompiler

framework and demonstrated how molecular computing

components can be generated from a higher-level

representation, such as source code. Although this research

is limited to simulation of a nano-mechanical adder
component, the same approach can be used to generate the

full range of components needed to construct an arbitrarily

complex nano-mechanical multi-processor. With the

significant flexibility and capability of nanocomputers, it is

likely that the responsibility for guiding the configuration

will fall to the compiler, and this research demonstrates the

feasibility of that approach. Rather than the compiler

customizing the program to suit the machine as in traditional

compilation, the compiler may customize the machine to

suit the program, extending code generation to include the

ability to reconfigure the processor or guide its design and

fabrication.
We are conducting extensive research and experimentation

in the area of nanocompiler design and molecular nano-

mechanical machine generation, including program

characterization analysis, automatic parallelization, and

molecular modeling. The long-term goal of this research is

compiler control of physical, molecular assembly hardware

P a g e | 42 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

such as STMs and their descendants. Early work with an 8-

bit adder model that uses a carry-lookahead approach [24]

indicates that practical performance improvements are

possible. Models for other components, including logic

units, multipliers, and memory, are being developed using

Colored Petri Nets for to conceptualize design and behavior

and NanoEngineer to visualize the structure and physics of
these nanoscale components.

VI REFERENCES

1) Gibbs, W. (2004) A Split at the Core, Scientific

American, 291, 96-101.

2) Hennessy, J. L. and Patterson, D. A. (2006)

Computer architecture: a quantitative approach,

fourth edition, San Francisco: Morgan Kaufmann

Publishers.

3) Held, J., Bautista, J. and Koehl, S. (2006) From a
few cores to many: a tera-scale computing research

overview, Intel white paper.

4) Drexler, K. E. (1992) Nanosystems: molecular

machinery, manufacturing and computation, New

York: John Wiley & Sons, Inc.

5) Beckett, P. and Jennings, A. (2002) Towards

nanocomputer architecture, Proceedings of the

Seventh Asia-Pacific Conference on Computer

Systems Architecture, Melbourne, Australia, Sept.

2002, 19, Darlinghurst, Australia: Australian

Computer Society, 141-150.

6) Durbeck, L. J. K. and Macias, N. J. (2001) The Cell
Matrix: an architecture for nanocomputing,

Nanotechnology, 12, 217-230.

7) Goser, K., Glosekotter, P. and Dienstuhl, J. (2004)

Nanoelectronics and nanosystems: from Transistors

to molecular and quantum devices, Berlin:

Springer-Verlag.

8) Merkle, R. C. (1996) Design considerations for an

assembler, Nanotechnology, 7, 210-215.

9) Aho, A., Lam, M., Sethi, R. and Ullman, J. D.

(2007) Compilers: Principles, Techniques, and

Tools, New York: Addison-Wesley.
10) Compton, C. and Hauck, S. (2002) Reconfigurable

computing: a survey of systems and software,

ACM Computing Surveys, 34, 171-210.

11) Roco, M. C. (2007) National nanotechnology

initiative: past, present and future Handbook on

Nanoscience, Engineering and Technology, second

edition, London: Taylor and Francis.

12) Hall, J. S. (2005) Nanofuture: what‘s next for

nanotechnology, Amherst, New York: Prometheus

Books.

13) Cohen, M. L. (2001) Nanotubes, nanoscience and

nanotechnology, Materials Science and
Engineering, 15, 1-11.

14) Merkle, R. C. (1993) Molecular manufacturing:

adding positional control to chemical synthesis,

Chemical Design Automation News, 8:9-10, 55-61.

15) Merkle, R. C. (1991) Computational

nanotechnology, Nanotechnology, 2, 134-141.

16) Merkle, R. C. and Freitas, R. A. (2003) Theoretical

analysis of a carbon-carbon dimer placement tool

for diamond mechanosynthesis, Journal of

Nanoscience and Nanotechnology, 3, 319-324.

17) Wagner, B. W. and Way, T. P. (2006) MolML: an

abstract scripting language for assembly of

mechanical nanocomputer architectures,
International Conference on Computing in

Nanotechnology, Las Vegas, June 2006, 258-264.

18) Jensen, K. (1997) Coloured petri nets: basic

concepts, analysis methods and practical use,

EATCS Monographs on Theoretical Computer

Science, Berlin: Springer-Verlag.

19) Way, T. P. (2006) Compilation for future

nanocomputer architectures nanocomputer

architectures, International Conference on

Computing in Nanotechnology, Las Vegas, June

2006, 251-257.
20) Carrillo, J. E. and Chow, P. (2001) The effect of

reconfigurable units in superscalar processors,

Proceedings of the 2001 ACM/SIGDA Ninth

international Symposium on Field Programmable

Gate Arrays, Monterey, California, Feb. 2001, New

York: ACM Press, 141-150.

21) Kathail, V., Aditya, S., Schreiber, R., Rau, B. R.,

Cronquist, D. C. and Sivaraman, M. (2002) PICO:

automatically designing custom computers, IEEE

Computer, 35:9, 39-47.

22) Sekar, K., Lahiri, K. and Dey, S. (2003) Dynamic

platform management for configurable platform-
based system-on-chips, Proceedings of the

International Conference on Computer Aided

Design (ICCAD 2003), 641-648.

23) So, B., Hall, M. and Diaz, P. (2002) A Compiler

approach to fast hardware design space exploration

in FPGA-based systems, ACM SIGPLAN Notices,

37:5, 165-176.

24) Cheng, F. C., Unger, S. H. and Theobald, M.

(2000) Self-timed carry-lookahead adders, IEEE

Transactions on Computers, 49, 659-672.

	Compiling Mechanical Nanocomputer Components
	Author
	Abstract
	Keywords
	I INTRODUCTION
	II BACKGROUND
	A. Nanoscale Computer Architectures
	B. Mechanosynthesis And Hydrocarbon Assemblers
	C. Modeling Of Nano-Mechanical Structures
	D. Nanocompiler Design
	E. Usability Of Massive Parallelism

	III SIMULATION OF NANOSCALE COMPONENTS
	IV RELATED WORK
	V CONCLUSION AND FUTURE WORK
	VI REFERENCES

